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Welcome to Elementary Linear Algebra, Eighth Edition. I am proud to present to you this new edition. As with 
all editions, I have been able to incorporate many useful comments from you, our user. And while much has 
changed in this revision, you will still find what you expect—a pedagogically sound, mathematically precise, and 
comprehensive textbook. Additionally, I am pleased and excited to offer you something brand new— a companion 
website at LarsonLinearAlgebra.com. My goal for every edition of this textbook is to provide students with the 
tools that they need to master linear algebra. I hope you find that the changes in this edition, together with 
LarsonLinearAlgebra.com, will help accomplish just that.

New To This Edition
NEW LarsonLinearAlgebra.com
This companion website offers multiple tools and 
resources to supplement your learning. Access to 
these features is free. Watch videos explaining 
concepts from the book, explore examples, download 
data sets and much more.

REVISED Exercise Sets
The exercise sets have been carefully and extensively 
examined to ensure they are rigorous, relevant, and 
cover all the topics necessary to understand the 
fundamentals of linear algebra. The exercises are 
ordered and titled so you can see the connections 
between examples and exercises. Many new skill-
building, challenging, and application exercises have 
been added. As in earlier editions, the following 
pedagogically-proven types of exercises are included.

• True or False Exercises

• Proofs

• Guided Proofs

• Writing Exercises

•  Technology Exercises (indicated throughout the 
text with )

Exercises utilizing electronic data sets are indicated 
by  and found at CengageBrain.com.

 ix

Preface

 5.2 Exercises 253

true or False? In Exercises 85 and 86, determine 
whether each statement is true or false. If a statement 
is true, give a reason or cite an appropriate statement 
from the text. If a statement is false, provide an example 
that shows the statement is not true in all cases or cite an 
appropriate statement from the text.

85. (a)  The dot product is the only inner product that can be 
defined in Rn.

 (b)  A nonzero vector in an inner product can have a 
norm of zero.

86. (a)  The norm of the vector u is the angle between u and 
the positive x-axis.

 (b)  The angle θ between a vector v and the projection 
of u onto v is obtuse when the scalar a < 0 and 
acute when a > 0, where av = projvu.

87.  Let u = (4, 2) and v = (2, −2) be vectors in R2 with 
the inner product 〈u, v〉 = u1v1 + 2u2v2.

 (a) Show that u and v are orthogonal.

 (b)  Sketch u and v. Are they orthogonal in the Euclidean 
sense?

88. Proof Prove that

 �u + v�2 + �u − v�2 = 2�u�2 + 2�v�2

 for any vectors u and v in an inner product space V.

89. Proof Prove that the function is an inner product on Rn.

 〈u, v〉 = c1u1v1 + c2u2v2 + .  .  . + cnunvn, ci > 0

90.  Proof Let u and v be nonzero vectors in an inner 
product space V. Prove that u − projvu is orthogonal  
to v.

91.  Proof Prove Property 2 of Theorem 5.7: If u, v, 
and w are vectors in an inner product space V, then 
〈u + v, w〉 = 〈u, w〉 + 〈v, w〉.

92.  Proof Prove Property 3 of Theorem 5.7: If u and v 
are vectors in an inner product space V and c is any real 
number, then 〈u, cv〉 = c〈u, v〉.

93.  guided Proof Let W  be a subspace of the inner  
product space V. Prove that the set

 W⊥ = {v ∈ V: 〈v, w〉 = 0 for all w ∈ W}
 is a subspace of V.

  Getting Started: To prove that W⊥ is a subspace of 
V, you must show that W⊥ is nonempty and that the  
closure conditions for a subspace hold (Theorem 4.5).

   (i) Find a vector in W⊥ to conclude that it is nonempty.

  (ii)  To show the closure of W⊥ under addition, you 
need to show that 〈v1 + v2, w〉 = 0 for all w ∈ W  
and for any v1, v2 ∈ W⊥. Use the properties of 
inner products and the fact that 〈v1, w〉 and 〈v2, w〉 
are both zero to show this.

 (iii)  To show closure under multiplication by a scalar, 
proceed as in part (ii). Use the properties of inner 
products and the condition of belonging to W⊥.

 94.  Use the result of Exercise 93 to find W⊥ when W  is the 
span of (1, 2, 3) in V = R3.

 95.  guided Proof Let 〈u, v〉 be the Euclidean inner 
product on Rn. Use the fact that 〈u, v〉 = uTv to prove 
that for any n × n matrix A,

  (a) 〈ATAu, v〉 = 〈u, Av〉
  and

  (b) 〈ATAu, u〉 = �Au�2.
   Getting Started: To prove (a) and (b), make use of both 

the properties of transposes (Theorem 2.6) and the 
properties of the dot product (Theorem 5.3).

   (i)  To prove part (a), make repeated use of the property  
〈u, v〉 = uTv and Property 4 of Theorem 2.6.

  (ii)  To prove part (b), make use of the property 
〈u, v〉 = uTv, Property 4 of Theorem 2.6, and 
Property 4 of Theorem 5.3.

96. CAPSTONE
(a)  Explain how to determine whether a function 

defines an inner product.

(b)  Let u and v be vectors in an inner product space V, 
such that v ≠ 0. Explain how to find the orthogonal  
projection of u onto v.

Finding Inner Product Weights In Exercises 97–100, 
find c1 and c2 for the inner product of R2,

〈u, v〉 = c1u1v1 + c2u2v2

such that the graph represents a unit circle as shown.

 97. y

x
−2−3 2 3
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||u|| = 1

  98. y

x

||u|| = 1

−3 1 3−1
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−3−5 1 3 5

−5

1
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 100. y
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−6 6

−4

−6

4

6

101. Consider the vectors

  u = (6, 2, 4) and v = (1, 2, 0)
   from Example 10. Without using Theorem 5.9, show 

that among all the scalar multiples cv of the vector 
v, the projection of u onto v is the vector closest to  
u—that is, show that d(u, projvu) is a minimum.
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Table of Contents Changes
Based on market research and feedback from users, 
Section 2.5 in the previous edition (Applications of 
Matrix Operations) has been expanded from one section 
to two sections to include content on Markov chains. 
So now, Chapter 2 has two application sections: 
Section 2.5 (Markov Chains) and Section 2.6 (More 
Applications of Matrix Operations). In addition, 
Section 7.4 (Applications of Eigenvalues and 
Eigenvectors) has been expanded to include content 
on constrained optimization.

Trusted Features
®

For the past several years, an independent website—
CalcChat.com—has provided free solutions to all 
odd-numbered problems in the text. Thousands of 
students have visited the site for practice and help 
with their homework from live tutors. You can also 
use your smartphone’s QR Code® reader to scan the
icon  at the beginning of each exercise set to

access the solutions.

Chapter Openers
Each Chapter Opener highlights five real-life 
applications of linear algebra found throughout the 
chapter. Many of the applications reference the 
Linear Algebra Applied feature (discussed on the 
next page). You can find a full list of the 
applications in the Index of Applications on the 
inside front cover.

Section Objectives
A bulleted list of learning objectives, located at 
the beginning of each section, provides you the 
opportunity to preview what will be presented 
in the upcoming section.

Theorems, Definitions, and 
Properties
Presented in clear and mathematically precise 
language, all theorems, definitions, and properties 
are highlighted for emphasis and easy reference.

Proofs in Outline Form
In addition to proofs in the exercises, some 
proofs are presented in outline form. This omits 
the need for burdensome calculations.

x Preface

62 Chapter 2 Matrices

2.3 The Inverse of a Matrix

 Find the inverse of a matrix (if it exists).

 Use properties of inverse matrices.

 Use an inverse matrix to solve a system of linear equations.

Matrices and their inverses

Section 2.2 discussed some of the similarities between the algebra of real numbers and 
the algebra of matrices. This section further develops the algebra of matrices to include 
the solutions of matrix equations involving matrix multiplication. To begin, consider 
the real number equation ax = b. To solve this equation for x, multiply both sides of 
the equation by a−1 (provided a ≠ 0).

 ax = b

 (a−1a)x = a−1b

 (1)x = a−1b

 x = a−1b

The number a−1 is the multiplicative inverse of a because a−1a = 1 (the identity 
element for multiplication). The definition of the multiplicative inverse of a matrix is 
similar.

definition of the inverse of a Matrix

An n × n matrix A is invertible (or nonsingular) when there exists an n × n 
matrix B such that

AB = BA = In

where In is the identity matrix of order n. The matrix B is the (multiplicative)  
inverse of A. A matrix that does not have an inverse is noninvertible (or  
singular).

Nonsquare matrices do not have inverses. To see this, note that if A is of size 
m × n and B is of size n × m (where m ≠ n), then the products AB and BA are of  
different sizes and cannot be equal to each other. Not all square matrices have inverses. 
(See Example 4.) The next theorem, however, states that if a matrix does have an 
inverse, then that inverse is unique.

theoreM 2.7 Uniqueness of an inverse Matrix

If A is an invertible matrix, then its inverse is unique. The inverse of A is  
denoted by A−1.

proof

If A is invertible, then it has at least one inverse B such that

AB = I = BA.

Assume that A has another inverse C such that

AC = I = CA.

Demonstrate that B and C are equal, as shown on the next page.
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Discovery
Using the Discovery feature helps you develop 
an intuitive understanding of mathematical 
concepts and relationships.

Technology Notes
Technology notes show how you can use 
graphing utilities and software programs 
appropriately in the problem-solving process. 
Many of the Technology notes reference the 
Technology Guide at CengageBrain.com.

Linear Algebra Applied
The Linear Algebra Applied feature describes a real-life 
application of concepts discussed in a section. These 
applications include biology and life sciences, business 
and economics, engineering and technology, physical 
sciences, and statistics and probability.

Capstone Exercises
The Capstone is a conceptual problem that synthesizes 
key topics to check students’ understanding of the 
section concepts. I recommend it.

Chapter Projects
Two per chapter, these offer the opportunity for group 
activities or more extensive homework assignments, 
and are focused on theoretical concepts or applications. 
Many encourage the use of technology.

Preface xi 3.1 The Determinant of a Matrix 113

When expanding by cofactors, you do not need to find cofactors of zero entries, 
because zero times its cofactor is zero.

 aijCij = (0)Cij

 = 0

The row (or column) containing the most zeros is usually the best choice for expansion 
by cofactors. The next example demonstrates this.

 The Determinant of a matrix of order 4

Find the determinant of

A = [
1

−1
0
3

−2
1
2
4

3
0
0
0

0
2
3

−2
].

soluTion

Notice that three of the entries in the third column are zeros. So, to eliminate some of 
the work in the expansion, use the third column.

∣A∣ = 3(C13) + 0(C23) + 0(C33) + 0(C43)

The cofactors C23, C33, and C43 have zero coefficients, so you need only find the  
cofactor C13. To do this, delete the first row and third column of A and evaluate the 
determinant of the resulting matrix.

 C13 = (−1)1+3∣−1
0
3

1
2
4

2
3

−2∣ Delete 1st row and 3rd column.

 = ∣−1
0
3

1
2
4

2
3

−2∣ Simplify.

Expanding by cofactors in the second row yields

 C13 = (0)(−1)2+1∣14 2
−2∣ + (2)(−1)2+2∣−1

3
2

−2∣ + (3)(−1)2+3∣−1
3

1
4∣

 = 0 + 2(1)(−4) + 3(−1)(−7)
 = 13.

You obtain 

 ∣A∣ = 3(13)
 = 39. 

Theorem 3.1 expansion by Cofactors

Let A be a square matrix of order n. Then the determinant of A is

det(A) = ∣A∣ = ∑
n

j=1
aijCij = ai1Ci1 + ai2Ci2 + .  .  . + ainCin

or

det(A) = ∣A∣ = ∑
n

i=1
aijCij = a1jC1j + a2jC2j + .  .  . + anjCnj.

ith row  
expansion

jth column  
expansion

TeChnology
Many graphing utilities and 
software programs can  
find the determinant of  
a square matrix. If you use  
a graphing utility, then you may 
see something similar to the 
screen below for Example 4. 
The Technology guide at 
CengageBrain.com can help 
you use technology to find a 
determinant.

39

[[1  -2 3 0 ]
[-1 1  0 2 ]

A

det A

[0  2  0 3 ]
[3  4  0  -2]]
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2 Projects

1 Exploring Matrix Multiplication
The table shows the first two test scores for Anna, Bruce, Chris, and David. Use the 
table to create a matrix M to represent the data. Input M into a software program or 
a graphing utility and use it to answer the questions below.

1. Which test was more difficult? Which was easier? Explain.

2. How would you rank the performances of the four students?

3. Describe the meanings of the matrix products M[10] and M[01].
4. Describe the meanings of the matrix products [1 0 0 0]M and [0 0 1 0]M.

5. Describe the meanings of the matrix products M[11] and 12M[11].
6. Describe the meanings of the matrix products [1 1 1 1]M and 14[1 1 1 1]M.

7. Describe the meaning of the matrix product [1 1 1 1]M[11].
8.  Use matrix multiplication to find the combined overall average score on  

both tests.

9.  How could you use matrix multiplication to scale the scores on test 1 by a  
factor of 1.1?

2 Nilpotent Matrices
Let A be a nonzero square matrix. Is it possible that a positive integer k exists such 
that Ak = O? For example, find A3 for the matrix

 A = [
0
0
0

1
0
0

2
1
0].

A square matrix A is nilpotent of index k when A ≠ O, A2 ≠ O, .  .  . , Ak−1 ≠ O, 
but Ak = O. In this project you will explore nilpotent matrices.

1. The matrix in the example above is nilpotent. What is its index?

2.  Use a software program or a graphing utility to determine which matrices below 
are nilpotent and find their indices.

 (a) [00
1
0]  (b) [01

1
0]  (c) [01

0
0]

 (d) [11
0
0]  (e) [

0
0
0

0
0
0

1
0
0] (f) [

0
1
1

0
0
1

0
0
0]

3. Find 3 × 3 nilpotent matrices of indices 2 and 3.

4. Find 4 × 4 nilpotent matrices of indices 2, 3, and 4.

5. Find a nilpotent matrix of index 5.

6. Are nilpotent matrices invertible? Prove your answer.

7. When A is nilpotent, what can you say about AT? Prove your answer.

8. Show that if A is nilpotent, then I − A is invertible.

Test 1 Test 2

Anna 84 96

Bruce 56 72

Chris 78 83

David 82 91

Supri Suharjoto/Shutterstock.com
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Notice that three of the entries in the third column are zeros. So, to eliminate some of 
the work in the expansion, use the third column.

3

 have zero coefficients, so you need only find the 

 4.7 Coordinates and Change of Basis 213

[
1
0

⋮
0

0
1

⋮
0

.  .  .

.  .  .

.  .  .

0
0

⋮
1

c11

c21

⋮
cn1

c12

c22

⋮
cn2

.  .  .

.  .  .

.  .  .

c1n

c2n

⋮
cnn

].
By the lemma following Theorem 4.20, however, the right-hand side of this matrix  
is Q = P−1, which implies that the matrix has the form [I    P−1], which proves the 
theorem. 

In the next example, you will apply this procedure to the change of basis problem 
from Example 3.

 
Finding a transition Matrix

See LarsonLinearAlgebra.com for an interactive version of this type of example.

Find the transition matrix from B to B′ for the bases for R3 below.

B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and B′ = {(1, 0, 1), (0, −1, 2), (2, 3, −5)}

solution

First use the vectors in the two bases to form the matrices B and B′.

B = [
1
0
0

0
1
0

0
0
1] and B′ = [

1
0
1

0
−1

2

2
3

−5]
Then form the matrix [B′    B] and use Gauss-Jordan elimination to rewrite [B′    B] as 
[I3    P

−1].

[
1
0
1

0
−1

2

2
3

−5

1
0
0

0
1
0

0
0
1]  [

1
0
0

0
1
0

0
0
1

−1
3
1

4
−7
−2

2
−3
−1]

From this, you can conclude that the transition matrix from B to B′ is

P−1 = [
−1

3
1

4
−7
−2

2
−3
−1].

Multiply P−1 by the coordinate matrix of x = [1    2    −1]T to see that the result is the 
same as that obtained in Example 3. 

linear 
algeBra 
applied

Crystallography is the science of atomic and molecular 
structure. In a crystal, atoms are in a repeating pattern 
called a lattice. The simplest repeating unit in a lattice is a 
unit cell. Crystallographers can use bases and coordinate 
matrices in R3 to designate the locations of atoms in a  
unit cell. For example, the figure below shows the unit  
cell known as end-centered monoclinic.

One possible coordinate matrix for the top end-centered 
(blue) atom is [x]B′ = [12    12    1]T.

Brazhnykov Andriy/Shutterstock.com

DISCOVERY
1.  Let B = {(1, 0), (1, 2)} 

and B′ = {(1, 0), (0, 1)}. 
Form the matrix 
[B′    B].

2.  Make a conjecture 
about the necessity of 
using Gauss-Jordan 
elimination to obtain 
the transition matrix 
P−1 when the change 
of basis is from a  
nonstandard basis to  
a standard basis.
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 5.3 Orthonormal Bases: Gram-Schmidt Process 255

Example 1 describes another nonstandard orthonormal basis for R3.

  a nonstandard Orthonormal Basis for R3

Show that the set is an orthonormal basis for R3.

S = {v1, v2, v3} = {( 1

√2
, 

1

√2
, 0), (−√2

6
, 
√2
6

, 
2√2

3 ), (
2
3

, −
2
3

, 
1
3)}

SOlutiOn

First show that the three vectors are mutually orthogonal.

 v1 ∙ v2 = −
1
6
+

1
6
+ 0 = 0

 v1 ∙ v3 =
2

3√2
−

2

3√2
+ 0 = 0

 v2 ∙ v3 = −
√2
9

−
√2
9

+
2√2

9
= 0

Now, each vector is of length 1 because

�v1� = √v1 ∙ v1 = √1
2 + 1

2 + 0 = 1

�v2� = √v2 ∙ v2 = √ 1
18 + 1

18 + 8
9 = 1

�v3� = √v3 ∙ v3 = √4
9 + 4

9 + 1
9 = 1.

So, S is an orthonormal set. The three vectors do not lie in the same plane (see Figure 
5.11), so you know that they span R3. By Theorem 4.12, they form a (nonstandard)  
orthonormal basis for R3. 

  an Orthonormal Basis for P3

In P3, with the inner product

〈p, q〉 = a0b0 + a1b1 + a2b2 + a3b3

the standard basis B = {1, x, x2, x3} is orthonormal. The verification of this is left as an  
exercise. (See Exercise 17.) 

Figure 5.11

k

j
i

x y
,

, ,−, − ,

, 01

3

1
2

2   2

2(

((

)

))

z

2 22
3

2
3

1
3

v1

v2
v3

6 6

linear 
algeBra 
applied

Time-frequency analysis of irregular physiological signals, 
such as beat-to-beat cardiac rhythm variations (also known 
as heart rate variability or HRV), can be difficult. This is 
because the structure of a signal can include multiple  
periodic, nonperiodic, and pseudo-periodic components. 
Researchers have proposed and validated a simplified HRV 
analysis method called orthonormal-basis partitioning and 
time-frequency representation (OPTR). This method can 
detect both abrupt and slow changes in the HRV signal’s 
structure, divide a nonstationary HRV signal into segments 
that are “less nonstationary,” and determine patterns in the  
HRV. The researchers found that although it had poor time  
resolution with signals that changed gradually, the OPTR 
method accurately represented multicomponent and abrupt  
changes in both real-life and simulated HRV signals. 
(Source: Orthonormal-Basis Partitioning and Time-Frequency 
Representation of Cardiac Rhythm Dynamics, Aysin, Benhur, et al, 
IEEE Transactions on Biomedical Engineering, 52, no. 5)

Sebastian Kaulitzki/Shutterstock.com
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Media
Instructor’s Solutions Manual
The Instructor’s Solutions Manual provides worked-out solutions for all even-numbered 
exercises in the text.

Cengage Learning Testing Powered by Cognero (ISBN: 978-1-305-65806-6)
is a flexible, online system that allows you to author, edit, and manage test bank  
content, create multiple test versions in an instant, and deliver tests from your LMS, 
your classroom, or wherever you want. This is available online at cengage.com/login.

Turn the Light On with MindTap for Larson’s Elementary Linear Algebra
Through personalized paths of dynamic assignments and applications, MindTap is a 
digital learning solution and representation of your course that turns cookie cutter into 
cutting edge, apathy into engagement, and memorizers into higher-level thinkers.

The Right Content: With MindTap’s carefully curated material, you get the 
precise content and groundbreaking tools you need for every course you teach.

Personalization: Customize every element of your course—from rearranging 
the Learning Path to inserting videos and activities.

Improved Workflow: Save time when planning lessons with all of the trusted, 
most current content you need in one place in MindTap.

Tracking Students’ Progress in Real Time: Promote positive outcomes by 
tracking students in real time and tailoring your course as needed based on  
the analytics.

Learn more at cengage.com/mindtap.
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Print
Student Solutions Manual
ISBN-13: 978-1-305-87658-3
The Student Solutions Manual provides complete worked-out solutions to all  
odd-numbered exercises in the text. Also included are the solutions to all  
Cumulative Test problems. 

Media
MindTap for Larson’s Elementary Linear Algebra
MindTap is a digital representation of your course that provides you with the tools 
you need to better manage your limited time, stay organized and be successful.  
You can complete assignments whenever and wherever you are ready to learn with 
course material specially customized for you by your instructor and streamlined in 
one proven, easy-to-use interface. With an array of study tools, you’ll get a true  
understanding of course concepts, achieve better grades and set the groundwork 
for your future courses.

Learn more at cengage.com/mindtap.

CengageBrain.com
To access additional course materials and companion resources, please visit 
CengageBrain.com. At the CengageBrain.com home page, search for the ISBN  
of your title (from the back cover of your book) using the search box at the top of  
the page. This will take you to the product page where free companion resources  
can be found.

 xiii
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 1.1 Introduction to Systems of Linear Equations
 1.2 Gaussian Elimination and Gauss-Jordan Elimination
 1.3 Applications of Systems of Linear Equations

 1 Systems of Linear 
Equations

Balancing Chemical Equations (p. 4)

Global Positioning System (p. 16)

Traffic Flow (p. 28)

Electrical Network Analysis (p. 30)

Airspeed of a Plane (p. 11)
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2 Chapter 1 Systems of Linear Equations

1.1 Introduction to Systems of Linear Equations

 Recognize a linear equation in n variables.

 Find a parametric representation of a solution set.

  Determine whether a system of linear equations is consistent or 
inconsistent.

  Use back-substitution and Gaussian elimination to solve a system 
of linear equations.

LInEar EquatIonS In n VarIabLES

The study of linear algebra demands familiarity with algebra, analytic geometry,  
and trigonometry. Occasionally, you will find examples and exercises requiring a 
knowledge of calculus, and these are marked in the text.

Early in your study of linear algebra, you will discover that many of the solution  
methods involve multiple arithmetic steps, so it is essential that you check your work. Use  
software or a calculator to check your work and perform routine computations.

Although you will be familiar with some material in this chapter, you should  
carefully study the methods presented. This will cultivate and clarify your intuition for 
the more abstract material that follows.

