Template
template<typename T>
void f(T& param); // param is a reference
//and we have these variable declarations,
int x = 27; // x is an int
const int cx = x; // cx is a const int
const int& rx = x; // rx is a reference to x as a const int
//the deduced types for param and T in various calls are as follows:
f(x); // T is int, param's type is int&
f(cx); // T is const int,
// param's type is const int&
f(rx); // T is const int,
// param's type is const int&
universal reference
template<typename T>
void f(T&& param); // param is now a universal reference
int x = 27; // as before
const int cx = x; // as before
const int& rx = x; // as before
f(x); // x is lvalue, so T is int&, param's type is also int&
f(cx); // cx is lvalue, so T is const int&, param's type is also const int&
f(rx); // rx is lvalue, so T is const int&, param's type is also const int&
f(27); // 27 is rvalue, so T is int,param's type is therefore int&&
not pointer or reference
template<typename T>
void f(T param); // param is now passed by value
int x = 27; // as before
const int cx = x; // as before
const int& rx = x; // as before
f(x); // T's and param's types are both int
f(cx); // T's and param's types are again both int
f(rx); // T's and param's types are still both int
template<typename T>
void f(T param); // param is still passed by value
const char* const ptr = // ptr is const pointer to const object "Fun with pointers";
f(ptr); // pass arg of type const char * const
Array Arguments
template<typename T, std::size_t N> // see info
constexpr std::size_t arraySize(T (&)[N]) noexcept // below on
{
return N; // and
}
int keyVals[] = { 1, 3, 7, 9, 11, 22, 35 }; // keyVals has 7 elements
int mappedVals[arraySize(keyVals)]; // so does mappedVals
Auto
auto x = 27; // case 3 (x is neither ptr nor reference)
const auto cx = x; // case 3 (cx isn't either)
const auto& rx = x; // case 1 (rx is a non-universal ref.)
auto&& uref1 = x; // x is int and lvalue, so uref1's type is int&
auto&& uref2 = cx; // cx is const int and lvalue, so uref2's type is const int&
auto&& uref3 = 27; // 27 is int and rvalue, so uref3's type is int&&
const char name[] ="R. N. Briggs"; // name's type is const char[13]
auto arr1 = name; // arr1's type is const char*
auto& arr2 = name; // arr2's type is
void someFunc(int, double); // someFunc is a function; type is void(int, double)
auto func1 = someFunc; // func1's type is void (*)(int, double)
auto& func2 = someFunc; // func2's type is void (&)(int, double)
auto x5 = { 1, 2, 3.0 }; // error! can't deduce T for std::initializer_list<T>
Decltype
const int i = 0; // decltype(i) is const int
bool f(const Widget& w); // decltype(w) is const Widget& decltype(f) is bool(const Widget&)
struct Point {
int x, y; // decltype(Point::x) is int
}; // decltype(Point::y) is int
Widget w; // decltype(w) is Widget
if (f(w)) … // decltype(f(w)) is bool
template<typename T> // simplified version of std::vector
class vector {
public:
…
T& operator[](std::size_t index);
…
};
vector<int> v; // decltype(v) is vector<int>
…
if (v[0] == 0) … // decltype(v[0]) is int&
template<typename Container, typename Index> // works, but requires refinement
auto authAndAccess(Container& c, Index i) -> decltype(c[i])
{
authenticateUser();
return c[i];
}
template<typename Container, typename Index> // C++14;
auto authAndAccess(Container& c, Index i) // not quite
{ // correct
authenticateUser();
return c[i]; // return type deduced from c[i]
}
std::deque<int> d;
…
authAndAccess(d, 5) = 10; // authenticate user, return d[5],
// then assign 10 to it;
// this won't compile!
template<typename Container, typename Index> // C++14; works,but still requires refinement
decltype(auto)
authAndAccess(Container& c, Index i)
{
authenticateUser();
return c[i];
}
Widget w;
const Widget& cw = w;
auto myWidget1 = cw; // auto type deduction: myWidget1's type is Widget
decltype(auto) myWidget2 = cw; // decltype type deduction: myWidget2's type
int i=12;
decltype(i) ii=i;//value
decltype((i)) iii=i;//reference
decltype(auto) iiii=i;//reference
decltype(auto) f1()
{
int x = 0;
…
return x; // decltype(x) is int, so f1 returns int
}
decltype(auto) f2()
{
int x = 0;
…
return (x); // decltype((x)) is int&, so f2 returns int&
}
why auto
template<typename It> // algorithm to dwim ("do what I mean")
void dwim(It b, It e) // for all elements in range from
{ // b to e
while (b != e) {
typename std::iterator_traits<It>::value_type currValue = *b;
}
}
and you can use auto instead
template<typename It> // as before
void dwim(It b, It e)
{
while (b != e) {
auto currValue = *b;
…
}
auto derefUPLess = // comparison func.
[](const std::unique_ptr<Widget>& p1, // for Widgets
const std::unique_ptr<Widget>& p2) // pointed to by
{ return *p1 < *p2; }; // std::unique_ptrs
//use auto for all
auto derefLess = // C++14 comparison
[](const auto& p1, // function for
const auto& p2) // values pointed
{ return *p1 < *p2; }; // to by anything
// pointer-like