Recall from analytic geometry that the equation of a line in two-dimensional space 
has the form

a1x + a2y = b,   a1, a2, and b are constants.

This is a linear equation in two variables x and y. Similarly, the equation of a plane 
in three-dimensional space has the form

a1x + a2y + a3z = b,   a1, a2, a3, and b are constants.

This is a linear equation in three variables x, y, and z. A linear equation in n variables 
is defined below.

Linear equations have no products or roots of variables and no variables involved  
in trigonometric, exponential, or logarithmic functions. Variables appear only to the 
first power.

 Linear and nonlinear Equations

Each equation is linear.

a. 3x + 2y = 7 b. 1
2x + y − πz = √2 c. (sin π)x1 − 4x2 = e2

Each equation is not linear.

a. xy + z = 2 b. ex − 2y = 4 c. sin x1 + 2x2 − 3x3 = 0 

Definition of a Linear Equation in n Variables

A linear equation in n variables x1, x2, x3, .  .  . , xn has the form

a1x1 + a2x2 + a3x3 + .  .  . + anxn = b.

The coefficients a1, a2, a3, .  .  . , an are real numbers, and the constant term b  
is a real number. The number a1 is the leading coefficient, and x1 is the  
leading variable.
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 1.1 Introduction to Systems of Linear Equations 3

SoLutIonS anD SoLutIon SEtS

A solution of a linear equation in n variables is a sequence of n real numbers s1, s2, 
s3, .  .  . , sn that satisfy the equation when you substitute the values

x1 = s1,  x2 = s2,  x3 = s3,  .  .  . ,  xn = sn

into the equation. For example, x1 = 2 and x2 = 1 satisfy the equation x1 + 2x2 = 4. 
Some other solutions are x1 = −4 and x2 = 4, x1 = 0 and x2 = 2, and x1 = −2 and 
x2 = 3.

The set of all solutions of a linear equation is its solution set, and when you have 
found this set, you have solved the equation. To describe the entire solution set of a 
linear equation, use a parametric representation, as illustrated in Examples 2 and 3.

 Parametric representation of a Solution Set

Solve the linear equation x1 + 2x2 = 4.

SoLutIon

To find the solution set of an equation involving two variables, solve for one of the  
variables in terms of the other variable. Solving for x1 in terms of x2, you obtain

x1 = 4 − 2x2.

In this form, the variable x2 is free, which means that it can take on any real value. The 
variable x1 is not free because its value depends on the value assigned to x2. To represent 
the infinitely many solutions of this equation, it is convenient to introduce a third variable 
t called a parameter. By letting x2 = t, you can represent the solution set as

x1 = 4 − 2t,  x2 = t,  t is any real number.

To obtain particular solutions, assign values to the parameter t. For instance, t = 1 
yields the solution x1 = 2 and x2 = 1, and t = 4 yields the solution x1 = −4  
and x2 = 4. 

To parametrically represent the solution set of the linear equation in Example 2  
another way, you could have chosen x1 to be the free variable. The parametric  
representation of the solution set would then have taken the form

x1 = s,  x2 = 2 − 1
2s,  s is any real number.

For convenience, when an equation has more than one free variable, choose the  
variables that occur last in the equation to be the free variables.

 Parametric representation of a Solution Set

Solve the linear equation 3x + 2y − z = 3.

SoLutIon

Choosing y and z to be the free variables, solve for x to obtain 

 3x = 3 − 2y +  z

 x = 1 − 2
3y +  13z.

Letting y = s and z = t, you obtain the parametric representation

x = 1 − 2
3s + 1

3t,  y = s,  z = t

where s and t are any real numbers. Two particular solutions are 

x = 1, y = 0, z = 0  and  x = 1, y = 1, z = 2. 
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4 Chapter 1 Systems of Linear Equations

SyStEmS oF LInEar EquatIonS

A system of m linear equations in n variables is a set of m equations, each of which 
is linear in the same n variables:

 a11x1 +  a12x2 +  a13x3 +  
.  .  . + a1nxn = b1

 a21x1 +  a22x2 +  a23x3 +  
.  .  . + a2nxn = b2

 a31x1 +  a32x2 +  a33x3 +  
.  .  . + a3nxn = b3

 ⋮
 am1x1 +  am2x2 +  am3x3 +  

.  .  . + amnxn = bm.

A system of linear equations is also called a linear system. A solution of a linear 
system is a sequence of numbers s1, s2, s3, .  .  . , sn that is a solution of each equation 
in the system. For example, the system

3x1 +
−x1 +

2x2 = 3
x2 = 4

has x1 = −1 and x2 = 3 as a solution because x1 = −1 and x2 = 3 satisfy both
equations. On the other hand, x1 = 1 and x2 = 0 is not a solution of the system because 
these values satisfy only the first equation in the system.

Elnur/Shutterstock.com

LInEar
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In a chemical reaction, atoms reorganize in one or more 
substances. For example, when methane gas (CH4 ) 
combines with oxygen (O2) and burns, carbon dioxide 
(CO2 ) and water (H2O) form. Chemists represent this 
process by a chemical equation of the form

(x1)CH4 + (x2)O2 → (x3)CO2 + (x4)H2O.

A chemical reaction can neither create nor destroy atoms. 
So, all of the atoms represented on the left side of the 
arrow must also be on the right side of the arrow. This 
is called balancing the chemical equation. In the above 
example, chemists can use a system of linear equations 
to find values of x1, x2, x3, and x4 that will balance the 
chemical equation. 

DISCOVERY
1. Graph the two lines

 
3x − y = 1
2x − y = 0

  in the xy-plane. Where do they intersect? How many solutions does 
this system of linear equations have?

2. Repeat this analysis for the pairs of lines

 
3x − y = 1
3x − y = 0

  and  
3x −
6x −

y = 1
2y = 2.

3.  What basic types of solution sets are possible for a system of two 
linear equations in two variables?

See LarsonLinearAlgebra.com for an interactive version of this type of exercise.

rEmarK
The double-subscript notation 
indicates aij is the coefficient 
of xj in the ith equation.
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 1.1 Introduction to Systems of Linear Equations 5

It is possible for a system of linear equations to have exactly one solution,  
infinitely many solutions, or no solution. A system of linear equations is consistent 
when it has at least one solution and inconsistent when it has no solution.

 Systems of two Equations in two Variables

Solve and graph each system of linear equations.

a. x + y =
x − y =

3
−1

 
b. x +

2x +
y = 3

2y = 6
 

c. x + y = 3
x + y = 1

SoLutIon

a.  This system has exactly one solution, x = 1 and y = 2. One way to obtain  
the solution is to add the two equations to give 2x = 2, which implies x = 1  
and so y = 2. The graph of this system is two intersecting lines, as shown in  
Figure 1.1(a).

b.  This system has infinitely many solutions because the second equation is the result 
of multiplying both sides of the first equation by 2. A parametric representation of 
the solution set is 

x = 3 − t,  y = t,  t is any real number.

The graph of this system is two coincident lines, as shown in Figure 1.1(b).

c.  This system has no solution because the sum of two numbers cannot be 3 and 1 
simultaneously. The graph of this system is two parallel lines, as shown in  
Figure 1.1(c).

1

2

3

4

1 2 3
x

y

−1

  

1

2

3

1 2 3
x

y   

1

2

3

1 2 3
x

y

−1

−1

a. Two intersecting lines: b. Two coincident lines: c. Two parallel lines:

x + y =
x − y =

3
−1

 
x +

2x +
y = 3

2y = 6
 

x + y = 3
x + y = 1

Figure 1.1 

Example 4 illustrates the three basic types of solution sets that are possible for a  
system of linear equations. This result is stated here without proof. (The proof is  
provided later in Theorem 2.5.)

number of Solutions of a System of Linear Equations

For a system of linear equations, precisely one of the statements below is true.

1. The system has exactly one solution (consistent system).
2. The system has infinitely many solutions (consistent system).
3. The system has no solution (inconsistent system).
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6 Chapter 1 Systems of Linear Equations

SoLVIng a SyStEm oF LInEar EquatIonS

Which system is easier to solve algebraically?

x − 2y
−x + 3y
2x − 5y

+ 3z =
=

+ 5z =

9
−4
17

 
x − 2y + 3z = 9

y + 3z = 5
z = 2

The system on the right is clearly easier to solve. This system is in row‑echelon form, 
which means that it has a “stair-step” pattern with leading coefficients of 1. To solve 
such a system, use back‑substitution.

 using back-Substitution in row-Echelon Form

Use back-substitution to solve the system.

 x − 2y =  5 Equation 1

 y =  −2 Equation 2

SoLutIon

From Equation 2, you know that y = −2. By substituting this value of y into Equation 1, 
you obtain

 x − 2(−2) = 5  Substitute −2 for y.

 x = 1. Solve for x.

The system has exactly one solution: x = 1 and y = −2. 

The term back-substitution implies that you work backwards. For instance,  
in Example 5, the second equation gives you the value of y. Then you substitute  
that value into the first equation to solve for x. Example 6 further demonstrates this  
procedure.

 using back-Substitution in row-Echelon Form

Solve the system.

 x − 2y + 3z = 9 Equation 1

 y + 3z = 5 Equation 2

 z = 2 Equation 3

SoLutIon

 From Equation 3, you know the value of z. To solve for y, substitute z = 2 into  
Equation 2 to obtain

 y + 3(2) =  5  Substitute 2 for z.

 y =  −1. Solve for y.

Then, substitute y = −1 and z = 2 in Equation 1 to obtain

 x − 2(−1) + 3(2) = 9  Substitute −1 for y and 2 for z.

 x = 1. Solve for x.

The solution is x = 1, y = −1, and z = 2. 

Two systems of linear equations are equivalent when they have the same solution 
set. To solve a system that is not in row-echelon form, first rewrite it as an equivalent  
system that is in row-echelon form using the operations listed on the next page.
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1.1 Introduction to Systems of Linear Equations 7

Rewriting a system of linear equations in row-echelon form usually involves 
a chain of equivalent systems, using one of the three basic operations to obtain 
each system. This process is called Gaussian elimination, after the German 
mathematician Carl Friedrich Gauss (1777–1855). 

  using Elimination to rewrite 
a System in row-Echelon Form

See LarsonLinearAlgebra.com for an interactive version of this type of example.

Solve the system.

x − 2y
−x + 3y
2x − 5y

+ 3z =
=

+ 5z =

9
−4
17

SoLutIon

Although there are several ways to begin, you want to use a systematic procedure 
that can be applied to larger systems. Work from the upper left corner of the 
system, saving the x at the upper left and eliminating the other x-terms from the 
first column.

x − 2y + 3z =
y + 3z =

2x − 5y + 5z =

9
5

17
 

Adding the first equation to 
the second equation produces 
a new second equation.

x − 2y +
y +

−y −

3z =
3z =
z =

9
5

−1
 

Adding −2 times the first
equation to the third equation
produces a new third equation.

Now that you have eliminated all but the first x from the first column, work on the 
second column.

x − 2y + 3z = 9
y + 3z = 5

2z = 4
 

Adding the second equation to
the third equation produces
a new third equation.

x − 2y + 3z = 9
y + 3z = 5

z = 2
 

Multiplying the third equation
by 12 produces a new third
equation.

This is the same system you solved in Example 6, and, as in that example, the solution is

x = 1,  y = −1,  z = 2. 

Each of the three equations in Example 7 represents a plane in a three-dimensional 
coordinate system. The unique solution of the system is the point (x, y, z) = (1, −1, 2),
so the three planes intersect at this point, as shown in Figure 1.2.

operations that Produce Equivalent Systems

Each of these operations on a system of linear equations produces an equivalent 
system.

1. Interchange two equations.
2. Multiply an equation by a nonzero constant.
3. Add a multiple of an equation to another equation.

Figure 1.2

x

y

z

(1, −1, 2)

−x + 3y = −4

2x −  5y + 5z = 17

x −  2y +3z = 9

Carl Friedrich gauss
(1777–1855)

German mathematician 
Carl Friedrich Gauss is 
recognized, with Newton 
and Archimedes, as one 
of the three greatest 
mathematicians in history. 
Gauss used a form of what 
is now known as Gaussian 
elimination in his research. 
Although this method was 
named in his honor, the 
Chinese used an 
almost identical 
method some 
2000 years prior 
to Gauss.

Nicku/Shutterstock.com
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8 Chapter 1 Systems of Linear Equations

Many steps are often required to solve a system of linear equations, so it is 
very easy to make arithmetic errors. You should develop the habit of checking your  
solution by substituting it into each equation in the original system. For instance,  
in Example 7, check the solution x = 1, y = −1, and z = 2 as shown below.

Equation 1:  
Equation 2:  
Equation 3:  

(1) − 2(−1)
−(1) + 3(−1)
2(1) − 5(−1)

+ 3(2) =
=

+ 5(2) =

9
−4
17

 
Substitute the solution  
into each equation of the 
original system.

The next example involves an inconsistent system—one that has no solution.  
The key to recognizing an inconsistent system is that at some stage of the Gaussian 
elimination process, you obtain a false statement such as 0 = −2.

 an Inconsistent System

Solve the system.

x1 −
2x1 −
x1 +

3x2 +
x2 −

2x2 −

x3 =
2x3 =
3x3 =

1
2

−1

SoLutIon

x1 − 3x2 +
5x2 −

x1 + 2x2 −

x3 =
4x3 =
3x3 =

1
0

−1
   

Adding −2 times the first 
equation to the second equation 
produces a new second equation.

x1 − 3x2 +
5x2 −
5x2 −

x3 =
4x3 =
4x3 =

1
0

−2
   

Adding −1 times the first 
equation to the third equation 
produces a new third equation.

(Another way of describing this operation is to say that you subtracted the first  
equation from the third equation to produce a new third equation.) 

x1 − 3x2 +
5x2 −

x3 =
4x3 =

0 =

1
0

−2
   

Subtracting the second equation 
from the third equation produces 
a new third equation.

The statement 0 = −2 is false, so this system has no solution. Moreover, this system 
is equivalent to the original system, so the original system also has no solution. 

As in Example 7, the three equations in 
Example 8 represent planes in a three-dimensional 
coordinate system. In this example, however, the 
system is inconsistent. So, the planes do not have a 
point in common, as shown at the right.

x2x1

x3

2x1 −  x2 − 2x3 = 2

x1 + 2x2 − 3x3 = −1

x1 −  3x2 + x3 = 1

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1.1 Introduction to Systems of Linear Equations 9

This section ends with an example of a system of linear equations that has infinitely 
many solutions. You can represent the solution set for such a system in parametric 
form, as you did in Examples 2 and 3.

 a System with Infinitely many Solutions

Solve the system.

x1

−x1

x2

+ 3x2

−
−

x3 =
3x3 =

=

0
−1

1

SoLutIon

Begin by rewriting the system in row-echelon form, as shown below.

x1

−x1

x2

+ 3x2

−
−

3x3 =
x3 =

=

−1
0
1
 

Interchange the first 
two equations.

x1 −
x2 −

      3x2 −

3x3 =
x3 =

3x3 =

−1
0
0
 

Adding the first equation to the 
third equation produces a new 
third equation.

x1 −
        x2 −

3x3 =
x3 =
0 =

−1
0
0
 

Adding −3 times the second 
equation to the third equation 
eliminates the third equation.

The third equation is unnecessary, so omit it to obtain the system shown below.

x1 −
     x2 −

3x3 =
x3 =

−1
0

To represent the solutions, choose x3 to be the free variable and represent it by the 
parameter t. Because x2 = x3 and x1 = 3x3 − 1, you can describe the solution set as

x1 = 3t − 1,  x2 = t,  x3 = t,  t is any real number. 

DISCOVERY
 1. Graph the two lines represented by the system of equations.

 
x − 2y =

−2x + 3y =
1

−3

2. Use Gaussian elimination to solve this system as shown below.

 
x − 2y =

−1y =
1

−1

 
x − 2y = 1

y = 1

 
x = 3
y = 1

  Graph the system of equations you obtain at each step of this 
process. What do you observe about the lines?

See LarsonLinearAlgebra.com for an interactive version of this type of exercise.

rEmarK
You are asked to repeat this 
graphical analysis for other 
systems in Exercises 91 
and 92.
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10 Chapter 1 Systems of Linear Equations

1.1 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

Linear Equations In Exercises 1–6, determine whether 
the equation is linear in the variables x and y.

 1. 2x − 3y = 4  2. 3x − 4xy = 0

 3. 
3
y

+
2
x

− 1 = 0  4. x2 + y2 = 4

 5. 2 sin x − y = 14  6. (cos 3)x + y = −16

Parametric representation In Exercises 7–10, find  
a parametric representation of the solution set of the  
linear equation.

 7. 2x − 4y = 0  8. 3x − 1
2y = 9

 9. x + y + z = 1

10. 12x1 + 24x2 − 36x3 = 12

graphical analysis In Exercises 11–24, graph the  
system of linear equations. Solve the system and  
interpret your answer.

11.
 
2x + y = 4
x − y = 2

 
12.

 
x + 3y = 2

−x + 2y = 3

13.
 
−x +
3x −

y = 1
3y = 4

 
14.

 
1
2x − 1

3y =
−2x + 4

3y =
1

−4

15.
 
3x −
2x +

5y = 7
y = 9

 
16.

 
−x + 3y =
4x + 3y =

17
7

17.
 
2x − y =
5x − y =

5
11

 
18.

 
x − 5y = 21

6x + 5y = 21

19.
 

x + 3
4

+
y − 1

3
=

2x − y =

1

12
 

20.
 

x − 1
2

+
y + 2

3
= 4

x − 2y = 5

21.
 
0.05x − 0.03y = 0.07
0.07x + 0.02y = 0.16

 
22.

 
0.2x − 0.5y =
0.3x − 0.4y =

−27.8
68.7

23.
 

x
4

+
y
6

= 1

x − y = 3
 

24.
 

2x
3

+

4x +

y
6

=

y =

2
3
4

back-Substitution In Exercises 25–30, use back‑ 
substitution to solve the system.

25.
 

x1 − x2 = 2
x2 = 3

 
26.

 
2x1 − 4x2 = 6

3x2 = 9

27.
 
−x + y −

2y +
z =
z =

1
2z =

0
3
0
 

28.
 

x − y
3y +

=
z =

4z =

5
11
8

29.
 
5x1 +
2x1 +

2x2

x2

+ x3 = 0
= 0

 
30.

 
x1 + x2

x2

+ x3 = 0
= 0

graphical analysis In Exercises 31–36, complete parts 
(a)–(e) for the system of equations.

(a) Use a graphing utility to graph the system.

(b)  Use the graph to determine whether the system is  
consistent or inconsistent.

(c)  If the system is consistent, approximate the solution.

(d) Solve the system algebraically.

(e)  Compare the solution in part (d) with the  
approximation in part (c). What can you conclude?

31.
 

−3x −
6x +

y = 3
2y = 1

 
32.

 
4x −

−8x +
5y =

10y =
3

14

33.
 
2x −
1
2x +

8y = 3
y = 0

 
34.

 
9x −
1
2x +

4y = 5
1
3y = 0

35.
 

4x −
0.8x −

8y =
1.6y =

9
1.8

 
36.

 
−14.7x +

44.1x −
2.1y =
6.3y =

1.05
−3.15

System of Linear Equations In Exercises 37–56, solve 
the system of linear equations.

37.
 

x1 −
3x1 −

x2 =
2x2 =

0
−1

 
38.

 
3x + 2y =
6x + 4y =

2
14

39.
 
3u +
u +

v = 240
3v = 240

 
40.

 
x1 − 2x2 = 0

6x1 + 2x2 = 0

41.
 
9x − 3y = −1

1
5x + 2

5y = −1
3
 

42.
 

2
3x1 +
4x1 +

1
6x2 = 0
x2 = 0

43.
 

x − 2
4

+
y − 1

3
=

x − 3y =

2

20

44.
 

x1 + 4
3

+
x2 + 1

2
=

3x1 − x2 =

1

−2

45.
 
0.02x1 − 0.05x2 =
0.03x1 + 0.04x2 =

−0.19
0.52

46.
 
0.05x1 − 0.03x2 = 0.21
0.07x1 + 0.02x2 = 0.17

47.
 

x
x

2x

−
+

y
2y

− z = 0
− z = 6
− z = 5

48.
 

x +
−x +
4x +

y
3y
y

+
+

z = 2
2z = 8

= 4

49.
 
3x1 −
x1 +

2x1 −

2x2 +
x2 −

3x2 +

4x3 = 1
2x3 = 3
6x3 = 8

The symbol     indicates an exercise in which you are instructed to use a  
graphing utility or software program.
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 1.1 Exercises 11

50.
 
5x1 −
2x1 +
x1 −

3x2 +
4x2 −

11x2 +

2x3 = 3
x3 = 7

4x3 = 3

51.
 

2x1

4x1

−2x1

+

+

x2 −
+

3x2 −

3x3 =
2x3 =

13x3 =

4
10

−8

52.
 

x1

4x1

2x1

− 2x2

− 2x2

+
+
−

4x3 =
x3 =

7x3 =

13
7

−19

53.
 

x −
5x −

3y +
15y +

2z = 18
10z = 18

54.
 

x1 − 2x2 +
3x1 + 2x2 −

5x3 =
x3 =

2
−2

55.

 

x +
2x +

−3x +
x +

y
3y
4y
2y

+ z

+ z
− z

+
−
+
+

w = 6
w = 0

2w = 4
w = 0

56.

 

−x1

3x1 −

4x2

x2

2x2

−

+

x3

3x3

+
−
−

2x4 = 1
x4 = 2
x4 = 0

= 4

System of Linear Equations In Exercises 57–62, use  
a software program or a graphing utility to solve the  
system of linear equations.

57.
 
123.5x + 61.3y − 32.4z =
54.7x − 45.6y + 98.2z =
42.4x − 89.3y + 12.9z =

−262.74
197.4  
33.66

58.
 
120.2x + 62.4y − 36.5z =
56.8x − 42.8y + 27.3z =
88.1x + 72.5y − 28.5z =

258.64
−71.44
225.88

59.

 

x1 +
0.5x1 +

0.33x1 +
0.25x1 +

0.5x2 +
0.33x2 +
0.25x2 +
0.2x2 +

0.33x3 +
0.25x3 +
0.2x3 +

0.17x3 +

0.25x4 = 1.1
0.21x4 = 1.2
0.17x4 = 1.3
0.14x4 = 1.4

60.

 

0.1x − 2.5y + 1.2z −
2.4x + 1.5y − 1.8z +
0.4x − 3.2y + 1.6z −
1.6x + 1.2y − 3.2z +

0.75w =
0.25w =
1.4w =
0.6w =

108
−81
148

−143
.8
.2

61.

 

1
2x1 − 3

7x2 + 2
9x3 =

2
3x1 + 4

9x2 − 2
5x3 =

4
5x1 − 1

8x2 + 4
3x3 =

349
630

−19
45

139
150

62. 1
8x − 1

7y + 1
6z − 1

5w = 1

 1
7x + 1

6y − 1
5z + 1

4w = 1

 1
6x − 1

5y + 1
4z − 1

3w = 1

 1
5x + 1

4y − 1
3z + 1

2w = 1

number of Solutions In Exercises 63–66, state why 
the system of equations must have at least one solution. 
Then solve the system and determine whether it has 
exactly one solution or infinitely many solutions.

63.
 
4x + 3y + 17z = 0
5x + 4y + 22z = 0
4x + 2y + 19z = 0

 
64.

 
2x + 3y
4x + 3y
8x + 3y

−
+

= 0
z = 0

3z = 0

65.
 

5x +
10x +
5x +

5y −
5y +

15y −

z = 0
2z = 0
9z = 0

 
66. 16x + 3y + z = 0

16x + 2y − z = 0

67.  nutrition One eight-ounce glass of apple juice and 
one eight-ounce glass of orange juice contain a total of 
227 milligrams of vitamin C. Two eight-ounce glasses 
of apple juice and three eight-ounce glasses of orange 
juice contain a total of 578 milligrams of vitamin C. 
How much vitamin C is in an eight-ounce glass of each 
type of juice?

68.  airplane Speed Two planes start from Los Angeles 
International Airport and fly in opposite directions. The 
second plane starts 1

2 hour after the first plane, but its 
speed is 80 kilometers per hour faster. Two hours after 
the first plane departs, the planes are 3200 kilometers 
apart. Find the airspeed of each plane.

true or False? In Exercises 69 and 70, determine 
whether each statement is true or false. If a statement 
is true, give a reason or cite an appropriate statement 
from the text. If a statement is false, provide an example 
that shows the statement is not true in all cases or cite an 
appropriate statement from the text.

69. (a)  A system of one linear equation in two variables is 
always consistent.

 (b)  A system of two linear equations in three variables 
is always consistent.

 (c)  If a linear system is consistent, then it has infinitely  
many solutions.

70. (a) A linear system can have exactly two solutions.

 (b)  Two systems of linear equations are equivalent 
when they have the same solution set.

 (c)  A system of three linear equations in two variables 
is always inconsistent.

71.  Find a system of two equations in two variables, x1 and 
x2, that has the solution set given by the parametric  
representation x1 = t and x2 = 3t − 4, where t is any 
real number. Then show that the solutions to the system 
can also be written as

x1 =
4
3

+
t
3

  and  x2 = t.

The symbol  indicates that electronic data sets for these exercises are available  
at LarsonLinearAlgebra.com. The data sets are compatible with MATLAB,  
Mathematica, Maple, TI-83 Plus, TI-84 Plus, TI-89, and Voyage 200.
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12 Chapter 1 Systems of Linear Equations

72.  Find a system of two equations in three variables,  
x1, x2, and x3, that has the solution set given by the  
parametric representation

x1 = t,  x2 = s,  and  x3 = 3 + s − t

  where s and t are any real numbers. Then show that the  
solutions to the system can also be written as

x1 = 3 + s − t,  x2 = s,  and  x3 = t.

Substitution In Exercises 73–76, solve the system 
of equations by first letting A = 1�x, B = 1�y, and 
C = 1�z.

73.
 

12
x

−
12
y

= 7

3
x

+
4
y

= 0
 

74.
 

3
x

+
2
y

=

2
x

−
3
y

=

−1

−
17
6

75.

 

2
x
4
x

−
2
x

+
1
y

+
3
y

−
3
z

=

+
2
z

=

−
13
z

=

4

10

−8

 

76.

 

2
x

+
1
y

3
x

−
4
y

2
x

+
1
y

−
2
z

=

=

+
3
z

=

5

−1

0

trigonometric Coefficients In Exercises 77 and 78, 
solve the system of linear equations for x and y.

77.  (cos θ)x + (sin θ)y = 1
  (−sin θ)x + (cos θ)y = 0

78.  (cos θ)x + (sin θ)y = 1
  (−sin θ)x + (cos θ)y = 1

Coefficient Design In Exercises 79–84, determine the 
value(s) of k such that the sys tem of linear equations has 
the indicated number of solutions.

79. No solution 80. Exactly one solution

 
x +

kx +
ky = 2
y = 4

  
x +

kx +
ky = 0
y = 0

81. Exactly one solution 82. No solution

 
kx +
x +

2x −

2ky +
y +
y +

3kz =
z =
z =

4k
0
1

  
x + 2y + kz = 6

3x + 6y + 8z = 4

83. Infinitely many solutions

 
4x +
kx +

ky =
y =

6
−3

84. Infinitely many solutions

 
kx +
3x −

y =
4y =

16
−64

85.  Determine the values of k such that the system of linear  
equations does not have a unique solution.

 
x +
x +

kx +

y +
ky +
y +

kz = 3
z = 2
z = 1

86.  CAPSTONE Find values of a, b, and c such 
that the system of linear equations has (a) exactly 
one solution, (b) infinitely many solutions, and  
(c) no solution. Explain.

 
x + 5y +
x + 6y −

2x + ay +

z = 0
z = 0

bz = c

87.  Writing Consider the system of linear equations in x 
and y.

 a1x + b1y = c1

 a2x + b2y = c2

 a3x + b3y = c3

  Describe the graphs of these three equations in the  
xy-plane when the system has (a) exactly one solution,  
(b) infinitely many solutions, and (c) no solution.

88.  Writing Explain why the system of linear equations 
in Exercise 87 must be consistent when the constant 
terms c1, c2, and c3 are all zero.

89.  Show that if ax2 + bx + c = 0 for all x, then 
a = b = c = 0.

90. Consider the system of linear equations in x and y.

 
ax +
cx +

by =
dy =

e
f

  Under what conditions will the system have exactly one 
solution?

Discovery In Exercises 91 and 92, sketch the lines  
represented by the system of equations. Then use 
Gaussian elimination to solve the system. At each step of 
the elimination process, sketch the corresponding lines. 
What do you observe about the lines?

91.
 

x − 4y =
5x − 6y =

−3
13

 
92.

 
2x −

−4x +
3y =
6y =

7
−14

Writing In Exercises 93 and 94, the graphs of the 
two equations appear to be parallel. Solve the system 
of equations algebraically. Explain why the graphs are  
misleading.

93.
 
100y − x =
99y − x =

200
−198

 
94.

 
21x − 20y =
13x − 12y =

0
120

 

−1−3 1 2 3 4

−3
−4

1

3
4

y

x

  

−10 10 20

10

20

y

x
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 1.2 Gaussian Elimination and Gauss-Jordan Elimination 13

1.2 Gaussian Elimination and Gauss-Jordan Elimination

  Determine the size of a matrix and write an augmented or  
coefficient matrix from a system of linear equations.

  Use matrices and Gaussian elimination with back-substitution  
to solve a system of linear equations.

  Use matrices and Gauss-Jordan elimination to solve a system  
of linear equations.

 Solve a homogeneous system of linear equations.

MatricEs

Section 1.1 introduced Gaussian elimination as a procedure for solving a system of  
linear equations. In this section, you will study this procedure more thoroughly,  
beginning with some definitions. The first is the definition of a matrix.

The entry aij is located in the ith row and the jth column. The index i is called the 
row subscript because it identifies the row in which the entry lies, and the index j is 
called the column subscript because it identifies the column in which the entry lies.

A matrix with m rows and n columns is of size m × n. When m = n, the matrix is 
square of order n and the entries a11, a22, a33, .  .  . , ann are the main diagonal entries.

 sizes of Matrices

Each matrix has the indicated size.

a. [2] Size: 1 × 1 b. [0
0

0
0] Size: 2 × 2 c. [ e

π
2

√2
−7

4] Size: 2 × 3

One common use of matrices is to represent systems of linear equations. The 
matrix derived from the coefficients and constant terms of a system of linear equations 
is the augmented matrix of the system. The matrix containing only the coefficients of 
the system is the coefficient matrix of the system. Here is an example.

 System Augmented Matrix Cofficient Matrix

x
−x
2x

− 4y
+ 3y

+
−
−

3z =
z =

4z =

5
−3

6
 [

1
−1

2

−4
3
0

3
−1
−4

5
−3

6] [
1

−1
2

−4
3
0

3
−1
−4]

Definition of a Matrix

If m and n are positive integers, then an m × n (read “m by n”) matrix is a rectangular 
array

 Column 1 Column 2 Column 3 .  .  . Column n

Row 1

Row 2

Row 3

⋮
Row m

  [ 

a11

a21

a31

⋮
am1

 

a12

a22

a32

⋮
am2

 

a13

a23

a33

⋮
am3

 

. . .

. . .

. . .

. . .

 

a1n

a2n

a3n

⋮
amn

 ]
in which each entry, aij, of the matrix is a number. An m × n matrix has m rows 
and n columns. Matrices are usually denoted by capital letters.

rEMarK
The plural of matrix is matrices. 
When each entry of a matrix is 
a real number, the matrix  
is a real matrix. Unless stated 
otherwise, assume all matrices 
in this text are real matrices.

rEMarK
Begin by aligning the variables 
in the equations vertically. Use 
0 to show coefficients of zero  
in the matrix. Note the fourth 
column of constant terms in  
the augmented matrix.
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14 Chapter 1 Systems of Linear Equations

ElEMEntary row opErations

In the previous section, you studied three operations that produce equivalent systems 
of linear equations.

1. Interchange two equations.

2. Multiply an equation by a nonzero constant.

3. Add a multiple of an equation to another equation.

In matrix terminology, these three operations correspond to elementary row operations. 
An elementary row operation on an augmented matrix produces a new augmented matrix 
corresponding to a new (but equivalent) system of linear equations. Two matrices are  
row-equivalent when one can be  obtained from the other by a finite sequence of  
elementary row operations.

Although elementary row operations are relatively simple to perform, they can 
involve a lot of arithmetic, so it is easy to make a mistake. Noting the elementary row 
operations performed in each step can make checking your work easier.

Solving some systems involves many steps, so it is helpful to use a shorthand 
method of notation to keep track of each elementary row operation you perform. The 
next example introduces this notation.

 Elementary row operations

a. Interchange the first and second rows.

 Original Matrix New Row-Equivalent Matrix Notation

 [
0

−1
2

1
2

−3

3
0
4

4
3
1] [

−1
0
2

2
1

−3

0
3
4

3
4
1] R1↔ R2

b. Multiply the first row by 12 to produce a new first row.

 Original Matrix New Row-Equivalent Matrix Notation

 [
2
1
5

−4
3

−2

6
−3

1

−2
0
2] [

1
1
5

−2
3

−2

3
−3

1

−1
0
2] 

(1
2)R1→ R1

c. Add −2 times the first row to the third row to produce a new third row.

 Original Matrix New Row-Equivalent Matrix Notation

 [
1
0
2

2
3
1

−4
−2

5

3
−1
−2] [

1
0
0

2
3

−3

−4
−2
13

3
−1
−8] 

R3 + (−2)R1 → R3

 Notice that adding −2 times row 1 to row 3 does not change row 1. 

Elementary row operations

1. Interchange two rows.
2. Multiply a row by a nonzero constant.
3. Add a multiple of a row to another row.

tEchnoloGy
Many graphing utilities and 
software programs can perform 
elementary row operations on 
matrices. If you use a graphing 
utility, you may see something 
similar to the screen below for 
Example 2(c). The technology 
Guide at CengageBrain.com  
can help you use technology  
to perform elementary row 
operations.

mRAdd(-2,A,1,3)  
[[1 2  -4 3 ]
[0 3  -2 -1]
[0 -3 13 -8]]

[[1 2  -4 3 ]
[0 3  -2 -1]
[2 1  5  -2]]

A
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 1.2 Gaussian Elimination and Gauss-Jordan Elimination 15

In Example 7 in Section 1.1, you used Gaussian elimination with back-substitution 
to solve a system of linear equations. The next example demonstrates the matrix  
version of Gaussian elimination. The two methods are essentially the same. The basic 
difference is that with matrices you do not need to keep writing the variables.

  Using Elementary row operations  
to solve a system

 Linear System Associated Augmented Matrix

x − 2y
−x + 3y
2x − 5y

+ 3z =
=

+ 5z =

9
−4
17

 [
1

−1
2

−2
3

−5

3
0
5

9
−4
17]

Add the first equation to the second  Add the first row to the second row to 
equation. produce a new second row.

x − 2y + 3z =
y + 3z =

2x − 5y + 5z =

9
5

17
 [

1
0
2

−2
1

−5

3
3
5

9
5

17]  R2 + R1 → R2

Add −2 times the first equation to the  Add −2 times the first row to the third 
third equation. row to produce a new third row.

x − 2y +
y +

−y −

3z =
3z =
z =

9
5

−1
 [

1
0
0

−2
1

−1

3
3

−1

9
5

−1]  
R3 + (−2)R1 → R3

Add the second equation to the third  Add the second row to the third row to
equation. produce a new third row.

x − 2y + 3z = 9
y + 3z = 5

2z = 4
 [

1
0
0

−2
1
0

3
3
2

9
5
4]  

R3 + R2 → R3

Multiply the third equation by 12.  Multiply the third row by 12 to produce
 a new third row.

x − 2y + 3z = 9
y + 3z = 5

z = 2
 [

1
0
0

−2
1
0

3
3
1

9
5
2]  

(1
2)R3 → R3

Use back-substitution to find the solution, as in Example 6 in Section 1.1. The solution 
is x = 1, y = −1, and z = 2. 

The last matrix in Example 3 is in row-echelon form. To be in this form, a matrix 
must have the properties listed below.

row-Echelon Form and reduced row-Echelon Form

A matrix in row-echelon form has the properties below.

1. Any rows consisting entirely of zeros occur at the bottom of the matrix.
2.  For each row that does not consist entirely of zeros, the first nonzero entry  

is 1 (called a leading 1).
3.  For two successive (nonzero) rows, the leading 1 in the higher row is farther 

to the left than the leading 1 in the lower row.

A matrix in row-echelon form is in reduced row-echelon form when every column 
that has a leading 1 has zeros in every position above and below its leading 1.

rEMarK
The term echelon refers to the 
stair-step pattern formed by 
the nonzero elements of the 
matrix.
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16 Chapter 1 Systems of Linear Equations

 row-Echelon Form

Determine whether each matrix is in row-echelon form. If it is, determine whether the 
matrix is also in reduced row-echelon form.

a. [
1
0
0

2
1
0

−1
0
1

4
3

−2] b. [
1
0
0

2
0
1

−1
0
2

2
0

−4]
c. [

1
0
0
0

−5
0
0
0

2
1
0
0

−1
3
1
0

3
−2

4
1
] d. [

1
0
0
0

0
1
0
0

0
0
1
0

−1
2
3
0
]

e. [
1
0
0

2
2
0

−3
1
1

4
−1
−3] f. [

0
0
0

1
0
0

0
1
0

5
3
0]

solUtion

The matrices in (a), (c), (d), and (f) are in row-echelon form. The matrices in (d) and (f) 
are in reduced row-echelon form because every column that has a leading 1 has zeros in 
every position above and below its leading 1. The matrix in (b) is not in row-echelon form 
because the row of all zeros does not occur at the bottom of the matrix. The matrix in (e) 
is not in row-echelon form because the first nonzero entry in Row 2 is not 1.

Every matrix is row-equivalent to a matrix in row-echelon form. For instance, in 
Example 4(e), multiplying the second row in the matrix by 1

2 changes the matrix to 
row-echelon form.

The procedure for using Gaussian elimination with back-substitution is 
summarized below.

Gaussian elimination with back-substitution works well for solving systems of linear 
equations by hand or with a computer. For this algorithm, the order in which you perform 
the elementary row operations is important. Operate from left to right by columns, using 
elementary row operations to obtain zeros in all entries directly below the leading 1’s.

Gaussian Elimination with Back-substitution

1. Write the augmented matrix of the system of linear equations.
2. Use elementary row operations to rewrite the matrix in row-echelon form.
3.  Write the system of linear equations corresponding to the matrix in 

row-echelon form, and use back-substitution to find the solution.

tEchnoloGy
Use a graphing utility or 
a software program to find 
the row-echelon forms of the 
matrices in Examples 4(b) 
and 4(e) and the reduced 
row-echelon forms of the 
matrices in Examples 4(a), 
4(b), 4(c), and 4(e). The 
technology Guide at 
CengageBrain.com can help 
you use technology to find 
the row-echelon and reduced 
row-echelon forms of a matrix. 
Similar exercises and projects 
are also available on the 
website.

edobric/Shutterstock.com

linEar
alGEBra
appliED

The Global Positioning System (GPS) is a network of 
24 satellites originally developed by the U.S. military as a 
navigational tool. Today, GPS technology is used in a wide 
variety of civilian applications, such as package delivery, 
farming, mining, surveying, construction, banking, weather 
forecasting, and disaster relief. A GPS receiver works by using 
satellite readings to calculate its location. In three dimensions, 
the receiver uses signals from at least four satellites to 
“trilaterate” its position. In a simplified mathematical model, 
a system of three linear equations in four unknowns (three 
dimensions and time) is used to determine the coordinates 
of the receiver as functions of time.
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 Gaussian Elimination with Back-substitution

Solve the system.

x1 +
2x1 +
x1 −

x2 +
2x2 −
4x2 +
4x2 −

x3

x3

x3

7x3

−

−
−

2x4 =
=

3x4 =
x4 =

−3
2

−2
−19

solUtion

The augmented matrix for this system is

[
0
1
2
1

1
2
4

−4

1
−1

1
−7

−2
0

−3
−1

−3
2

−2
−19

].

Obtain a leading 1 in the upper left corner and zeros elsewhere in the first column.

[
1
0
2
1

2
1
4

−4

−1
1
1

−7

0
−2
−3
−1

2
−3
−2

−19
] 

Interchange the first  
two rows.

 
R1 ↔ R2

[
1
0
0
1

2
1
0

−4

−1
1
3

−7

0
−2
−3
−1

2
−3
−6

−19
] 

Adding −2 times the  
first row to the third  
row produces a new  
third row.

 
R3 + (−2)R1 → R3

[
1
0
0
0

2
1
0

−6

−1
1
3

−6

0
−2
−3
−1

2
−3
−6

−21
] 

Adding −1 times the  
first row to the fourth  
row produces a new  
fourth row.

 

R4 + (−1)R1 → R4

Now that the first column is in the desired form, change the second column as shown 
below.

[
1
0
0
0

2
1
0
0

−1
1
3
0

0
−2
−3

−13

2
−3
−6

−39
] 

Adding 6 times the  
second row to the fourth  
row produces a new  
fourth row.

 

R4 + (6)R2 → R4

To write the third and fourth columns in proper form, multiply the third row by 13 and 
the fourth row by − 1

13.

[
1
0
0
0

2
1
0
0

−1
1
1
0

0
−2
−1

1

2
−3
−2

3
] 

Multiplying the third  
row by 13 and the fourth  
row by − 1

13 produces new 
third and fourth rows.

 

(1
3)R3 → R3

(− 1
13)R4 → R4

The matrix is now in row-echelon form, and the corresponding system is shown below.

x1 + 2x2 − x3

x2 + x3

x3

−
−

=
2x4 =
x4 =
x4 =

2
−3
−2

3

Use back-substitution to find that the solution is x1 = −1, x2 = 2, x3 = 1, and x4 = 3.
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18 Chapter 1 Systems of Linear Equations

When solving a system of linear equations, remember that it is possible for the  
system to have no solution. If, in the elimination process, you obtain a row of all zeros 
except for the last entry, then it is unnecessary to continue the process. Simply conclude 
that the system has no solution, or is inconsistent.

 a system with no solution

Solve the system.

x1

x1

2x1

3x1

−

−
+

x2 +
+

3x2 +
2x2 −

2x3 = 4
x3 = 6

5x3 = 4
x3 = 1

solUtion

The augmented matrix for this system is

[
1
1
2
3

−1
0

−3
2

2
1
5

−1

4
6
4
1
].

Apply Gaussian elimination to the augmented matrix.

[
1
0
2
3

−1
1

−3
2

2
−1

5
−1

4
2
4
1
] 

R2 + (−1)R1 → R2

[
1
0
0
3

−1
1

−1
2

2
−1

1
−1

4
2

−4
1
] 

R3 + (−2)R1 → R3

[
1
0
0
0

−1
1

−1
5

2
−1

1
−7

4
2

−4
−11

] 

R4 + (−3)R1 → R4

[
1
0
0
0

−1
1
0
5

2
−1

0
−7

4
2

−2
−11

] 
R3 + R2 → R3

Note that the third row of this matrix consists entirely of zeros except for the last entry. 
This means that the original system of linear equations is inconsistent. To see why this 
is true, convert back to a system of linear equations.

x1 − x2 +
x2 −

5x2 −

2x3 =
x3 =
0 =

7x3 =

4
2

−2
−11

The third equation is not possible, so the system has no solution. 
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1.2 Gaussian Elimination and Gauss-Jordan Elimination 19

GaUss-JorDan EliMination

With Gaussian elimination, you apply elementary row operations to a matrix to 
obtain a (row-equivalent) row-echelon form. A second method of elimination, called 
Gauss-Jordan elimination after Carl Friedrich Gauss and Wilhelm Jordan (1842–1899),
continues the reduction process until a reduced row-echelon form is obtained. 
Example 7 demonstrates this procedure.

 Gauss-Jordan Elimination

See LarsonLinearAlgebra.com for an interactive version of this type of example.

Use Gauss-Jordan elimination to solve the system.

x − 2y
−x + 3y
2x − 5y

+ 3z =
=

+ 5z =

9
−4
17

solUtion

In Example 3, you used Gaussian elimination to obtain the row-echelon form

[
1
0
0

−2
1
0

3
3
1

9
5
2].

Now, apply elementary row operations until you obtain zeros above each of the leading 
1’s, as shown below.

[
1
0
0

0
1
0

9
3
1

19
5
2] 

R1 + (2)R2 → R1

[
1
0
0

0
1
0

9
0
1

19
−1

2] R2 + (−3)R3 → R2

[
1
0
0

0
1
0

0
0
1

1
−1

2] 
R1 + (−9)R3 → R1

The matrix is now in reduced row-echelon form. Converting back to a system of linear 
equations, you have

x =
y =
z =

1
−1

2.
 

The elimination procedures described in this section can sometimes result in 
fractional coefficients. For example, in the elimination procedure for the system

2x − 5y
3x − 2y

−3x + 4y

+ 5z =
+ 3z =

=

14
9

 −18

you may be inclined to first multiply Row 1 by 1
2 to produce a leading 1, which will 

result in working with fractional coefficients. Sometimes, judiciously choosing which 
elementary row operations you apply, and the order in which you apply them, enables 
you to avoid fractions.

rEMarK
No matter which elementary 
row operations or order you 
use, the reduced row-echelon 
form of a matrix is the same.
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20 Chapter 1 Systems of Linear Equations

The next example demonstrates how Gauss-Jordan elimination can be used to 
solve a system with infinitely many solutions.

 a system with infinitely Many solutions

Solve the system of linear equations.

2x1 + 4x2

3x1 + 5x2

− 2x3 = 0
= 1

solUtion

The augmented matrix for this system is

[2
3

4
5

−2
0

0
1].

Using a graphing utility, a software program, or Gauss-Jordan elimination, verify that 
the reduced row-echelon form of the matrix is

[1
0

0
1

5
−3

2
−1].

The corresponding system of equations is

x1    + 5x3 =
x2 − 3x3 =

2
−1.

Now, using the parameter t to represent x3, you have 

x1 = 2 − 5t,  x2 = −1 + 3t,  x3 = t,  t is any real number. 

Note in Example 8 that the arbitrary parameter t represents the nonleading 
variable x3. The variables x1 and x2 are written as functions of t.

You have looked at two elimination methods for solving a system of linear 
equations. Which is better? To some degree the answer depends on personal preference. 
In real-life applications of linear algebra, systems of linear equations are usually 
solved by computer. Most software uses a form of Gaussian elimination, with 
special emphasis on ways to reduce rounding errors and minimize storage of data. The 
examples and exercises in this text focus on the underlying concepts, so you should 
know both elimination methods.

DISCOVERY
 1.  Without performing any row operations, explain why the system of 

linear equations below is consistent.

2x1 + 3x2 +
−5x1 + 6x2 −

7x1 − 4x2 +

5x3 = 0
17x3 = 0
3x3 = 0

2.  The system below has more variables than equations. Why does it 
have an infinite number of solutions?

2x1 + 3x2 +
−5x1 + 6x2 −

7x1 − 4x2 +

5x3 +
17x3 −
3x3 +

2x4 = 0
3x4 = 0

13x4 = 0
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hoMoGEnEoUs systEMs oF linEar EqUations

Systems of linear equations in which each of the constant terms is zero are called  
homogeneous. A homogeneous system of m equations in n variables has the form

a11x1 +
a21x1 +

am1x1 +

a12x2 +
a22x2 +

am2x2 +

a13x3 +
a23x3 +

am3x3 +

.  .  . +

.  .  . +

.  .  . +

a1nxn = 0
a2nxn = 0

⋮   
amnxn = 0.

A homogeneous system must have at least one solution. Specifically, if all variables in 
a homogeneous system have the value zero, then each of the equations is satisfied. Such 
a solution is trivial (or obvious).

  solving a homogeneous system  
of linear Equations

Solve the system of linear equations.

x1 − x2 + 3x3 = 0
2x1 + x2 + 3x3 = 0

solUtion

Applying Gauss-Jordan elimination to the augmented matrix

[1
2

−1
1

3
3

0
0]

yields the matrices shown below.

[1
0

−1
3

3
−3

0
0] 

R2 + (−2)R1 → R2

[1
0

−1
1

3
−1

0
0] (1

3)R2 → R2

[1
0

0
1

2
−1

0
0] 

R1 + R2 → R1

The system of equations corresponding to this matrix is 

x1    +
x2 −

2x3 = 0
x3 = 0.

Using the parameter t = x3, the solution set is x1 = −2t, x2 = t, and x3 = t, where  
t is any real number. This system has infinitely many solutions, one of which is the 
trivial solution (t = 0). 

As illustrated in Example 9, a homogeneous system with fewer equations than  
variables has infinitely many solutions.

To prove Theorem 1.1, use the procedure in Example 9, but for a general matrix.

thEorEM 1.1   the number of solutions of a  
homogeneous system

Every homogeneous system of linear equations is consistent. Moreover, if the 
system has fewer equations than variables, then it must have infinitely many  
solutions.

rEMarK
A homogeneous system of 
three equations in the three 
variables x1, x2, and x3 has the 
trivial solution x1 = 0, x2 = 0, 
and x3 = 0.
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1.2 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

Matrix size In Exercises 1–6, determine the size of  
the matrix.

 1. [
1
3
0

2
−4

1

−4
6
2]  2. [

−2
−1

1
2
]

 3. [ 2
−6

−1
2

−1
0

1
1]

 4. [−1]

 5. [
8
2
1
1

6
1
1

−1

4
−7
−1

2

1
4
2
0

3
1
1
0
]

 6. [1     2     3     4    −10]

Elementary row operations In Exercises 7–10,  
identify the elementary row operation(s) being performed 
to obtain the new row-equivalent matrix.
 Original Matrix New Row-Equivalent Matrix

 7. [−2
3

5
−1

1
−8] [13

3
0 

−1 
−39
−8]

 Original Matrix New Row-Equivalent Matrix

 8. [ 3
−4

−1
3

−4
7] [3

5
−1

0
−4
−5]

 Original Matrix New Row-Equivalent Matrix

 9. [
0

−1
3

−1
5

−2

−7
−8

1

7
7
2] [

−1
0
0

5
−1
13

−8
−7

−23

7
7

23]
 Original Matrix New Row-Equivalent Matrix

10. [
−1

2
5

−2
−5

4

3
1

−7

−2
−7

6] [
−1

0
0

−2
−9
−6

3
7
8

−2
−11
−4]

augmented Matrix In Exercises 11–18, find the  
solution set of the system of linear equations represented 
by the augmented matrix.

11. [1
0

0
1

0
2] 12. [1

0
0
1

2
3]

13. [
1
0
0

−1
1
0

0
−2

1

3
1

−1] 14. [
1
0
0

2
0
0

1
1
0

0
−1

0]
15. [

2
1
0

1
−1

1

−1
1
2

3
0
1] 16. [

3
1
1

−1
2
0

1
1
1

5
0
2]

17. [
1
0
0
0

2
1
0
0

0
2
1
0

1
1
2
1

4
3
1
4
]

18. [
1
0
0
0

2
1
0
0

0
3
1
0

1
0
2
0

3
1
0
2
]

row-Echelon Form In Exercises 19–24, determine 
whether the matrix is in row-echelon form. If it is,  
determine whether it is also in reduced row-echelon form.

19. [
1
0
0

0
1
0

0
1
0

0
2
0]

20. [0
1

1
0

0
2

0
1]

21. [
−2

0
0

0
−1

0

1
2
0

5
1
2]

22. [
1
0
0

0
1
0

2
3
1

1
4
0]

23. [
0
0
0

0
0
0

1
0
0

0
1
2

0
0
0]

24. [
1
0
0

0
0
0

0
0
0

0
1
0]

system of linear Equations In Exercises 25–38,  
solve the system using ei ther Gaussian elimination with 
back-substitution or Gauss-Jordan elimination.

25.
 

x +
3x +

3y =
y =

11
9
 

26.
 

2x + 6y =
−2x − 6y =

16
−16

27.
 
−x + 2y =
2x − 4y =

1
3
.5

28.
 
2x −
3x +

y =
2y =

−0.1
1.6

29.
 
−3x + 5y =

3x + 4y =
4x − 8y =

−22
4

32

30.
 

x +
x +

3x −

2y = 0
y = 6

2y = 8
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31.
 

x1

3x1

2x1

+
+

−
x2 −

2x2 +

3x3 =
2x3 =
x3 =

−2
5
4

32.
 
3x1 −

6x1 −

2x2

3x2

7x2

+ 3x3 =
−   x3 =

=

22
24

−22

33.
 
2x1 +
4x1 −
8x1 −

3x2 +
9x2 +

3x3 =
7x3 =

15x3 =

3
5

10

34.
 

x1

x1

2x1

+ x2 −
−

− x2 −

5x3 = 3
2x3 = 1
x3 = 0

35.
 
4x +
3x +

12y − 7z − 20w = 22
9y − 5z − 28w = 30

36.
 

x + 2y +
−3x − 6y −

z =
3z =

8
−21

37.

 

3x +
x +

2x +
−x +

3y +
y +

5y +
2y +

12z =
4z =

20z =
8z =

6
2

10
4

38.

 

2x +
3x +
x +

5x +

y
4y
5y
2y

−

+
−

z +
+

2z +
z −

2w =
w =

6w =
w =

−6
1

−3
3

system of linear Equations In Exercises 39–42, use 
a software program or a graphing utility to solve the 
system of linear equations.

39.
 

x1 − 2x2 + 5x3 − 3x4 = 23.6
x1 + 4x2 − 7x3 − 2x4 = 45.7

3x1 − 5x2 + 7x3 + 4x4 = 29.9

40.

 

x1 +
3x1 +
2x1 +
4x1 +
8x1 +

x2 −
3x2 −
2x2 −
4x2 +
5x2 −

2x3

x3

x3

x3

2x3

+
+
+

−

3x4 +
x4 +
x4 −

−
x4 +

2x5 = 9
x5 = 5

2x5 = 1
3x5 = 4
2x5 = 3

41.

 

x1 −
3x1 −

2x1 −
2x1 −

x2 +
2x2 +
x2 −

2x2 +
2x2 +

2x3 +
4x3 +
x3 −

4x3 +
4x3 +

2x4 +
4x4 +
x4 −

5x4 +
4x4 +

6x5 =
12x5 =
3x5 =

15x5 =
13x5 =

6
14

−3
10
13

42.

 

x1 +
2x1 −
x1 +

3x1 −
−x1 −

x1 −

2x2 −
x2 +

3x2 −
2x2 +
2x2 +
3x2 +

2x3 +
3x3 +
2x3 +
x3 −
x3 +
x3 +

2x4 −
x4 −
x4 −
x4 +

2x4 −
3x4 −

x5 +
3x5 +
2x5 −
3x5 −
2x5 +
2x5 +

3x6 =
2x6 =
3x6 =
2x6 =
3x6 =
x6 =

0
17

−5
−1
10
11

homogeneous system In Exercises 43–46, solve the 
homogeneous linear system corresponding to the given 
coefficient matrix.

43. [
1
0
0

0
1
0

0
1
0] 44. [1

0
0
1

0
1

0
0]

45. [
1
0
0

0
0
0

0
1
0

1
0
0] 46. [

0
0
0

0
0
0

0
0
0]

47.  Finance A small software corporation borrowed 
$500,000 to expand its software line. The corporation  
borrowed some of the money at 3%, some at 4%, and 
some at 5%. Use a system of equations to determine 
how much was  borrowed at each rate when the annual  
interest was $20,500 and the amount  borrowed at 4% 
was 21

2 times the amount borrowed at 3%. Solve the  
system using matrices.

48.  tips A food server examines the amount of money 
earned in tips after working an 8-hour shift. The server 
has a total of $95 in denominations of $1, $5, $10, 
and $20 bills. The total number of paper bills is 26. 
The number of $5 bills is 4 times the number of $10 
bills, and the number of $1 bills is 1 less than twice the  
number of $5 bills. Write a system of linear equations 
to represent the situation. Then use matrices to find the 
number of each denomination.

Matrix representation In Exercises 49 and 50, assume 
that the matrix is the augmented matrix of a system  
of linear equations, and (a) determine the number of 
equations and the number of variables, and (b) find the 
value(s) of k such that the system is consistent. Then 
assume that the matrix is the coefficient matrix of a 
homogeneous system of linear equations, and repeat 
parts (a) and (b).

49. A = [ 1
−3

k
4

2
1]

50. A = [
2

−4
4

−1
2

−2

3
k
6]

coefficient Design In Exercises 51 and 52, find values 
of a, b, and c (if possible) such that the system of linear 
equations has (a) a unique solution, (b) no solution, and 
(c) infinitely many solutions.

51.

 

x

x
ax

+

+

y
y

by

+
+
+

= 2
z = 2
z = 2

cz = 0

 

52.

 

x

x
ax

+

+

y
y

by

+
+
+

= 0
z = 0
z = 0

cz = 0
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24 Chapter 1 Systems of Linear Equations

53.  The system below has one solution: x = 1, y = −1, 
and z = 2.

 
4x −
x +

−x −

2y
y

3y

+ 5z =
=

+ 2z =

16
0
6
  

Equation 1

Equation 2

Equation 3

  Solve the systems provided by (a) Equations 1 and 2,  
(b) Equations 1 and 3, and (c) Equations 2 and 3.  
(d) How many solutions does each of these systems 
have?

54. Assume the system below has a unique solution.

 
a11x1 +
a21x1 +
a31x1 +

a12x2 +
a22x2 +
a32x2 +

a13x3 = b1

a23x3 = b2

a33x3 = b3

  
Equation 1

Equation 2

Equation 3

  Does the system composed of Equations 1 and 2 have  
a unique solution, no solution, or infinitely many  
solutions?

row Equivalence In Exercises 55 and 56, find the 
reduced row-echelon matrix that is row-equivalent to 
the given matrix.

55. [ 1
−1

2
2] 56. [

1
4
7

2
5
8

3
6
9]

57.  writing Describe all possible 2 × 2 reduced  
row-echelon matrices. Support your answer with  
examples.

58.  writing Describe all possible 3 × 3 reduced  
row-echelon matrices. Support your answer with  
examples.

true or False? In Exercises 59 and 60, determine 
whether each statement is true or false. If a statement 
is true, give a reason or cite an appropriate statement 
from the text. If a statement is false, provide an example 
that shows the statement is not true in all cases or cite an 
appropriate statement from the text.

59. (a) A 6 × 3 matrix has six rows.

 (b)  Every matrix is row-equivalent to a matrix in  
row-echelon form.

 (c)  If the row-echelon form of the augmented matrix 
of a system of linear equations contains the row 
[1  0  0  0  0], then the original system is inconsistent.

 (d)  A homogeneous system of four linear equations in 
six variables has infinitely many solutions.

60. (a) A 4 × 7 matrix has four columns.

 (b) Every matrix has a unique reduced row-echelon form.

 (c)  A homogeneous system of four linear equations in 
four variables is always consistent.

 (d)  Multiplying a row of a matrix by a constant is one 
of the elementary row operations.

61.  writing Is it possible for a system of linear equations 
with fewer equations than variables to have no solution? 
If so, give an example.

62.  writing Does a matrix have a unique row-echelon 
form? Illustrate your answer with examples.

row Equivalence In Exercises 63 and 64, determine 
conditions on a, b, c, and d such that the matrix 

[a
c

b
d]

will be row-equivalent to the given matrix.

63. [1
0

0
1] 64. [1

0
0
0]

homogeneous system In Exercises 65 and 66, find 
all values of λ (the Greek letter lamb da) for which the 
homogeneous linear system has nontrivial solutions.

65.
 
(λ − 2)x +

x +
y = 0

(λ − 2)y = 0

66.
 
(2λ + 9)x − 5y = 0

x − λy = 0

67.  The augmented matrix represents a system of linear 
equations that has been reduced using Gauss-Jordan 
elimination. Write a system of equations with nonzero 
coefficients that the reduced matrix could represent.

 [
1
0
0

0
1
0

3
4
0

−2
1
0]

 There are many correct answers.

68.  CAPSTONE In your own words, describe the 
difference between a matrix in row-echelon form 
and a matrix in reduced row-echelon form. Include 
an example of each to support your explanation.

69. writing Consider the 2 × 2 matrix [a
c

b
d].

 Perform the sequence of row operations.

 (a) Add (−1) times the second row to the first row.

 (b) Add 1 times the first row to the second row.

 (c) Add (−1) times the second row to the first row.

 (d) Multiply the first row by (−1).

  What happened to the original matrix? Describe, in  
general, how to interchange two rows of a matrix using 
only the second and third elementary row operations.

70.  writing Describe the row-echelon form of an  
augmented matrix that corresponds to a linear system 
that (a) is inconsistent, and (b) has infinitely many  
solutions.
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 1.3 Applications of Systems of Linear Equations 25

1.3 Applications of Systems of Linear Equations

  Set up and solve a system of equations to fit a polynomial function 
to a set of data points.

 Set up and solve a system of equations to represent a network.

Systems of linear equations arise in a wide variety of applications. In this section you 
will look at two applications, and you will see more in subsequent chapters. The first 
application shows how to fit a polynomial function to a set of data points in the plane. 
The second application focuses on networks and Kirchhoff’s Laws for electricity.

PoLynomiAL CurvE Fitting

Consider n points in the xy-plane

(x1, y1), (x2, y2), .  .  . , (xn, yn)

that represent a collection of data, and you want to find a polynomial function of degree 
n − 1

p(x) = a0 + a1x + a2x
2 + .  .  . + an−1x

n−1

whose graph passes through the points. This procedure is called polynomial curve fitting. 
When all x-coordinates of the points are distinct, there is precisely one polynomial function 
of degree n − 1 (or less) that fits the n points, as shown in Figure 1.3.

To solve for the n coefficients of p(x), substitute each of the n points into the  
polynomial function and obtain n linear equations in n variables a0, a1, a2, .  .  . , an−1.

 a0 + a1x1 + a2x1
2 + .  .  . + an−1x1

n−1 = y1

 a0 + a1x2 + a2x2
2 + .  .  . + an−1x2

n−1 = y2

 ⋮
 a0 + a1xn + a2xn

2 + .  .  . + an−1xn
n−1 = yn

Example 1 demonstrates this procedure with a second-degree polynomial.

 Polynomial Curve Fitting

Determine the polynomial p(x) = a0 + a1x + a2x
2 whose graph passes through the 

points (1, 4), (2, 0), and (3, 12).

SoLution

 Substituting x = 1, 2, and 3 into p(x) and equating the results to the respective y-values 
produces the system of linear equations in the variables a0, a1, and a2 shown below.

p(1) = a0 + a1(1) + a2(1)2 = a0 +  a1 +  a2 =  4

p(2) = a0 + a1(2) + a2(2)2 = a0 +  2a1 +  4a2 =  0

p(3) = a0 + a1(3) + a2(3)2 = a0 +  3a1 +  9a2 =  12

The solution of this system is 

a0 = 24, a1 = −28, and a2 = 8 

so the polynomial function is

p(x) = 24 − 28x + 8x2.

Figure 1.4 shows the graph of p. 

Figure 1.3

Polynomial Curve Fitting

(x1, y1)

(x2, y2)

(x3, y3)

(xn, yn)

y

x

Figure 1.4

x

(1, 4)

(2, 0)

(3, 12)

2

4

6

8

10

12

1 2 3 4

y

p
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26 Chapter 1 Systems of Linear Equations

 
Polynomial Curve Fitting

See LarsonLinearAlgebra.com for an interactive version of this type of example.

Find a polynomial that fits the points 

(−2, 3), (−1, 5), (0, 1), (1, 4), and (2, 10).

SoLution

You are given five points, so choose a fourth-degree polynomial function

p(x) = a0 + a1x + a2x
2 + a3x

3 + a4x
4.

Substituting the points into p(x) produces the system of linear equations shown below.

a0

a0

a0

a0

a0

−
−

+
+

2a1

a1

a1

2a1

+
+

+
+

4a2

a2

a2

4a2

−
−

+
+

8a3

a3

a3

8a3

+
+

+
+

16a4

a4

a4

16a4

=
=
=
=
=

3
5
1
4

10

The solution of these equations is

a0 = 1, a1 = −5
4, a2 = 101

24 , a3 = 3
4, a4 = −17

24

which means the polynomial function is

p(x) = 1 − 5
4x + 101

24 x2 + 3
4x3 − 17

24x4.

Figure 1.5 shows the graph of p. 

The system of linear equations in Example 2 is relatively easy to solve because 
the x-values are small. For a set of points with large x-values, it is usually best to 
translate the values before attempting the curve-fitting procedure. The next example 
demonstrates this approach.

 translating Large x-values Before Curve Fitting

Find a polynomial that fits the points

 (x1, y1) (x2, y2) (x3, y3) (x4, y4) (x5, y5)
     

 (2011, 3), (2012, 5), (2013, 1), (2014, 4), (2015, 10).

SoLution

The given x-values are large, so use the translation

z = x − 2013

to obtain

 (z1, y1) (z2, y2) (z3, y3) (z4, y4) (z5, y5)
     

(−2, 3), (−1, 5), (0, 1), (1, 4), (2, 10).

This is the same set of points as in Example 2. So, the polynomial that fits these points is

p(z) = 1 − 5
4z + 101

24 z2 + 3
4z3 − 17

24z4.

Letting z = x − 2013, you have

p(x) = 1 − 5
4(x − 2013) + 101

24 (x − 2013)2 + 3
4(x − 2013)3 − 17

24(x − 2013)4.

Figure 1.5

(2, 10)

(1, 4)

(0, 1)

(−1, 5)
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x
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An Application of Curve Fitting

Find a polynomial that relates the periods of the three planets that are closest to the Sun 
to their mean distances from the Sun, as shown in the table. Then use the polynomial to 
calculate the period of Mars, and compare it to the value shown in the table. (The mean 
distances are in astronomical units, and the periods are in years.)

SoLution

Begin by fitting a quadratic polynomial function

p(x) = a0 + a1x + a2x
2

to the points

(0.387, 0.241), (0.723, 0.615), and (1, 1).

The system of linear equations obtained by substituting these points into p(x) is

a0 +
a0 +
a0 +

0.387a1 +
0.723a1 +

a1 +

(0.387)2a2 =
(0.723)2a2 =

a2 =

0.
0.
1.

241
615

The approximate solution of the system is

a0 ≈ −0.0634,  a1 ≈ 0.6119,  a2 ≈ 0.4515

which means that an approximation of the polynomial function is

p(x) = −0.0634 + 0.6119x + 0.4515x2.

Using p(x) to evaluate the period of Mars produces

p(1.524) ≈ 1.918 years.

Note that the period of Mars is shown in the table as 1.881 years. The figure below 
provides a graphical comparison of the polynomial function to the values shown in the 
table.

Pe
ri

od
 (

in
 y

ea
rs

)

Mean distance from the Sun
(in astronomical units)

x

1.5

2.0

1.0

0.5

0.5 1.0 1.5 2.0

Mercury (0.387, 0.241)

Venus 

Earth 

Mars 
(1.524, 1.881)

y

(0.723, 0.615)

(1.000, 1.000)

y = p(x)

 

Planet Mercury Venus Earth Mars

Mean Distance 0.387 0.723 1.000 1.524

Period 0.241 0.615 1.000 1.881
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28 Chapter 1 Systems of Linear Equations

As illustrated in Example 4, a polynomial that fits some of the points in a data 
set is not necessarily an accurate model for other points in the data set. Generally, the 
farther the other points are from those used to fit the polynomial, the worse the fit. For 
instance, the mean distance of Jupiter from the Sun is 5.203 astronomical units. Using 
p(x) in Example 4 to approximate the period gives 15.343 years—a poor estimate of 
Jupiter’s actual period of 11.862 years.

The problem of curve fitting can be difficult. Types of functions other than 
polynomial functions may provide better fits. For instance, look again at the curve-fitting 
problem in Example 4. Taking the natural logarithms of the distances and periods 
produces the results shown in the table.

Planet Mercury Venus Earth Mars

Mean Distance, x 0.387 0.723 1.000 1.524

ln x −0.949 −0.324 0.0 0.421

Period, y 0.241 0.615 1.000 1.881

ln y −1.423 −0.486 0.0 0.632

Now, fitting a polynomial to the logarithms of the distances and periods produces the 
linear relationship

ln y = 3
2 ln x

which is shown graphically below.

ln y =    ln x3
2

ln x

Mercury

Venus

Earth
Mars

1

−1

−2

2

1 2−2

ln y

From ln y = 3
2 ln x, it follows that y = x3/2, or y2 = x3. In other words, the square of the 

period (in years) of each planet is equal to the cube of its mean distance (in astronomical 
units) from the Sun. Johannes Kepler first discovered this relationship in 1619.

iStockphoto.com/Nikada

Researchers in Italy studying the acoustical noise levels 
from vehicular traffic at a busy three-way intersection used 
a system of linear equations to model the traffic flow at the 
intersection. To help formulate the system of equations, 
“operators” stationed themselves at various locations 
along the intersection and counted the numbers of vehicles 
that passed them. (Source: Acoustical Noise Analysis in Road 
Intersections: A Case Study, Guarnaccia, Claudio, Recent Advances 
in Acoustics & Music, Proceedings of the 11th WSEAS International 
Conference on Acoustics & Music: Theory & Applications)

LinEAr
ALgEBrA
APPLiED
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nEtwork AnALySiS

Networks composed of branches and junctions are used as models in such fields 
as economics, traffic analysis, and electrical engineering. In a network model, you 
assume that the total flow into a junction is equal to the total flow out of the junction. 
For example, the junction shown below has 25 units flowing into it, so there must be  
25 units flowing out of it. You can represent this with the linear equation

x1 + x2 = 25.

25

x2

x1

Each junction in a network gives rise to a linear equation, so you can analyze the 
flow through a network composed of several junctions by solving a system of linear 
equations. Example 5 illustrates this procedure.

 Analysis of a network

Set up a system of linear equations to represent the network shown in Figure 1.6. Then 
solve the system.

SoLution

Each of the network’s five junctions gives rise to a linear equation, as shown below.

x1

x1

+ x2

x2 +
x3

x3

−

−

x4

x4

−
+

x5

x5

=
=
=
=
=

20
−20

20
−10
−10

 

Junction 1

Junction 2

Junction 3

Junction 4

Junction 5

The augmented matrix for this system is

[
1
0
0
1
0

1
0
1
0
0

0
1
1
0
0

0
−1

0
0

−1

0
0
0

−1
1

20
−20

20
−10
−10

].

Gauss-Jordan elimination produces the matrix

[
1
0
0
0
0

0
1
0
0
0

0
0
1
0
0

0
0
0
1
0

−1
1

−1
−1

0

−10
30

−10
10
0
].

From the matrix above,

x1 − x5 = −10,  x2 + x5 = 30,  x3 − x5 = −10,  and  x4 − x5 = 10.

Letting t = x5, you have

x1 = t − 10,  x2 = −t + 30,  x3 = t − 10,  x4 = t + 10,  x5 = t

where t is any real number, so this system has infinitely many solutions. 

Figure 1.6

10 10

x1 x4

x3x2

x5

1

3

4

2

5

20
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30 Chapter 1 Systems of Linear Equations

In Example 5, if you could control the 
amount of flow along the branch labeled x5, then 
you could also control the flow represented by 
each of the other variables. For example, letting 
t = 10 results in the flows shown in the figure 
at the right. (Verify this.)

You may be able to see how the type of network analysis demonstrated in Example 5 
could be used in problems dealing with the flow of traffic through the streets of a city 
or the flow of water through an irrigation system.

An electrical network is another type of network where analysis is commonly 
applied. An analysis of such a system uses two properties of electrical networks known 
as Kirchhoff’s Laws.

1. All the current flowing into a junction must flow out of it.

2.  The sum of the products IR (I is current and R is resistance) around a closed path 
is equal to the total voltage in the path.

In an electrical network, current is measured in amperes, or amps (A), resistance is 
measured in ohms (Ω, the Greek letter omega), and the product of current and  
resistance is measured in volts (V). The symbol  represents a battery. The 
larger vertical bar denotes where the current flows out of the terminal. The symbol 

 denotes resistance. An arrow in the branch shows the direction of the current.

 Analysis of an Electrical network

Determine the currents I1, I2, and I3 for the electrical network shown in Figure 1.7.

SoLution

Applying Kirchhoff’s first law to either junction produces

I1 + I3 = I2 Junction 1 or Junction 2

and applying Kirchhoff’s second law to the two paths produces

 R1I1 + R2I2 = 3I1 + 2I2 = 7  Path 1

 R2I2 + R3I3 = 2I2 + 4I3 = 8. Path 2

So, you have the system of three linear equations in the variables I1, I2, and I3 shown 
below.

I1

3I1

−
+

I2

2I2

2I2

+

+

I3

4I3

=
=
=

0
7
8

Applying Gauss-Jordan elimination to the augmented matrix

[
1
3
0

−1
2
2

1
0
4

0
7
8]

produces the reduced row-echelon form

[
1
0
0

0
1
0

0
0
1

1
2
1]

which means I1 = 1 amp, I2 = 2 amps, and I3 = 1 amp. 

20 0
0 20

10

10 10

1

3

4

2

5

20

Figure 1.7

1 2

Path 1

Path 2

I1

I2

I3

R1 = 3

R2 = 2

R3 = 4 8 V

7 V

Ω

Ω

Ω

rEmArk
A closed path is a sequence  
of branches such that the 
beginning point of the first 
branch coincides with the  
ending point of the last branch.
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Analysis of an Electrical network

Determine the currents I1, I2, I3, I4, I5, and I6 for the electrical network shown below.

1 3

2 4

17 V

10 V 14 V

Path 1 Path 3Path 2

R1 = 2 R2 = 4

R3 = 1

R4 = 2

R5 = 2 R6 = 4I2 I5

I3

I4

I6I1 Ω Ω

Ω

Ω Ω

Ω

SoLution

Applying Kirchhoff’s first law to the four junctions produces

I1 + I3 = I2 Junction 1

I1 + I4 = I2 Junction 2

I3 + I6 = I5 Junction 3

I4 + I6 = I5 Junction 4

and applying Kirchhoff’s second law to the three paths produces

2I1 + 4I2

4I2 + I3 + 2I4 + 2I5

2I5 + 4I6

=
=
=

10
17
14.

 
Path 1

Path 2

Path 3

You now have the system of seven linear equations in the variables I1, I2, I3, I4, I5, and 
I6 shown below.

I1

I1

2I1

−
−

+

I2

I2

4I2

4I2

+

+

I3

I3

I3

+

+

I4

I4

2I4

−
−

+

I5

I5

2I5

2I5

+
+

+

I6

I6

4I6

=
=
=
=
=
=
=

0
0
0
0

10
17
14

The augmented matrix for this system is

[
1
1
0
0
2
0
0

−1
−1

0
0
4
4
0

1
0
1
0
0
1
0

0
1
0
1
0
2
0

0
0

−1
−1

0
2
2

0
0
1
1
0
0
4

0
0
0
0

10
17
14

].

Using a graphing utility, a software program, or Gauss-Jordan elimination, solve this 
system to obtain

I1 = 1,  I2 = 2,  I3 = 1,  I4 = 1,  I5 = 3,  and  I6 = 2.

So, I1 = 1 amp, I2 = 2 amps, I3 = 1 amp, I4 = 1 amp, I5 = 3 amps, and I6 = 2 amps.
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1.3 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

Polynomial Curve Fitting In Exercises 1–12, (a) determine 
the polynomial function whose graph passes through 
the points, and (b) sketch the graph of the polynomial  
function, showing the points.

 1. (2, 5), (3, 2), (4, 5)
 2. (0, 0), (2, −2), (4, 0)
 3. (2, 4), (3, 6), (5, 10)
 4. (2, 4), (3, 4), (4, 4)
 5. (−1, 3), (0, 0), (1, 1), (4, 58)
 6. (0, 42), (1, 0), (2, −40), (3, −72)
 7. (−2, 28), (−1, 0), (0, −6), (1, −8), (2, 0)
 8. (−4, 18), (0, 1), (4, 0), (6, 28), (8, 135)
 9. (2013, 5), (2014, 7), (2015, 12)
10. (2012, 150), (2013, 180), (2014, 240), (2015, 360)
11. (0.072, 0.203), (0.120, 0.238), (0.148, 0.284)
12. (1, 1), (1.189, 1.587), (1.316, 2.080), (1.414, 2.520)

13. Use sin 0 = 0, sin 
π
2

= 1, and sin π = 0 to estimate

 sin 
π
3

.

14.  Use log2 1 = 0, log2 2 = 1, and log2 4 = 2 to estimate 
log2 3.

Equation of a Circle In Exercises 15 and 16, find an  
equation of the circle that passes through the points.

15. (1, 3), (−2, 6), (4, 2)
16. (−5, 1), (−3, 2), (−1, 1)

17.  Population The U.S. census lists the population of 
the United States as 249 million in 1990, 282 million 
in 2000, and 309 million in 2010. Fit a second-degree 
polynomial passing through these three points and use 
it to predict the populations in 2020 and 2030. (Source: 
U.S. Census Bureau)

18.  Population The table shows the U.S. populations  
for the years 1970, 1980, 1990, and 2000. (Source: U.S. 
Census Bureau)

Year 1970 1980 1990 2000

Population 
(in millions)

205 227 249 282

 (a)  Find a cubic polynomial that fits the data and use it 
to estimate the population in 2010.

 (b)  The actual population in 2010 was 309 million. 
How does your estimate compare?

19.  net Profit The table shows the net profits (in  
millions of dollars) for Microsoft from 2007 through 
2014. (Source: Microsoft Corp.)

Year 2007 2008 2009 2010

Net Profit 14,065 17,681 14,569 18,760

Year 2011 2012 2013 2014

Net Profit 23,150 23,171 22,453 22,074

 (a)  Set up a system of equations to fit the data for the 
years 2007, 2008, 2009, and 2010 to a cubic model.

 (b)  Solve the system. Does the solution produce a  
reasonable model for determining net profits after 
2010? Explain.

20.  Sales The table shows the sales (in billions of  
dollars) for Wal-Mart stores from 2006 through 
2013. (Source: Wal-Mart Stores, Inc.)

Year 2006 2007 2008 2009

Sales 348.7 378.8 405.6 408.2

Year 2010 2011 2012 2013

Sales 421.8 447.0 469.2 476.2

 (a)  Set up a system of equations to fit the data for the 
years 2006, 2007, 2008, 2009, and 2010 to a quartic 
model.

 (b)  Solve the system. Does the solution produce a  
reasonable model for determining sales after 2010? 
Explain.

21.  network Analysis The figure shows the flow of traffic 
(in vehicles per hour) through a network of streets.

400

300

600

100

x2 x3
x4

x5

x1

 (a) Solve this system for xi, i = 1, 2, .  .  . , 5.

 (b) Find the traffic flow when x3 = 0 and x5 = 100.

 (c) Find the traffic flow when x3 = x5 = 100.
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 1.3 Exercises 33

22.  network Analysis The figure shows the flow of traffic 
(in vehicles per hour) through a network of streets.

300

200

150

350

x2 x3
x4

x5

x1

 (a) Solve this system for xi, i = 1, 2, .  .  . , 5.

 (b) Find the traffic flow when x2 = 200 and x3 = 50.

 (c) Find the traffic flow when x2 = 150 and x3 = 0.

23.  network Analysis The figure shows the flow of traffic 
(in vehicles per hour) through a network of streets.

200

100 100

x2x1

x4
x3

200

 (a) Solve this system for xi, i = 1, 2, 3, 4.

 (b) Find the traffic flow when x4 = 0.

 (c) Find the traffic flow when x4 = 100.

 (d) Find the traffic flow when x1 = 2x2.

24.  network Analysis Water is flowing through a  
network of pipes (in thousands of cubic meters per 
hour), as shown in the figure.

600

600

500

500
x7x6

x3 x4 x5

x1 x2

 (a)  Solve this system for the water flow represented by 
xi, i = 1, 2, .  .  . , 7.

 (b) Find the water flow when x1 = x2 = 100.

 (c) Find the water flow when x6 = x7 = 0.

 (d) Find the water flow when x5 = 1000 and x6 = 0.

25.  network Analysis Determine the currents I1, I2, and 
I3 for the electrical network shown in the figure.

I2

I3

R1 = 4

R2 = 3

R3 = 1 4 V

3 V

Ω

Ω

Ω

I1

26.  network Analysis Determine the currents I1, I2, I3,  
I4, I5, and I6 for the electrical network shown in the 
figure.

25 V

8 V

R1 = 3

R2 = 2

R3 = 4

R4 = 2

R5 = 1

R6 = 1

I2

I5

I3

I4

I6

I1 14 V

Ω

Ω

Ω

Ω

Ω

Ω

27. network Analysis

 (a)  Determine the currents I1, I2, and I3 for the  
electrical network shown in the figure.

 (b)  How is the result affected when A is changed to  
2 volts and B is changed to 6 volts?

I1

I2

I3

R1 = 1

R2 = 2

R3 = 4 B: 8 V

A: 5 V

Ω

Ω

Ω
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34 Chapter 1 Systems of Linear Equations

28. CAPSTONE
(a)  Explain how to use systems of linear equations for 

polynomial curve fitting.

(b)  Explain how to use systems of linear equations to 
perform network analysis.

temperature In Exercises 29 and 30, the figure shows 
the boundary temperatures (in degrees Celsius) of an 
insulated thin metal plate. The steady-state temperature 
at an interior junction is approximately equal to the mean 
of the temperatures at the four surrounding junctions. 
Use a system of linear equations to approximate the  
interior temperatures T1, T2, T3, and T4.

29. 

T4T3

T2T1

60°

50°

10°

20°

60°

50°

10°

20°

30. 

T4T3

T2T1

50°

25°

0°

25°

50°

25°

0°

25°

Partial Fraction Decomposition In Exercises 31–34,  
use a system of equations to find the partial fraction 
decomposition of the rational expression. Solve the  
system using matrices.

31. 
4x2

(x + 1)2(x − 1) =
A

x − 1
+

B
x + 1

+
C

(x + 1)2

32. 
3x2 − 7x − 12
(x + 4)(x − 4)2 =

A
x + 4

+
B

x − 4
+

C
(x − 4)2

33. 
3x2 − 3x − 2

(x + 2)(x − 2)2 =
A

x + 2
+

B
x − 2

+
C

(x − 2)2

34. 
20 − x2

(x + 2)(x − 2)2 =
A

x + 2
+

B
x − 2

+
C

(x − 2)2

Calculus In Exercises 35 and 36, find the values of x, y, 
and λ that satisfy the system of equations. Such systems 
arise in certain problems of calculus, and λ is called the 
Lagrange multiplier.

35.
 
2x

x +
2y
y

+
+

λ
λ

− 4

=
=
=

0
0
0

36.
 2x
2x +

2y

y

+
+

2λ
λ

+
+
−

2
1

100

=
=
=

0
0
0

37.  Calculus The graph of a parabola passes through  
the points (0, 1) and (1

2, 12) and has a horizontal tangent

  line at (1
2, 12). Find an equation for the parabola and 

sketch its graph.

38.  Calculus The graph of a cubic polynomial function 
has horizontal tangent lines at (1, −2) and (−1, 2). Find 
an equation for the function and sketch its graph.

39.  guided Proof Prove that if a polynomial function 
p(x) = a0 + a1x + a2x

2 is zero for x = −1, x = 0, and 
x = 1, then a0 = a1 = a2 = 0.

  Getting Started: Write a system of linear equations and 
solve the system for a0, a1, and a2.

 (i) Substitute x = −1, 0, and 1 into p(x).
 (ii) Set each result equal to 0.

 (iii)  Solve the resulting system of linear equations in 
the variables a0, a1, and a2.

40.  Proof Generalizing the statement in Exercise 39, if a  
polynomial function

p(x) = a0 + a1x + .  .  . + an−1x
n−1

 is zero for more than n − 1 x-values, then 

a0 = a1 = .  .  . = an−1 = 0.

  Use this result to prove that there is at most one  
polynomial function of degree n − 1 (or less) whose 
graph passes through n points in the plane with distinct 
x-coordinates.

41. (a) The graph of a function f  passes through the points 
   (0, 1), (2, 13), and (4, 15). Find a quadratic function 

whose graph passes through these points.

 (b)  Find a polynomial function p of degree 2 or less that 
passes through the points (0, 1), (2, 3), and (4, 5). 
Then sketch the graph of y = 1�p(x) and compare 
this graph with the graph of the polynomial function 
found in part (a).

42.  writing Try to find a polynomial to fit the data shown 
in the table. What happens, and why?

 
x 1 2 3 3 4

y 1 1 2 3 4
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 Review Exercises 35

1 Review Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

Linear Equations In Exercises 1 –6, determine whether 
the equation is linear in the variables x and y.

 1. 2x − y2 = 4  2. 2xy − 6y = 0

 3. (cot 5)x − y = 3  4. e−2x + 5y = 8

 5. 
2
x

+ 4y = 3  6. 
x
2

−
y
4

= 0

Parametric Representation In Exercises 7 and 8, find 
a parametric representation of the solution set of the  
linear equation.

 7. −3x + 4y − 2z = 1  8. 3x1 + 2x2 − 4x3 = 0

System of Linear Equations In Exercises 9–20, solve 
the system of linear equations.

 9.  x +  y =  2 10.  x +  y =  −1
  3x −  y =  0   3x +  2y =  0

11.  3y =  2x  12.  x =  y +  3
  y =  x + 4   4x =  y +  10

13.  y + x = 0 14. y =  5x
  2x + y = 0  y =  −x

15.  x − y = 9 16. 40x1 + 30x2 =  24
  −x + y = 1  20x1 + 15x2 =  −14

17.  12x −  13y  =  0 18.  13x +  47y =  3
  3x +  2(y + 5) =  10   2x +  3y =  15

19. 0.2x1 + 0.3x2 = 0.14
 0.4x1 + 0.5x2 = 0.20

20. 0.2x − 0.1y =  0.07
 0.4x − 0.5y =  −0.01

Matrix Size In Exercises 21 and 22, determine the size 
of the matrix.

21. [2
0

3
5

−1
1] 22. [

2
−4

0

1
−1

5]
Augmented Matrix In Exercises 23–26, find the 
solution set of the system of linear equations represented 
by the augmented matrix.

23. [1
2

2
1

−5
5] 24. [−2

0
3
0

0
0]

25. [
1
0
0

2
0
0

0
1
0

0
0
0]

26. [
1
0
0

2
0
0

3
0
0

0
1
0]

Row-Echelon Form In Exercises 27–30, determine 
whether the matrix is in row-echelon form. If it is,  
determine whether it is also in reduced row-echelon 
form.

27. [
1
0
0

2
0
0

−3
0
0

0
1
0] 28. [

1
0
0

0
1
0

1
2
0

1
1
1]

29. [
−1

0
0

2
1
0

1
0
1] 30. [

0
0
0

1
0
0

0
1
0

0
2
0]

System of Linear Equations In Exercises 31–40,  
solve the system using either Gaussian elimination with  
back-substitution or Gauss-Jordan elimination.

31.  −x +  y +  2z =  1
  2x +  3y +  z =  −2
  5x +  4y +  2z =  4

32.  4x +  2y +  z =  18
  4x −  2y −  2z =  28
  2x −  3y +  2z =  −8

33.  2x +  3y +  3z =  3
  6x +  6y +  12z =  13
  12x +  9y −  z =  2

34.  2x +  y +  2z =  4
  2x +  2y   =  5
  2x −  y +  6z =  2

35.  x −  2y +  z =  −6
  2x −  3y   =  −7
  −x +  3y −  3z =  11

36.  2x   +  6z =  −9
  3x −  2y +  11z =  −16
  3x −  y +  7z =  −11

37.  x +  2y +  6z =  1
  2x +  5y +  15z =  4
  3x +  y +  3z =  −6

38. 2x1 + 5x2 − 19x3 = 34
 3x1 + 8x2 − 31x3 = 54

39.  2x1 +  x2 +  x3 +  2x4 =  −1
  5x1 −  2x2 +  x3 −  3x4 =  0
  −x1 +  3x2 +  2x3 +  2x4 =  1
  3x1 +  2x2 +  3x3 −  5x4 =  12

40.

 

x1

 
 

2x1

2x1

+
 
 

+
 

5x2

4x2

 
4x2

 

+
+

 
 

−

3x3

2x3

3x3

 
x3

 
 +

+
 
 

 
5x4

8x4

 
 

 
 

+
−

 

 
 

6x5

2x5

 

=
=
=
=
=

14
3

16
0
0
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36 Chapter 1 Systems of Linear Equations

System of Linear Equations In Exercises 41–46, use  
a software program or a graphing utility to solve the  
system of linear equations.

41. x1

x1

3x1

+
−
−

x2

x2

2x2

+
−
+

x3

2x3

x3

=
=
=

15.4
27.9
76.9

42. 1.1x1

1.1x1

−1.7x1

+
−
+

2.3x2

2.2x2

3.4x2

+
−
+

3.4x3

4.4x3

6.8x3

=
=
=

0
0
1

43. 3x
x

2x
−x

+
+
+
+

3y
y

5y
2y

+
+
+
+

12z
4z

20z
8z

=
=
=
=

6
2

10
4

44. x
x

+
−

2y
y

5y

+

−

z

z

+
+
+

3w
w

2w

=
=
=

0
0
0

45. 2x
x
x

−3x

+
+
+
−

10y
5y
5y

15y

+
+
+
+

2z
2z
z

3z

=
=
=
=

6
6
3

−9

46. 2x
3x
x

5x

+
+
+
+

y
4y
5y
2y

−

+
−

z

2z
z

+
+
+
−

2w
w

6w
w

=
=
=
=

−6
1

−3
3

Homogeneous System In Exercises 47–50, solve the 
homogeneous system of linear equations.

47.  x1 −  2x2 −  8x3 =  0
  3x1 +  2x2    =  0

48.  2x1 +  4x2 −  7x3 =  0
  x1 −  3x2 +  9x3 =  0

49.  −2x1 +  7x2 −  3x3 =  0
  4x1 −  12x2 +  5x3 =  0
    12x2 +  7x3 =  0

50.  x1 +  3x2 +  5x3 = 0
  x1 +  4x2 +  12x3 =  0

51.  Determine the values of k such that the system of linear 
equations is inconsistent.

  kx +  y =  0
  x +  ky =  1

52.  Determine the values of k such that the system of linear 
equations has exactly one solution.

  x −  y +  2z =  0
 − x +  y −  z =  0
  x +  ky +  z =  0

53.  Find values of a and b such that the system of linear 
equations has (a) no solution, (b) exactly one solution, 
and (c) infinitely many solutions.

  x +  2y =  3
  ax +  by =  −9

54.  Find (if possible) values of a, b, and c such that the system 
of linear equations has (a) no solution, (b) exactly one 
solution, and (c) infinitely many solutions.

 
2x
x

−
+

y
y

3y

+
+
+

z
2z
3z

=
=
=

a
b
c

55.  Writing Describe a method for showing that two 
matrices are row-equivalent. Are the two matrices 
below row-equivalent?

 [
1
0
3

1
−1

1

2
2
2]  and  [

1
4
5

2
3
5

3
6

10]
56.  Writing Describe all possible 2 × 3 reduced row-

echelon matrices. Support your answer with examples.

57.  Let n ≥ 3. Find the reduced row-echelon form of the 
n × n matrix.

[
1

n + 1
2n + 1

⋮
n2 − n + 1

2
n + 2

2n + 2

⋮
n2 − n + 2

3
n + 3

2n + 3

⋮
n2 − n + 3

 .  .  .        n
 .  .  .      2n
 .  .  .      3n

⋮
 .  .  .      n

2
]

58.  Find all values of λ for which the homogeneous system 
of linear equations has nontrivial solutions.

  (λ + 2)x1 −  2x2 +  3x3 =  0
  −2x1 +  (λ − 1)x2 +  6x3 =  0
  x1 +  2x2 +  λx3 =  0

True or False? In Exercises 59 and 60, determine 
whether each statement is true or false. If a statement 
is true, give a reason or cite an appropriate statement 
from the text. If a statement is false, provide an example 
that shows the statement is not true in all cases or cite an 
appropriate statement from the text.

59. (a)  There is only one way to parametrically represent 
the solution set of a linear equation.

 (b)  A consistent system of linear equations can have 
infinitely many solutions.

60. (a)  A homogeneous system of linear equations must 
have at least one solution.

 (b)  A system of linear equations with fewer equations 
than variables always has at least one solution.

61.  Sports In Super Bowl I, on January 15, 1967, the 
Green Bay Packers defeated the Kansas City Chiefs by 
a score of 35 to 10. The total points scored came from a 
combination of touchdowns, extra-point kicks, and field 
goals, worth 6, 1, and 3 points, respectively. The numbers 
of touchdowns and extra-point kicks were equal. There 
were six times as many touchdowns as field goals. Find 
the numbers of touchdowns, extra-point kicks, and field 
goals scored. (Source: National Football League)
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 Review Exercises 37

62.  Agriculture A mixture of 6 gallons of chemical A,  
8 gallons of chemical B, and 13 gallons of chemical C 
is required to kill a destructive crop insect. Commercial 
spray X contains 1, 2, and 2 parts, respectively, of these 
 chemicals. Commercial spray Y contains only chemical C. 
Commercial spray Z contains chemicals A, B, and C in 
equal amounts. How much of each type of commercial 
spray is  needed to get the desired mixture?

Partial Fraction Decomposition In Exercises 63 and 
64, use a system of equations to find the partial fraction 
decomposition of the rational expression. Solve the  
system using matrices.

63. 
8x2

(x − 1)2(x + 1) =
A

x + 1
+

B
x − 1

+
C

(x − 1)2

64. 
3x2 + 3x − 2

(x + 1)2(x − 1) =
A

x + 1
+

B
x − 1

+
C

(x + 1)2

Polynomial Curve Fitting In Exercises 65 and 66,  
(a) determine the polynomial function whose graph 
passes through the points, and (b) sketch the graph of 
the polynomial function, showing the points.

65. (2, 5), (3, 0), (4, 20)

66. (−1, −1), (0, 0), (1, 1), (2, 4)

67.  Sales A company has sales (measured in millions) 
of $50, $60, and $75 during three consecutive years. 
Find a quadratic function that fits the data, and use it to  
predict the sales during the fourth year.

68. The polynomial function

p(x) = a0 + a1x + a2x
2 + a3x

3

  is zero when x = 1, 2, 3, and 4. What are the values of 
a0, a1, a2, and a3?

69.  Deer Population A wildlife management team  
studied the population of deer in one small tract of a 
wildlife preserve. The table shows the population and 
the number of years since the study began.

Year 0 4 80

Population 80 68 30

 (a)  Set up a system of equations to fit the data to a  
quadratic function.

 (b) Solve the system.

 (c)  Use a graphing utility to fit the data to a quadratic 
model.

 (d)  Compare the quadratic function in part (b) with the 
model in part (c).

 (e)  Cite the statement from the text that verifies your 
results.

70.  Vertical Motion An object moving vertically is 
at the given heights at the specified times. Find the  
position equation

s = 1
2at2 + v0t + s0

 for the object.

 (a) At t = 0 seconds, s = 160 feet

  At t = 1 second, s = 96 feet

  At t = 2 seconds, s = 0 feet

 (b) At t = 1 second, s = 134 feet

  At t = 2 seconds, s = 86 feet

  At t = 3 seconds, s = 6 feet

 (c) At t = 1 second, s = 184 feet

  At t = 2 seconds, s = 116 feet

  At t = 3 seconds, s = 16 feet

71.  Network Analysis The figure shows the flow 
through a network.

 (a) Solve the system for xi,  i = 1, 2, .  .  . , 6.

 (b)  Find the flow when x3 = 100, x5 = 50, and  
x6 = 50.

100

300

x2

x3x4

x6

x5

x1

200

72.  Network Analysis Determine the currents I1, I2, and 
I3 for the electrical network shown in the figure.

I1

I2

I3

R1 = 3

R2 = 4

R3 = 2 2 V

3 V

Ω

Ω

Ω
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38 Chapter 1 Systems of Linear Equations

1 Projects

1 Graphing Linear Equations
You saw in Section 1.1 that you can represent a system of two linear equations  
in two variables x and y geometrically as two lines in the plane. These lines can  
intersect at a point, coincide, or be parallel, as shown in Figure 1.8.

1. Consider the system below, where a and b are constants.

2x −  y = 3
ax +  by = 6

 (a) Find values of a and b for which the resulting system has a unique solution.

 (b)  Find values of a and b for which the resulting system has infinitely  
many solutions. 

 (c) Find values of a and b for which the resulting system has no solution.

 (d) Graph the lines for each of the systems in parts (a), (b), and (c).

2.  Now consider a system of three linear equations in x, y, and z. Each equation 
represents a plane in the three-dimensional coordinate system.

 (a)  Find an example of a system represented by three planes intersecting in  
a line, as shown in Figure 1.9(a).

 (b)  Find an example of a system represented by three planes intersecting at  
a point, as shown in Figure 1.9(b).

 (c)  Find an example of a system represented by three planes with no common  
intersection, as shown in Figure 1.9(c).

 (d)  Are there other configurations of three planes in addition to those given in 
Figure 1.9? Explain.

2 Underdetermined and Overdetermined Systems
The system of linear equations below is underdetermined because there are more 
variables than equations.

  x1 +  2x2 −  3x3 =  4
  2x1 −  x2 +  4x3 =  −3

Similarly, the system below is overdetermined because there are more equations 
than variables.

  x1 +  3x2 =  5
  2x1 −  2x2 =  −3
  −x1 +  7x2 =  0

Explore whether the number of variables and the number of equations have any 
bearing on the consistency of a system of linear equations. For Exercises 1–4, if an 
answer is yes, give an example. Otherwise, explain why the answer is no.

1. Can you find a consistent underdetermined linear system?

2. Can you find a consistent overdetermined linear system?

3. Can you find an inconsistent underdetermined linear system?

4. Can you find an inconsistent overdetermined linear system?

5.  Explain why you would expect an overdetermined linear system to be inconsistent. 
Must this always be the case?

6.  Explain why you would expect an underdetermined linear system to have  
infinitely many solutions. Must this always be the case?

1

2

3

−1

−1

1 2 3
x

y
x −  y = 0

x + y = 2

1

2

−1−2

−1

−2

1 2
x

y x −  y = 0

2x −  2y = 0

Figure 1.8

1

2

3

−1−2−3

−1

x

y

x −  y = −2

x −  y = 0

(b)(a)

Figure 1.9

(c)
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40 Chapter 2 Matrices

2.1 operations with Matrices

 Determine whether two matrices are equal.

 Add and subtract matrices and multiply a matrix by a scalar.

 Multiply two matrices.

 Use matrices to solve a system of linear equations.

 Partition a matrix and write a linear combination of column vectors.

Equality of MatricES

In Section 1.2, you used matrices to solve systems of linear equations. This chapter 
introduces some fundamentals of matrix theory and further applications of matrices.

It is standard mathematical convention to represent matrices in any one of the three 
ways listed below.

1. An uppercase letter such as A, B, or C

2. A representative element enclosed in brackets, such as [aij], [bij], or [cij]

3. A rectangular array of numbers

[
a11

a21

⋮
am1

a12

a22

⋮
am2

.  .  .

.  .  .

.  .  .

a1n

a2n

⋮
amn

]
As mentioned in Chapter 1, the matrices in this text are primarily real matrices. That 
is, their entries are real numbers.

Two matrices are equal when their corresponding entries are equal.

definition of Equality of Matrices

Two matrices A = [aij] and B = [bij] are equal when they have the same size 
(m × n) and aij = bij for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

 Equality of Matrices

Consider the four matrices

A = [1
3

2
4], B = [1

3], C = [1 3], and D = [1
x

2
4].

Matrices A and B are not equal because they are of different sizes. Similarly, B and C
are not equal. Matrices A and D are equal if and only if x = 3. 

A matrix that has only one column, such as matrix B in Example 1, is a column 
matrix or column vector. Similarly, a matrix that has only one row, such as matrix 
C in Example 1, is a row matrix or row vector. Boldface lowercase letters often 
designate column matrices and row matrices. For instance, matrix A in Example 1 can be 

partitioned into the two column matrices a1 = [1
3] and a2 = [2

4] as shown below.

A = [1
3

2
4] = [1

3
2
4] = [a1 a2]

rEMarK
The phrase “if and only if” 
means the statement is true in 
both directions. For example, 
“p if and only if q” means that 
p implies q and q implies p.
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 2.1  Operations with Matrices 41

Matrix addition, Subtraction,  
and Scalar Multiplication

To add two matrices (of the same size), add their corresponding entries.

definition of Matrix addition

If A = [aij] and B = [bij] are matrices of size m × n, then their sum is the 
m × n matrix A + B = [aij + bij].

The sum of two matrices of different sizes is undefined.

 addition of Matrices

a. [−1
0

2
1] + [ 1

−1
3
2] = [ −1 + 1

0 + (−1)
2 + 3
1 + 2] = [ 0

−1
5
3]

b. [0
1

1
2

−2
3] + [0

0
0
0

0
0] = [0

1
1
2

−2
3]

c. [
1

−3
−2] + [

−1
3
2] = [

0
0
0]  d. [2

4
1
0

0
−1] + [ 0

−1
1
3] is undefined. 

When working with matrices, real numbers are referred to as scalars. To multiply 
a matrix A by a scalar c, multiply each entry in A by c.

definition of Scalar Multiplication

If A = [aij] is an m × n matrix and c is a scalar, then the scalar multiple of A by 
c is the m × n matrix cA = [caij].

You can use −A to represent the scalar product (−1)A. If A and B are of the same 
size, then A − B represents the sum of A and (−1)B. That is, A − B = A + (−1)B.

 Scalar Multiplication and Matrix Subtraction

For the matrices A and B, find (a) 3A, (b) −B, and (c) 3A − B.

A = [
1

−3
2

2
0
1

4
−1

2] and B = [
2
1

−1

0
−4

3

0
3
2]

Solution

a. 3A = 3[
1

−3
2

2
0
1

4
−1

2] = [
3(1)
3(−3)
3(2)

   3(2)
   3(0)
   3(1)

   3(4)
   3(−1)
   3(2) ] = [

3
−9

6

6
0
3

12
−3

6]
b. −B = (−1)[

2
1

−1

0
−4

3

0
3
2] = [

−2
−1

1

0
4

−3

0
−3
−2]

c. 3A − B = [
3

−9
6

6
0
3

12
−3

6] − [
2
1

−1

0
−4

3

0
3
2] = [

1
−10

7

6
4
0

12
−6

4] 

rEMarK
It is often convenient to rewrite 
the scalar multiple cA by  
factoring c out of every entry  
in the matrix. For example,  
factoring the scalar 12 out of  
the matrix below gives

[
1
2
5
2

−3
2
1
2
] = 1

2[1
5

−3
1].
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42 Chapter 2 Matrices

Matrix Multiplication

Another basic matrix operation is matrix multiplication. To see the usefulness of  
this operation, consider the application below, in which matrices are helpful for  
organizing information.

A football stadium has three concession areas, located in the south, north, and west 
stands. The top-selling items are peanuts, hot dogs, and soda. Sales for one day are 
given in the first matrix below, and the prices (in dollars) of the three items are given 
in the second matrix.

Numbers of Items Sold
 Peanuts Hot Dogs Sodas Selling Price

 
South Stand
North Stand
West Stand

   [
120
207
29

250
140
120

305
419
190] [

2.00
3.00
2.75]   

Peanuts
Hot Dogs
Soda

To calculate the total sales of the three top-selling items at the south stand, multiply 
each entry in the first row of the matrix on the left by the corresponding entry in the 
price column matrix on the right and add the results. The south stand sales are

(120)(2.00) + (250)(3.00) + (305)(2.75) = $1828.75 South stand sales

Similarly, the sales for the other two stands are shown below.

 (207)(2.00) + (140)(3.00) + (419)(2.75) = $1986.25 North stand sales

 (29)(2.00) + (120)(3.00) + (190)(2.75) = $940.50  West stand sales

The preceding computations are examples of matrix multiplication. You can write 
the product of the 3 × 3 matrix indicating the number of items sold and the 3 × 1 
matrix indicating the selling prices as shown below.

[
120
207
29

250
140
120

305
419
190][

2.00
3.00
2.75] = [

1828.75
1986.25
940.50]

The product of these matrices is the 3 × 1 matrix giving the total sales for each of the 
three stands.

The definition of the product of two matrices shown below is based on the ideas 
just developed. Although at first glance this definition may seem unusual, you will see 
that it has many practical applications.

definition of Matrix Multiplication

If A = [aij] is an m × n matrix and B = [bij] is an n × p matrix, then the product 
AB is an m × p matrix

AB = [cij]

where

 cij = ∑
n

k=1
aikbkj

 = ai1b1j + ai2b2j + ai3b3j + .  .  . + ainbnj.

This definition means that to find the entry in the ith row and the jth column of 
the product AB, multiply the entries in the ith row of A by the corresponding entries in 
the jth column of B and then add the results. The next example illustrates this process.
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c11 = (−1)(−3) + (3)(−4) = −9

c12 = (−1)(2) + (3)(1) = 1

finding the product of two Matrices

Find the product AB, where

A = [
−1

4
5

3
−2

0] and B = [−3
−4

2
1].

Solution

 First, note that the product AB is defined because A has size 3 × 2 and B has size 2 × 2.
Moreover, the product AB has size 3 × 2, and will take the form

[
−1

4
5

3
−2

0][−3
−4

2
1] = [

c11

c21

c31

c12

c22

c32
].

To find c11 (the entry in the first row and first column of the product), multiply 
corresponding entries in the first row of A and the first column of B. That is,

[
−1

4
5

3
−2

0][−3
−4

2
1] = [

−9
c21

c31

c12

c22

c32
].

Similarly, to find c12, multiply corresponding entries in the first row of A and the 
second column of B to obtain

[
−1

4
5

3
−2

0][−3
−4

2
1] = [

−9
c21

c31

1
c22

c32
].

Continuing this pattern produces the results shown below.

c21

c22

c31

c32

=
=
=
=

(4)(−3)
(4)(2)
(5)(−3)
(5)(2)

+
+
+
+

(−2)(−4)
(−2)(1)
(0)(−4)
(0)(1)

=
=
=
=

  −4
      6
−15
    10

The product is

AB = [
−1

4
5

3
−2

0][−3
−4

2
1] = [

−9
−4

−15

1
6

10]. 

Be sure you understand that for the product of two matrices to be defined, the 
number of columns of the first matrix must equal the number of rows of the second 
matrix. That is,

A B = AB.
m × n n × p m × p

 Equal

 Size of AB

So, the product BA is not defined for matrices such as A and B in Example 4.

arthur cayley
(1821–1895)

British mathematician 
Arthur Cayley is credited 
with giving an abstract 
definition of a matrix. 
Cayley was a Cambridge 
University graduate and a 
lawyer by profession. He 
began his groundbreaking 
work on matrices as he 
studied the theory of 
transformations. Cayley 
also was instrumental 
in the development of 
determinants (discussed in 
Chapter 3). Cayley and two 
American mathematicians, 
Benjamin Peirce 
(1809–1880) and his 
son, Charles S. Peirce 
(1839–1914), 
are credited 
with developing 
“matrix algebra.”
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44 Chapter 2 Matrices

ai1b1j + ai2b2j + ai3b3j + .  .  . + ainbnj = cij

The general pattern for matrix multiplication is shown below. To obtain the 
element in the ith row and the jth column of the product AB, use the ith row of A and the 
jth column of B.

[
a11

a21

⋮
ai1

⋮
am1

a12

a22

⋮
ai2

⋮
am2

a13

a23

⋮
ai3

⋮
am3

.  .  .

.  .  .

.  .  .

.  .  .

a1n

a2n

⋮
ain

⋮
amn

] [
b11

b21

b31

⋮
bn1

b12

b22

b32

⋮
bn2

.  .  .

.  .  .

.  .  .

.  .  .

b1j

b2j

b3j

⋮
bnj

.  .  .

.  .  .

.  .  .

.  .  .

b1p

b2p

b3p

⋮
bnp

] =[
c11

c21

⋮
ci1

⋮
cm1

c12

c22

⋮
ci2

⋮
cm2

.  .  .

.  .  .

.  .  .

.  .  .

c1j

c2j

⋮
cij

⋮
cmj

.  .  .

.  .  .

.  .  .

.  .  .

c1p

c2p

⋮
cip

⋮
cmp

]
DISCOVERY
Let

A = [1
3

2
4] and B = [0

1
1
2].

1. Find A + B and B + A. Is matrix addition commutative?

2. Find AB and BA. Is matrix multiplication commutative?

 Matrix Multiplication

See LarsonLinearAlgebra.com for an interactive version of this type of example.

a. [1
2

0
−1

3
−2][

−2
1

−1

4
0
1

2
0

−1] = [−5
−3

7
6

−1
6]

 2 × 3 3 × 3 2 × 3

b. [ 3
−2

4
5][

1
0

0
1] = [ 3

−2
4
5]

 2 × 2 2 × 2 2 × 2

c. [1
1

2
1][

−1
1

2
−1] = [1

0
0
1]

 2 × 2 2 × 2 2 × 2

d. [1 −2 −3][
2

−1
1] = [1]

 1 × 3 3 × 1 1 × 1

e. [
2

−1
1][1 −2 −3] = [

2
−1

1

−4
2

−2

−6
3

−3]
 3 × 1 1 × 3 3 × 3 

Note the difference between the two products in parts (d) and (e) of Example 5. 
In general, matrix multiplication is not commutative. It is usually not true that the 
product AB is equal to the product BA. (See Section 2.2 for further discussion of 
the noncommutativity of matrix multiplication.)
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SyStEMS of linEar EquationS

One practical application of matrix multiplication is representing a system of linear 
equations. Note how the system

a11x1

a21x1

a31x1

+
+
+

a12x2

a22x2

a32x2

+
+
+

a13x3

a23x3

a33x3

=
=
=

b1

b2

b3

can be written as the matrix equation Ax = b, where A is the coefficient matrix of the 
system, and x and b are column matrices. 

[
a11

a21

a31

a12

a22

a32

a13

a23

a33
][

x1

x2

x3
] = [

b1

b2

b3
]

 A x =  b

 Solving a System of linear Equations

Solve the matrix equation Ax = 0, where

A = [1
2

−2
3

1
−2], x = [

x1

x2

x3
], and 0 = [0

0].

Solution

As a system of linear equations, Ax = 0 is

x1

2x1

−
+

2x2

3x2

+
−

x3

2x3

=
=

0
0.

Using Gauss-Jordan elimination on the augmented matrix of this system, you obtain

[1

0

0

1

−1
7

−4
7

0

0].

So, the system has infinitely many solutions. Here a convenient choice of a parameter 
is x3 = 7t, and you can write the solution set as

x1 = t, x2 = 4t, x3 = 7t, t is any real number.

In matrix terminology, you have found that the matrix equation

[1
2

−2
3

1
−2][

x1

x2

x3
] = [0

0]
has infinitely many solutions represented by

x = [
x1

x2

x3
] = [

t
4t
7t] = t[

1
4
7], t is any scalar.

That is, any scalar multiple of the column matrix on the right is a solution. Here are 
some sample solutions:

[
1
4
7], [

2
8

14], [
0
0
0], and [

−1
−4
−7]. 

tEchnology
Many graphing utilities and 
software programs can  
perform matrix addition, scalar 
multiplication, and matrix  
multiplication. When you use  
a graphing utility to check one  
of the solutions in Example 6, 
you may see something similar 
to the screen below.

[[0]
[0]]

[[1 -2 1 ]
[2 3  -2]]

[7]]

[A]

[B]

[A]*[B]

[[1] 
[4] 

The technology guide at  
CengageBrain.com can help 
you use technology to perform 
matrix operations.
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partitionEd MatricES

The system Ax = b can be represented in a more convenient way by partitioning the  
matrices A and x in the manner shown below. If

A = [
a11

a21

⋮
am1

a12

a22

⋮
am2

.  .  .

.  .  .

.  .  .

a1n

a2n

⋮
amn

], x = [
x1

x2

⋮
xn

], and b = [
b1

b2

⋮
bm

]
are the coefficient matrix, the column matrix of unknowns, and the right-hand side, 
respec tively, of the m × n linear system Ax = b, then

 [
a11

a21

⋮
am1

a12

a22

⋮
am2

.  .  .

.  .  .

.  .  .

a1n

a2n

⋮
amn

][
x1

x2

⋮
xn

] = b

 [
a11x1

a21x1

am1x1

+
+

+

a12x2

a22x2

am2x2

+
+
⋮ 
+

.  .  .

.  .  .

.  .  .

+
+

+

a1nxn

a2nxn

amnxn

] = b

 x1[
a11

a21

⋮
am1

] + x2[
a12

a22

⋮
am2

] + .  .  . + xn[
a1n

a2n

⋮
amn

] = b.

In other words,

Ax = x1a1 + x2a2 + .  .  . + xnan = b

where a1, a2, .  .  . , an are the columns of the matrix A. The expression

x1[
a11

a21

⋮
am1

] + x2[
a12

a22

⋮
am2

] + .  .  . + xn[
a1n

a2n

⋮
amn

]
is called a linear combination of the column matrices a1, a2, .  .  . , an with coefficients  
x1, x2, .  .  . , xn.

linear combinations of column Vectors

The matrix product Ax is a linear combination of the column vectors a1,  
a2, .  .  . , an that form the coefficient matrix A.

x1[
a11

a21

⋮
am1

] + x2[
a12

a22

⋮
am2

] + .  .  . + xn[
a1n

a2n

⋮
amn

]
Furthermore, the system

Ax = b

is consistent if and only if b can be expressed as such a linear combination, where 
the coefficients of the linear combination are a solution of the system.
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Solving a System of linear Equations

The linear system

x1

4x1

7x1

+
+
+

2x2

5x2

8x2

+
+
+

3x3

6x3

9x3

=
=
=

0
3
6

can be rewritten as a matrix equation Ax = b, as shown below.

x1[
1
4
7] + x2[

2
5
8] + x3[

3
6
9] = [

0
3
6]

Using Gaussian elimination, you can show that this system has infinitely many 
solutions, one of which is x1 = 1, x2 = 1, x3 = −1.

1[
1
4
7] + 1[

2
5
8] + (−1)[

3
6
9] = [

0
3
6]

That is, b can be expressed as a linear combination of the columns of A. This 
representation of one column vector in terms of others is a fundamental theme of 
linear algebra. 

Just as you partition A into columns and x into rows, it is often useful to consider 
an m × n matrix partitioned into smaller matrices. For example, you can partition the 
matrix below as shown.

[
1
3

−1

2
4

−2

0
0
2

0
0
1] [

1
3

−1

2
4

−2

0
0
2

0
0
1]

You can also partition the matrix into column matrices

[
1
3

−1

2
4

−2

0
0
2

0
0
1] = [c1 c2 c3 c4]

or row matrices

[
1
3

−1

2
4

−2

0
0
2

0
0
1] = [

r1

r2

r3
].

Andresr/Shutterstock.com

linEar
algEbra
appliEd

Many real-life applications of linear systems involve 
enormous numbers of equations and variables. For 
example, a flight crew scheduling problem for American 
Airlines required the manipulation of a matrix with 
837 rows and more than 12,750,000 columns. To solve 
this application of linear programming, researchers 
partitioned the problem into smaller pieces and solved 
it on a computer. (Source: Very Large-Scale Linear 
Programming. A Case Study in Combining Interior Point and 
Simplex Methods, Bixby, Robert E., et al., Operations Research, 
40, no. 5)
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2.1 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

Equality of Matrices In Exercises 1–4, find x and y.

 1. [x
7

−2
y] = [−4

7
−2
22]

 2. [−5
y

x
8] = [−5

12
13
8]

 3. [
16

−3
0

4
13
2

5
15
4

4
6
0] = [

16
−3

0

4
13
2

2x + 1
15

3y − 5

4
3x
0]

 4. [
x + 2

1
7

8
2y

−2

−3
2x

y + 2] = [
2x + 6

1
7

8
18

−2

−3
−8
11]

operations with Matrices In Exercises 5–10, find, if 
possible, (a) A + B, (b) A − B, (c) 2A, (d) 2A − B, and 
(e) B + 1

2A.

 5. A = [1
2

2
1], B = [−3

4
−2

2]

 6. A = [
6
2

−3

−1
4
5], B = [

1
−1

1

4
5

10]
 7. A = [ 2

−1
1

−1
1
4], B = [ 2

−3
−3

1
4

−2]

 8. A = [
3
2
0

2
4
1

−1
5
2], B = [

0
5
2

2
4
1

1
2
0]

 9. A = [ 6
−1

0
−4

3
0], B = [8

4
−1
−3]

10. A = [
3
2

−1], B = [−4 6 2]

11. Find (a) c21 and (b) c13, where C = 2A − 3B,

 A = [ 5
−3

4
1

4
2], and B = [1

0
2

−5
−7

1].

12. Find (a) c23 and (b) c32, where C = 5A + 2B,

 A = [
4
0

−3

11
3
1

−9
2
1], and B = [

1
−4
−6

0
6
4

5
11
9].

13. Solve for x, y, and z in the matrix equation

 4[x
z

y
−1] = 2[ y

−x
z
1] + 2[4

5
x

−x].

14. Solve for x, y, z, and w in the matrix equation

 [w
y

x
x] = [−4

2
3

−1] + 2[y
z

w
x].

finding products of two Matrices In Exercises 15–28, 
find, if possible, (a) AB and (b) BA.

15. A = [1
4

2
2], B = [ 2

−1
−1

8]
16. A = [ 2

−1
−2

4], B = [4
2

1
−2]

17. A = [
2
5
2

−1
1
2

3
−2

3], B = [
0

−4
−4

1
1

−1

2
3

−2]
18. A = [

1
2
3

−1
−1

1

7
8

−1], B = [
1
2
1

1
1

−3

2
1
2]

19. A = [
2

−3
1

1
4
6], B = [

0
4
8

−1
0

−1

0
2
7]

20. A = [
3

−3
4

2
0

−2

1
4

−4], B = [
1
2
1

2
−1
−2]

21. A = [3 2 1], B = [
2
3
0]

22. A = [
−1

2
−2

1
], B = [2 1 3 2]

23. A = [
−1

4
0

3
−5

2], B = [1
0

2
7]

24. A = [2
5

−3
2], B = [

2
1
2

1
3

−1]
25. A = [

0
4
8

−1
0

−1

0
2
7], B = [

2
−3

1]
26. A = [

2
3

−2

1
−1

1

2
−2
−2], B = [

4
−1
−2

0
2
1

1
−3

4

3
−1

3]
27. A = [

6
−2

1
6
], B = [10 12]

28. A = [1
6

0
13

3
8

−2
−17

4
20], B = [1

4
6
2]
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Matrix Size In Exercises 29–36, let A, B, C, D, and E 
be matrices with the sizes shown below.

A:  3 × 4 B:  3 × 4 C:  4 × 2 D:  4 × 2 E:  4 × 3

If defined, determine the size of the matrix. If not 
defined, explain why.

29. A + B 30. C + E

31. 1
2D  32. −4A

33. AC  34. BE

35. E − 2A 36. 2D + C

Solving a Matrix Equation In Exercises 37 and 38, 
solve the matrix equation Ax = 0.

37. A = [2
1

−1
−2

−1
2], x = [

x1

x2

x3
], 0 = [0

0]

38. A = [
1
1
0

2
−1

1

1
0

−1

3
1
2], x = [

x1

x2

x3

x4

], 0 = [
0
0
0]

Solving a System of linear Equations In Exercises 
39–48, write the system of linear equations in the form 
Ax = b and solve this matrix equation for x.

39.  −x1 +  x2 =  4 40.  2x1 +  3x2 =  5

  −2x1 +  x2 =  0   x1 +  4x2 =  10

41.  −2x1 −  3x2 =  −4 42.  −4x1 +  9x2 =  −13

  6x1 +  x2 =  −36   x1 −  3x2 =  12

43.  x1 −  2x2 +  3x3 =  9

  −x1 +  3x2 −  x3 =  −6

  2x1 −  5x2 +  5x3 =  17

44.  x1 +  x2 −  3x3 =  −1

  −x1 +  2x2    =  1

  x1 −  x2 +  x3 =  2

45.  x1 − 5 x2 +  2x3 =  −20

  −3x1 +  x2 −  x3 =  8

    −2x2 +  5x3 =  −16

46.  x1 −  x2 +  4x3 =  17

  x1 +  3x2    =  −11

    −6x2 +  5x3 =  40

47.  2x1 −  x2 +    x4 =  3

    3x2 −  x3 −  x4 =  −3

  x1    +  x3 −  3x4 =  −4

  x1 +  x2 +  2x3    =  0

48.  x1 +  x2        = 0

    x2 +  x3      = 0

      x3 +  x4    = 0

        x4 +  x5 = 0

  −x1 +  x2 −  x3 +  x4 −  x5 = 5

Writing a linear combination In Exercises 49–52, 
write the column matrix b as a linear combination of the 
columns of A.

49. A = [1
3

−1
−3

2
1], b = [−1

7]

50. A = [
1

−1
0

2
0
1

4
2
3], b = [

1
3
2]

51. A = [
1
1
2

1
0

−1

−5
−1
−1], b = [

3
1
0]

52. A = [
−3

3
4

5
4

−8], b = [
−22

4
32]

Solving a Matrix Equation In Exercises 53 and 54, 
solve for A.

53. [1
3

2
5] A = [1

0
0
1]

54. [2
3

−1
−2] A = [1

0
0
1]

Solving a Matrix Equation In Exercises 55 and 56, 
solve the matrix equation for a, b, c, and d.

55. [1
3

2
4]  [a

c
b
d] = [ 6

19
3
2]

56. [a
c

b
d]  [2

3
1
1] = [3

4
17

−1]
diagonal Matrix In Exercises 57 and 58, find the  
product AA for the diagonal matrix. A square matrix

A = [
a11

0
0
⋮
0

0
 a22

0
⋮
0

0
0

  a33

⋮
0

.  .  .

.  .  .

.  .  .

.  .  .

0
0
0
⋮

ann

]
is a diagonal matrix when all entries that are not on the 
main diagonal are zero. 

57. A = [
−1

0
0

0
2
0

0
0
3] 58. A = [

2
0
0

0
−3

0

0
0
0]

finding products of diagonal Matrices In Exercises 
59 and 60, find the products AB and BA for the diagonal 
matrices.

59. A = [2
0

0
−3], B = [−5

0
0
4]

60. A = [
3
0
0

0
−5

0

0
0
0], B = [

−7
0
0

0
4
0

0
0

12]
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61.  guided proof Prove that if A and B are diagonal 
matrices (of the same size), then AB = BA.

  Getting Started: To prove that the matrices AB and BA 
are equal, you need to show that their corresponding 
entries are equal.

 (i)  Begin your proof by letting A = [aij] and B = [bij] 
be two diagonal n × n matrices.

 (ii) The ijth entry of the product AB is

cij = ∑
n

k=1
aikbkj.

 (iii)  Evaluate the entries cij for the two cases i ≠ j and 
i = j.

 (iv) Repeat this analysis for the product BA.

62.  Writing Let A and B be 3 × 3 matrices, where A is 
diagonal.

 (a)  Describe the product AB. Illustrate your answer 
with examples.

 (b)  Describe the product BA. Illustrate your answer 
with examples.

 (c)  How do the results in parts (a) and (b) change when 
the diagonal entries of A are all equal?

trace of a Matrix In Exercises 63–66, find the  
trace of the matrix. The trace of an n × n matrix A  
is the sum of the main diagonal entries. That is, 
Tr(A) = a11 + a22 + .  .  . + ann.

63. [
1
0
3

2
−2

1

3
4
3] 64. [

1
0
0

0
1
0

0
0
1]

65. [
1
0
4
0

0
1
2
0

2
−1

1
5

1
2
0
1
] 66. [

1
4
3
2

4
0
6
1

3
6
2
1

2
1
1

−3
]

67.  proof Prove that each statement is true when A and B 
are square matrices of order n and c is a scalar.

 (a) Tr(A + B) = Tr(A) + Tr(B)

 (b) Tr(cA) = cTr(A)

68.  proof Prove that if A and B are square matrices of 
order n, then Tr(AB) = Tr(BA).

69.  Find conditions on w, x, y, and z such that AB = BA for 
the matrices below.

 A = [w
y

x
z] and B = [ 1

−1
1
1]

70. Verify AB = BA for the matrices below.

 A = [cos α
sin α

−sin α
cos α] and B = [cos β

sin β
−sin β

cos β]
71. Show that the matrix equation has no solution.

 [1
1

1
1] A = [1

0
0
1]

72.  Show that no 2 × 2 matrices A and B exist that satisfy 
the matrix equation

 AB − BA = [1
0

0
1].

73.  Exploration Let i = √−1 and let

 A = [ i
0

0
i] and B = [0

i
−i

0].

 (a)  Find A2, A3, and A4. (Note: A2 = AA, 
A3 = AAA = A2A, and so on.) Identify any similarities 
with i2, i3, and i4.

 (b) Find and identify B2.

74.  guided proof Prove that if the product AB is a square 
matrix, then the product BA is defined.

  Getting Started: To prove that the product BA is 
defined, you need to show that the number of columns 
of B equals the number of rows of A.

 (i)  Begin your proof by noting that the number of 
columns of A equals the number of rows of B.

 (ii)  Then assume that A has size m × n and B has size 
n × p.

 (iii)  Use the hypothesis that the product AB is a  
square matrix.

75.  proof Prove that if both products AB and BA are 
defined, then AB and BA are square matrices.

76.  Let A and B be matrices such that the product AB is 
defined. Show that if A has two identical rows, then the 
corresponding two rows of AB are also identical.

77.  Let A and B be n × n matrices. Show that if the ith 
row of A has all zero entries, then the ith row of AB 
will have all zero entries. Give an example using 2 × 2 
matrices to show that the converse is not true.

78.  CAPSTONE Let matrices A and B be of 
sizes 3 × 2 and 2 × 2, respectively. Answer each 
question and explain your answers.

(a) Is it possible that A = B?

(b) Is A + B defined?

(c) Is AB defined? If so, is it possible that AB = BA?

79.  agriculture A fruit grower raises two crops, apples 
and peaches. The grower ships each of these crops to 
three different outlets. In the matrix

 A = [125
100

100
175

75
125]

  aij represents the number of units of crop i that the  
grower ships to outlet j. The matrix

 B = [$3.50 $6.00]
  represents the profit per unit. Find the product BA and 

state what each entry of the matrix represents.
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80.  Manufacturing A corporation has three factories, 
each of which manufactures acoustic guitars and  
electric guitars. In the matrix

 A = [70
35

50
100

25
70]

  aij represents the number of guitars of type i produced  
at factory j in one day. Find the production levels when  
production increases by 20%.

81.  politics  In the matrix

 From
 
 R D I

P = [
0.6
0.2
0.2

0.1
0.7
0.2

0.1
0.1
0.8] 

R
D
I

  To

  each entry pij (i ≠ j) represents the proportion of the 
voting population that changes from party j to party i, 
and pii represents the proportion that remains loyal to 
party i from one election to the next. Find and interpret 
the product of P with itself. 

82.  population The matrices show the numbers of  
people (in thousands) who lived in each region of 
the United States in 2010 and 2013. The regional 
populations are separated into three age categories. 
(Source: U.S. Census Bureau)

 2010
 0–17 18–64 65+

Northeast
Midwest
South
Mountain
Pacific

 [
12,306
16,095
27,799

5698
12,222

35,240
41,830
72,075
13,717
31,867

7830
9051

14,985
2710
5901

]
 2013
 0–17 18–64 65+

Northeast
Midwest
South
Mountain
Pacific

 [
12,026
15,772
27,954

5710
12,124

35,471
41,985
73,703
14,067
32,614

8446
9791

16,727
3104
6636

]
 (a)  The total population in 2010 was approximately  

309 million and the total population in 2013 was 
about 316 million. Rewrite the matrices to give the 
information as percents of the total population.

 (b)  Write a matrix that gives the changes in the percents 
of the population in each region and age group from 
2010 to 2013.

 (c)  Based on the result of part (b), which age group(s) 
show relative growth from 2010 to 2013?

block Multiplication In Exercises 83 and 84, perform the 
block multiplication of matrices A and B. If matrices 
A and B are each partitioned into four submatrices

A = [A11

A21

A12

A22
] and B = [B11

B21

B12

B22
]

then you can block multiply A and B, provided the sizes of 
the submatrices are such that the matrix multiplications 
and additions are defined.

AB = [A11

A21

A12

A22
]  [B11

B21

B12

B22
]

= [A11B11 + A12B21

A21B11 + A22B21

A11B12 + A12B22

A21B12 + A22B22
]

83. A = [
1
0
0

2
1
0

0
0
2

0
0
1], B = [

1
−1

0
0

2
1
0
0

0
0
1
3
]

84. A = [
0
0

−1
0

0
0
0

−1

1
0
0
0

0
1
0
0
], B = [

1
5
1
5

2
6
2
6

3
7
3
7

4
8
4
8
]

true or false? In Exercises 85 and 86, determine 
whether each statement is true or false. If a statement 
is true, give a reason or cite an appropriate statement 
from the text. If a statement is false, provide an example 
that shows the statement is not true in all cases or cite an 
appropriate statement from the text.

85. (a)  For the product of two matrices to be defined, the 
number of columns of the first matrix must equal 
the number of rows of the second matrix.

 (b)  The system Ax = b is consistent if and only if b  
can be expressed as a linear combination of the 
columns of A, where the coefficients of the linear 
combination are a solution of the system.

86. (a)  If A is an m × n matrix and B is an n × r matrix, 
then the product AB is an m × r matrix.

 (b)  The matrix equation Ax = b, where A is the  
coefficient matrix and x and b are column matrices, 
can be used to represent a system of linear equations.

87.  The columns of matrix T  show the coordinates of the  
vertices of a triangle. Matrix A is a transformation matrix.

 A = [0
1

−1
0], T = [1

1
2
4

3
2]

 (a)  Find AT  and AAT. Then sketch the original  
triangle and the two transformed triangles. What 
transformation does A represent?

 (b)  A triangle is determined by AAT. Describe the 
transformation process that produces the triangle 
determined by AT  and then the triangle determined 
by T.
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2.2 Properties of Matrix Operations

  Use the properties of matrix addition, scalar multiplication, and 
zero matrices.

 Use the properties of matrix multiplication and the identity matrix.

 Find the transpose of a matrix.

AlgebrA Of MAtrices

In Section 2.1, you concentrated on the mechanics of the three basic matrix operations: 
matrix addition, scalar multiplication, and matrix multiplication. This section begins to 
develop the algebra of matrices. You will see that this algebra shares many (but not 
all) of the properties of the algebra of real numbers. Theorem 2.1 lists several properties 
of matrix addition and scalar multiplication.

PrOOf

The proofs of these six properties follow directly from the definitions of matrix addition, 
scalar multiplication, and the corresponding properties of real numbers. For example, to 
prove the commutative property of matrix addition, let A = [aij] and B = [bij]. Then, 
using the commutative property of addition of real numbers, write

A + B = [aij + bij] = [bij + aij] = B + A.

Similarly, to prove Property 5, use the distributive property (for real numbers) of  
multiplication over addition to write

c(A + B) = [c(aij + bij)] = [caij + cbij] = cA + cB.

The proofs of the remaining four properties are left as exercises. (See Exercises 61–64.)

The preceding section defined matrix addition as the sum of two matrices, making 
it a binary operation. The associative property of matrix addition now allows you to  
write expressions such as A + B + C as (A + B) + C or as A + (B + C). This same 
reasoning applies to sums of four or more matrices.

 Addition of More than two Matrices

To obtain the sum of four matrices, add corresponding entries as shown below.

[1
2] + [−1

−1] + [0
1] + [ 2

−3] = [ 2
−1] 

theOreM 2.1   Properties of Matrix Addition  
and scalar Multiplication

If A, B, and C are m × n matrices, and c and d are scalars, then the properties 
below are true.
1. A + B = B + A Commutative property of addition
2. A + (B + C) = (A + B) + C Associative property of addition
3. (cd)A = c(dA) Associative property of multiplication
4. 1A = A Multiplicative identity
5. c(A + B) = cA + cB Distributive property
6. (c + d)A = cA + dA Distributive property
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One important property of the addition of real numbers is that the number 0 
is the additive identity. That is, c + 0 = c for any real number c. For matrices, 
a similar property holds. Specifically, if A is an m × n matrix and Omn is the 
m × n matrix consisting entirely of zeros, then A + Omn = A. The matrix Omn is 
a zero matrix, and it is the additive identity for the set of all m × n matrices. For 
example, the matrix below is the additive identity for the set of all 2 × 3 matrices.

O23 = [0
0

0
0

0
0]

When the size of the matrix is understood, you may denote a zero matrix simply by O
or 0.

The properties of zero matrices listed below are relatively easy to prove, and their 
proofs are left as an exercise. (See Exercise 65.)

The algebra of real numbers and the algebra of matrices have many similarities. 
For example, compare the two solutions below.

Real Numbers m × n Matrices
 (Solve for x.) (Solve for X.)

 x + a = b   X + A = B
 x + a + (−a) = b + (−a)   X + A + (−A) = B + (−A)

 x + 0 = b − a   X + O = B − A
 x = b − a   X = B − A

Example 2 demonstrates the process of solving a matrix equation.

 solving a Matrix equation

Solve for X in the equation 3X + A = B, where

A = [1
0

−2
3]  and  B = [−3

2
4
1].

sOlutiOn

Begin by solving the equation for X to obtain

 3X = B − A

 X = 1
3(B − A).

Now, using the matrices A and B, you have

 X = 1
3([−3

2
4
1] − [1

0
−2

3])
 = 1

3[−4
2

6
−2]

 = [−4
3
2
3

2

−2
3
]. 

theOreM 2.2  Properties of Zero Matrices

If A is an m × n matrix and c is a scalar, then the properties below are true.
1. A + Omn = A
2. A + (−A) = Omn

3. If cA = Omn, then c = 0 or A = Omn.

reMArK
Property 2 can be described 
by saying that matrix −A is the 
additive inverse of A.
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54 Chapter 2 Matrices

PrOPerties Of MAtrix MultiPlicAtiOn

The next theorem extends the algebra of matrices to include some useful properties of 
matrix multiplication. The proof of Property 2 is below. The proofs of the remaining 
properties are left as an exercise. (See Exercise 66.)

PrOOf

To prove Property 2, show that the corresponding entries of matrices A(B + C) and 
AB + AC are equal. Assume A has size m × n, B has size n × p, and C has size n × p. 
Using the definition of matrix multiplication, the entry in the ith row and jth column 
of A(B + C) is ai1(b1j + c1j) + ai2(b2j + c2j) + .  .  . + ain(bnj + cnj). Moreover, the 
entry in the ith row and jth column of AB + AC is

(ai1b1j + ai2b2j + .  .  . + ainbnj) + (ai1c1j + ai2c2j + .  .  . + aincnj).

By distributing and regrouping, you can see that these two ijth entries are equal. So,

A(B + C) = AB + AC. 

The associative property of matrix multiplication permits you to write such matrix 
products as ABC without ambiguity, as demonstrated in Example 3.

 Matrix Multiplication is Associative

Find the matrix product ABC by grouping the factors first as (AB)C and then as A(BC). 
Show that you obtain the same result from both processes.

A = [1
2

−2
−1],  B = [1

3
0

−2
2
1],  C = [

−1
3
2

0
1
4]

sOlutiOn

Grouping the factors as (AB)C, you have

 (AB)C = ([1
2

−2
−1][

1
3

0
−2

2
1])[

−1
3
2

0
1
4]

 = [−5
−1

4
2

0
3][

−1
3
2

0
1
4] = [17

13
4

14].

Grouping the factors as A(BC), you obtain the same result.

 A(BC) = [1
2

−2
−1]([1

3
0

−2
2
1][

−1
3
2

0
1
4])

 = [1
2

−2
−1][

3
−7

8
2] = [17

13
4

14]  

theOreM 2.3  Properties of Matrix Multiplication

If A, B, and C are matrices (with sizes such that the matrix products are defined), 
and c is a scalar, then the properties below are true.
1. A(BC) = (AB)C Associative property of multiplication
2. A(B + C) = AB + AC Distributive property
3. (A + B)C = AC + BC Distributive property
4. c(AB) = (cA)B = A(cB)

reMArK
Note that no commutative 
property of matrix  
multiplication is listed in 
Theorem 2.3. The product 
AB may not be equal to the 
product BA, as illustrated in 
Example 4 on the next page.
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 2.2 Properties of Matrix Operations 55

The next example shows that even when both products AB and BA are defined, 
they may not be equal.

 noncommutativity of Matrix Multiplication

Show that AB and BA are not equal for the matrices

A = [1
2

3
−1]  and  B = [2

0
−1

2].

sOlutiOn

AB = [1
2

3
−1][

2
0

−1
2] = [2

4
5

−4], BA = [2
0

−1
2][

1
2

3
−1] = [0

4
7

−2]
AB ≠ BA 

Do not conclude from Example 4 that the matrix products AB and BA are never 
equal. Sometimes they are equal. For example, find AB and BA for the matrices below.

A = [1
1

2
1]  and  B = [−2

2
4

−2]
You will see that the two products are equal. The point is that although AB and BA are 
sometimes equal, AB and BA are usually not equal.

Another important quality of matrix algebra is that it does not have a general  
cancellation property for matrix multiplication. That is, when AC = BC, it is not  
necessarily true that A = B. Example 5 demonstrates this. (In the next section you will 
see that, for some special types of matrices, cancellation is valid.)

 An example in Which cancellation is not Valid

Show that AC = BC.

A = [1
0

3
1],  B = [2

2
4
3],  C = [ 1

−1
−2

2]
sOlutiOn

AC = [1
0

3
1][

1
−1

−2
2] = [−2

−1
4
2], BC = [2

2
4
3][

1
−1

−2
2] = [−2

−1
4
2]

AC = BC, even though A ≠ B. 

You will now look at a special type of square matrix that has 1’s on the main  
diagonal and 0’s elsewhere.

In = [
1
0

⋮
0

0
1

⋮
0

.  .  .

.  .  .

.  .  .

0
0

⋮
1
]

 n × n

For instance, for n = 1, 2, and 3,

I1 = [1],  I2 = [1
0

0
1],  I3 = [

1
0
0

0
1
0

0
0
1].

When the order of the matrix is understood to be n, you may denote In simply as I.
As stated in Theorem 2.4 on the next page, the matrix In serves as the identity  

for matrix multiplication; it is the identity matrix of order n. The proof of this theorem 
is left as an exercise. (See Exercise 67.)
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 Multiplication by an identity Matrix

a. [
3
4

−1

−2
0
1][1

0
0
1] = [

3
4

−1

−2
0
1] b. [

1
0
0

0
1
0

0
0
1][

−2
1
4] = [

−2
1
4]

For repeated multiplication of square matrices, use the same exponential notation 
used with real numbers. That is, A1 = A, A2 = AA, and for a positive integer k, Ak is

Ak = AA .  .  . A.
 
 k factors

It is convenient also to define A0 = In (where A is a square matrix of order n). These 
definitions allow you to establish the properties (1) AjAk = Aj+k and (2) (Aj)k = Ajk, 
where j and k are nonnegative integers.

 repeated Multiplication of a square Matrix

For the matrix A = [2
3

−1
0],

A3 = ([2
3

−1
0][

2
3

−1
0])[

2
3

−1
0] = [1

6
−2
−3][

2
3

−1
0] = [−4

3
−1
−6]. 

In Section 1.1, you saw that a system of linear equations has exactly one solution, 
infinitely many solutions, or no solution. You can use matrix algebra to prove this.

PrOOf

Represent the system by the matrix equation Ax = b. If the system has exactly one 
solution or no solution, then there is nothing to prove. So, assume that the system has 
at least two distinct solutions x1 and x2. If you show that this assumption implies that 
the system has infinitely many solutions, then the proof will be complete. When x1 and 
x2 are solutions, you have Ax1 = Ax2 = b and A(x1 − x2) = O. This implies that the 
(nonzero) column matrix xh = x1 − x2 is a solution of the homogeneous system of 
linear equations Ax = O. So, for any scalar c,

A(x1 + cxh ) = Ax1 + A(cxh ) = b + c(Axh ) = b + cO = b.

Then x1 + cxh is a solution of Ax = b for any scalar c. There are infinitely many  
possible values of c and each value produces a different solution, so the system has 
infinitely many solutions. 

theOreM 2.4  Properties of the identity Matrix

If A is a matrix of size m × n, then the properties below are true.
1. AIn = A  2. ImA = A

theOreM 2.5  number of solutions of a linear system

For a system of linear equations, precisely one of the statements below is true.
1. The system has exactly one solution.
2. The system has infinitely many solutions.
3. The system has no solution.

reMArK
Note that if A is a square matrix 
of order n, then AIn = InA = A.
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the trAnsPOse Of A MAtrix

The transpose of a matrix is formed by writing its rows as columns. For example, if 
A is the m × n matrix

A = [ 

a11

a21

a31

⋮
am1

a12

a22

a32

⋮
am2

a13

a23

a33

⋮
am3

.  .  . 

.  .  .

.  .  .

.  .  .

a1n

a2n

a3n

⋮
amn

]
 Size: m × n

then the transpose, denoted by AT, is the n × m matrix

AT = [ 

a11

a12

a13

⋮
a1n

a21

a22

a23

⋮
a2n

a31

a32

a33

⋮
a3n

.  .  .

.  .  .

.  .  .

.  .  .

am1

am2

am3

⋮
amn

 ].

 Size: n × m

 transposes of Matrices

Find the transpose of each matrix.

a. A = [2
8]   b. B = [

1
4
7

2
5
8

3
6
9]   c. C = [

1
2
0

2
1
0

0
0
1]   d. D = [

0
2
1

1
4

−1]
sOlutiOn

a. AT = [2 8] b. BT = [
1
2
3

4
5
6

7
8
9]

c. CT = [
1
2
0

2
1
0

0
0
1] d. DT = [0

1
2
4

1
−1] 

PrOOf

The transpose operation interchanges rows and columns, so Property 1 seems to make 
sense. To prove Property 1, let A be an m × n matrix. Observe that AT has size n × m 
and (AT )T has size m × n, the same as A. To show that (AT )T = A, you must show that 
the ijth entries are the same. Let aij be the ijth entry of A. Then aij is the jith entry of 
AT, and the ijth entry of (AT )T. This proves Property 1. The proofs of the remaining 
properties are left as an exercise. (See Exercise 68.) 

theOreM 2.6  Properties of transposes

If A and B are matrices (with sizes such that the matrix operations are defined) 
and c is a scalar, then the properties below are true.
1. (AT )T = A Transpose of a transpose
2. (A + B)T = AT + BT Transpose of a sum
3. (cA)T = c(AT ) Transpose of a scalar multiple
4. (AB)T = BTAT Transpose of a product

DISCOVERY
Let A = [1

3
2
4] and 

B = [3
1

5
−1].

1.  Find (AB)T, ATBT, 
and BTAT.

2.  Make a conjecture 
about the transpose 
of a product of two 
square matrices.

3.  Select two other 
square matrices to 
check your conjecture.

reMArK
Note that the square matrix in 
part (c) is equal to its transpose. 
Such a matrix is symmetric. 
A matrix A is symmetric when 
A = AT. From this definition 
it should be clear that a 
symmetric matrix must be 
square. Also, if A = [aij ] is 
a symmetric matrix, then 
aij = aji for all i ≠ j. 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



58 Chapter 2 Matrices

Properties 2 and 4 can be generalized to cover sums or products of any finite 
number of matrices. For instance, the transpose of the sum of three matrices is
(A + B + C)T = AT + BT + CT and the transpose of the product of three matrices is 
(ABC)T = CTBTAT.

 finding the transpose of a Product

See LarsonLinearAlgebra.com for an interactive version of this type of example.

Show that (AB)T and BTAT are equal.

A = [
2

−1
0

1
0

−2

−2
3
1]  and  B = [

3
2
3

1
−1

0]
sOlutiOn

AB = [
2

−1
0

1
0

−2

−2
3
1][

3
2
3

1
−1

0] = [
2
6

−1

1
−1

2]
(AB)T = [2

1
6

−1
−1

2]

BTAT = [3
1

2
−1

3
0][

2
1

−2

−1
0
3

0
−2

1] = [2
1

6
−1

−1
2]

(AB)T = BTAT 

 the Product of a Matrix and its transpose

For the matrix A = [
1
0

−2

3
−2
−1], find the product AAT and show that it is symmetric.

sOlutiOn

AAT = [
1
0

−2

3
−2
−1][1

3
0

−2
−2
−1] = [

10
−6
−5

−6
4
2

−5
2
5]

It follows that AAT = (AAT )T, so AAT is symmetric. 

Gunnar Pippel/Shutterstock.com

reMArK
Remember that you reverse the 
order of multiplication when 
forming the transpose of a 
product. That is, the transpose 
of AB is (AB)T = BTAT  and is 
usually not equal to ATBT.

reMArK
The property demonstrated in 
Example 10 is true in general. 
That is, for any matrix A, the 
matrix AAT  is symmetric. The 
matrix ATA is also symmetric. 
You are asked to prove these 
properties in Exercise 69.

lineAr
AlgebrA
APPlieD

Information retrieval systems such as Internet search engines 
make use of matrix theory and linear algebra to keep track of 
information. To illustrate, consider a simplified example. You 
could represent the occurrences of m available keywords in 
a database of n documents with A, an m × n matrix in which 
an entry is 1 when the keyword occurs in the document 
and 0 when it does not occur in the document. You could 
represent a search with the m × 1 column matrix x, in which 
a 1 entry represents a keyword you are searching and 0 
represents a keyword you are not searching. Then, the n × 1 
matrix product ATx would represent the number of keywords 
in your search that occur in each of the n documents. For 
a discussion on the PageRank algorithm that is used in 
Google’s search engine, see Section 2.5 (page 86).
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2.2 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

evaluating an expression In Exercises 1–6, evaluate 
the expression.

 1. [−5
3

0
−6] + [ 7

−2
1

−1] + [−10
14

−8
6]

 2. [ 6
−1

8
0] + [ 0

−3
5

−1] + [−11
2

−7
−1]

 3. 4([−4
0

0
2

1
3] − [2

3
1

−6
−2

0])
 4. 1

2([5 −2 4 0] + [14 6 −18 9])

 5. −3([0
7

−3
2] + [−6

8
3
1]) − 2[4

7
−4
−9]

 6. −[
4

−2
9

11
−1

3] +
1
6([

−5
3
0

−1
4

13] + [
7

−9
6

5
−1
−1])

Operations with Matrices In Exercises 7–12, perform 
the operations, given a = 3, b = −4,  and

A = [1
3

2
4], B = [ 0

−1
1
2], O = [0

0
0
0].

 7. aA + bB  8. A + B

 9. ab(B) 10. (a + b)B
11. (a − b)(A − B) 12. (ab)O

13. Solve for X in the equation, given

A = [
−4

1
−3

0
−5

2] and B = [
1

−2
4

2
1
4].

 (a) 3X + 2A = B (b) 2A − 5B = 3X

 (c) X − 3A + 2B = O (d) 6X − 4A − 3B = O

14. Solve for X in the equation, given

A = [
−2

1
3

−1
0

−4] and B = [
0
2

−4

3
0

−1].

 (a) X = 3A − 2B (b) 2X = 2A − B

 (c) 2X + 3A = B (d) 2A + 4B = −2X

Operations with Matrices In Exercises 15–22,  
perform the operations, given c = −2 and

A = [1
0

2
1

3
−1], B = [ 1

−1
3
2], C = [ 0

−1
1
0].

15. c(BA) 16. c(CB)
17. B(CA) 18. C(BC)
19. (B + C)A 20. B(C + O)
21. cB(C + C) 22. B(cA)

Associativity of Matrix Multiplication In Exercises 23 
and 24, find the matrix product ABC by (a) grouping  
the factors as (AB)C, and (b) grouping the factors as 
A(BC). Show that you obtain the same result from  
both processes.

23. A = [1
3

2
4], B = [0

2
1
3], C = [3

0
0
1]

24. A = [−4
1

2
−3], B = [ 1

−2
−5

3
0
3],

 C = [
−3

0
−1

4
1
1]

noncommutativity of Matrix Multiplication In 
Exercises 25 and 26, show that AB and BA are not equal 
for the given matrices.

25. A = [−2
0

1
3], B = [ 4

−1
0
2]

26. A = [
1
4

1
2

1
2

1
2
], B = [

1
2

1
2

1
2

1
4
]

equal Matrix Products In Exercises 27 and 28, show 
that AC = BC, even though A ≠ B.

27. A = [0
0

1
1], B = [1

1
0
0], C = [2

2
3
3]

28. A = [
1
0
3

2
5

−2

3
4
1], B = [

4
5

−1

−6
4
0

3
4
1],

 C = [
0
0
4

0
0

−2

0
0
3]

Zero Matrix Product In Exercises 29 and 30, show that 
AB = O, even though A ≠ O and B ≠ O.

29. A = [3
4

3
4] and B = [ 1

−1
−1

1]
30. A = [2

2
4
4] and B = [ 1

−1
2

−2
1]

Operations with Matrices In Exercises 31–36,  
perform the operations when

A = [1
0

2
−1].

31. IA 32. AI

33. A(I + A) 34. A + IA

35. A2 36. A4
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60 Chapter 2 Matrices

Writing In Exercises 37 and 38, explain why the  
formula is not valid for matrices. Illustrate your  
argument with examples.

37. (A + B)(A − B) = A2 − B2

38. (A + B)(A + B) = A2 + 2AB + B2

finding the transpose of a Matrix In Exercises 39 
and 40, find the transpose of the matrix.

39. D = [
1

−3
5

−2
4

−1] 40. D = [
6

−7
19

−7
0

23

19
23

−32]
finding the transpose of a Product of two Matrices  
In Exercises 41–44, verify that (AB)T = BTAT.

41. A = [−1
2

1
0

−2
1] and B = [

−3
1
1

0
2

−1]
42. A = [1

0
2

−2] and B = [−3
2

−1
1]

43. A = [
2
0

−2

1
1
1] and B = [2

0
3
4

1
−1]

44. A = [
2
0
4

1
1
0

−1
3
2] and B = [

1
2
0

0
1
1

−1
−2

3]
Multiplication with the transpose of a Matrix  
In Exercises 45–48, find (a) ATA and (b) AAT. Show that 
each of these products is symmetric.

45. A = [4
0

2
2

1
−1] 46. A = [

1
3
0

−1
4

−2]
47. A = [

0
8

−2
0

−4
4
3
0

3
0
5

−3

2
1
1
2
]

48. A = [
4
2

−1
14
6

−3
0

−2
−2

8

2
11
0

12
−5

0
−1

3
−9

4
]

finding a Power of a Matrix In Exercises 49–52, find 
the power of A for the matrix

A = [
1
0
0
0
0

0
−1

0
0
0

0
0
1
0
0

0
0
0

−1
0

0
0
0
0
1
].

49. A16  50. A17

51. A19  52. A20

finding an nth root of a Matrix In Exercises 53  
and 54, find the nth root of the matrix B. An nth root of 
a matrix B is a matrix A such that An = B.

53. B = [9
0

0
4], n = 2

54. B = [
8
0
0

0
−1

0

0
0

27], n = 3

true or false? In Exercises 55 and 56, determine 
whether each  statement is true or false. If a statement 
is true, give a reason or cite an appropriate statement 
from the text. If a statement is false, provide an example 
that shows the statement is not true in all cases or cite an 
appropriate statement from the text.

55. (a) Matrix addition is commutative.

 (b)  The transpose of the product of two matrices equals 
the product of their transposes; that is, (AB)T = ATBT.

 (c) For any matrix C the matrix CCT is symmetric.

56. (a) Matrix multiplication is commutative.

 (b)  If the matrices A, B, and C satisfy AB = AC, then 
B = C.

 (c)  The transpose of the sum of two matrices equals the 
sum of their transposes.

57. Consider the matrices below.

X = [
1
0
1], Y = [

1
1
0], Z = [

2
−1

3], W = [
1
1
1]

 (a) Find scalars a and b such that Z = aX + bY.

 (b)  Show that there do not exist scalars a and b such 
that W = aX + bY.

 (c)  Show that if aX + bY + cW = O, then a = 0, b = 0, 
and c = 0.

 (d)  Find scalars a, b, and c, not all equal to zero, such 
that aX + bY + cZ = O.

58. CAPSTONE In the matrix equation

 aX + A(bB) = b(AB + IB)
  X, A, B, and I are square matrices, and a and b are 

nonzero scalars. Justify each step in the solution 
below.

  aX + (Ab)B =  b(AB + B)
  aX + bAB =  bAB + bB

  aX + bAB + (−bAB) =  bAB + bB + (−bAB)
  aX =  bAB + bB + (−bAB)
  aX =  bAB + (−bAB) + bB

  aX =  bB

  X =  
b
a

B
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 2.2 Exercises 61

Polynomial function In Exercises 59 and 60, find f(A) 
using the definition below.

If f(x) = a0 + a1x + a2x2 + .  .  . + anxn is a polynomial 
function, then for a square matrix A,

f(A) = a0I + a1A + a2A
2 + .  .  . + anAn.

59. f(x) = 2 − 5x + x2, A = [2
4

0
5]

60. f(x) = −10 + 5x − 2x2 + x3, A = [
2
1

−1

1
0
1

−1
2
3]

61.  guided Proof Prove the associative property of 
matrix addition: A + (B + C) = (A + B) + C.

  Getting Started: To prove that A + (B + C) and 
(A + B) + C are equal, show that their corresponding 
entries are equal.

 (i)  Begin your proof by letting A, B, and C be m × n 
matrices.

 (ii) Observe that the ijth entry of B + C is bij + cij.

 (iii)  Furthermore, the ijth entry of A + (B + C) is  
aij + (bij + cij).

 (iv) Determine the ijth entry of (A + B) + C.

62.  Proof Prove the associative property of multiplication: 
(cd)A + c(dA).

63.  Proof Prove that the scalar 1 is the identity for scalar 
multiplication: 1A = A.

64.  Proof Prove the distributive property:

 (c + d)A = cA + dA.

65. Proof Prove Theorem 2.2.

66. Proof Complete the proof of Theorem 2.3.

 (a) Prove the associative property of multiplication:

  A(BC) = (AB)C.

 (b) Prove the distributive property:

  (A + B)C = AC + BC.

 (c) Prove the property:

  c(AB) = (cA)B = A(cB).
67. Proof Prove Theorem 2.4.

68. Proof Prove Properties 2, 3, and 4 of Theorem 2.6.

69.  guided Proof Prove that if A is an m × n matrix, 
then AAT and ATA are symmetric matrices.

  Getting Started: To prove that AAT is symmetric, you need  
to show that it is equal to its transpose, (AAT )T = AAT.

 (i)  Begin your proof with the left-hand matrix  
expression (AAT )T.

 (ii)  Use the properties of the transpose operation  
to show that (AAT )T can be simplified to equal the  
right-hand expression, AAT.

 (iii) Repeat this analysis for the product ATA.

70. Proof Let A and B be two n × n symmetric matrices.

 (a)  Give an example to show that the product AB is not 
necessarily symmetric.

 (b)  Prove that the product AB is symmetric if and only 
if AB = BA.

symmetric and skew-symmetric Matrices In 
Exercises 71–74, determine whether the matrix is  
symmetric, skew-symmetric, or neither. A square matrix 
is skew-symmetric when AT = −A.

71. A = [ 0
−2

2
0] 72. A = [2

1
1
3]

73. A = [
0
2
1

2
0
3

1
3
0] 74. A = [

0
−2

1

2
0
3

−1
−3

0]
75.  Proof Prove that the main diagonal of a skew- 

symmetric matrix consists entirely of zeros.

76.  Proof Prove that if A and B are n × n skew-symmetric 
matrices, then A + B is skew-symmetric.

77. Proof Let A be a square matrix of order n.

 (a) Show that 12(A + AT ) is symmetric.

 (b) Show that 12(A − AT ) is skew-symmetric.

 (c)  Prove that A can be written as the sum of a 
symmetric matrix B and a skew-symmetric matrix C,  
A = B + C.

 (d)  Write the matrix below as the sum of a symmetric 
matrix and a skew-symmetric matrix.

 A = [
2

−3
4

5
6
1

3
0
1]

78.  Proof Prove that if A is an n × n matrix, then A − AT 
is skew-symmetric.

79. Consider matrices of the form

A = [
0
0

⋮
0
0

a12

0

⋮
0
0

a13

a23

⋮
0
0

.  .  .

.  .  .

.  .  .

.  .  .

a1n

a2n

⋮
an−1, n

0
].

 (a)  Write a 2 × 2 matrix and a 3 × 3 matrix in the form 
of A.

 (b)  Use a graphing utility to raise each of the matrices 
to higher powers. Describe the result.

 (c)  Use the result of part (b) to make a conjecture  
about powers of A when A is a 4 × 4 matrix. Use a 
graphing utility to test your conjecture.

 (d)  Use the results of parts (b) and (c) to make a  
conjecture about powers of A when A is an  
n × n matrix.
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62 Chapter 2 Matrices

2.3 The Inverse of a Matrix

 Find the inverse of a matrix (if it exists).

 Use properties of inverse matrices.

 Use an inverse matrix to solve a system of linear equations.

Matrices and their inverses

Section 2.2 discussed some of the similarities between the algebra of real numbers and 
the algebra of matrices. This section further develops the algebra of matrices to include 
the solutions of matrix equations involving matrix multiplication. To begin, consider 
the real number equation ax = b. To solve this equation for x, multiply both sides of 
the equation by a−1 (provided a ≠ 0).

 ax = b

 (a−1a)x = a−1b

 (1)x = a−1b

 x = a−1b

The number a−1 is the multiplicative inverse of a because a−1a = 1 (the identity 
element for multiplication). The definition of the multiplicative inverse of a matrix is 
similar.

definition of the inverse of a Matrix

An n × n matrix A is invertible (or nonsingular) when there exists an n × n 
matrix B such that

AB = BA = In

where In is the identity matrix of order n. The matrix B is the (multiplicative)  
inverse of A. A matrix that does not have an inverse is noninvertible (or  
singular).

Nonsquare matrices do not have inverses. To see this, note that if A is of size 
m × n and B is of size n × m (where m ≠ n), then the products AB and BA are of  
different sizes and cannot be equal to each other. Not all square matrices have inverses. 
(See Example 4.) The next theorem, however, states that if a matrix does have an 
inverse, then that inverse is unique.

theoreM 2.7 Uniqueness of an inverse Matrix

If A is an invertible matrix, then its inverse is unique. The inverse of A is  
denoted by A−1.

proof

If A is invertible, then it has at least one inverse B such that

AB = I = BA.

Assume that A has another inverse C such that

AC = I = CA.

Demonstrate that B and C are equal, as shown on the next page.
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 AB = I

 C(AB) = CI

 (CA)B = C

 IB = C

 B = C

Consequently B = C, and it follows that the inverse of a matrix is unique. 

The inverse A−1 of an invertible matrix A is unique, so you can call it the inverse 
of A and write AA−1 = A−1A = I.

 the inverse of a Matrix

Show that B is the inverse of A, where

A = [−1
−1

2
1] and B = [1

1
−2
−1].

solUtion

Using the definition of an inverse matrix, show that B is the inverse of A by showing 
that AB = I = BA.

AB = [−1
−1

2
1][

1
1

−2
−1] = [−1 + 2

−1 + 1
2 − 2
2 − 1] = [1

0
0
1]

BA = [1
1

−2
−1][

−1
−1

2
1] = [−1 + 2

−1 + 1
2 − 2
2 − 1] = [1

0
0
1] 

The next example shows how to use a system of equations to find the inverse of 
a matrix.

 finding the inverse of a Matrix

Find the inverse of the matrix

A = [ 1
−1

4
−3].

solUtion

To find the inverse of A, solve the matrix equation AX = I for X.

 [ 1
−1

4
−3][

x11

x21

x12

x22
] = [1

0
0
1]

 [ x11 + 4x21

−x11 − 3x21

x12 + 4x22

−x12 − 3x22
] = [1

0
0
1]

Equating corresponding entries, you obtain two systems of linear equations.

x11

−x11

+
−

4x21

3x21

=
=

1
0
 

x12

−x12

+
−

4x22

3x22

=
=

0
1

Solving the first system, you find that x11 = −3 and x21 = 1. Similarly, solving the 
second system, you find that x12 = −4 and x22 = 1. So, the inverse of A is

X = A−1 = [−3
1

−4
1].

Use matrix multiplication to check this result. 

reMarK
Recall that it is not always true 
that AB = BA, even when both 
products are defined. If A and 
B are both square matrices and 
AB = In, however, then it can 
be shown that BA = In. (The 
proof of this is omitted.) So,  
in Example 1, you need only  
check that AB = I2.
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64 Chapter 2 Matrices

Generalizing the method used to solve Example 2 provides a convenient method 
for finding an inverse. Note that the two systems of linear equations

x11

−x11

+
−

4x21

3x21

=
=

1
0
 

x12

−x12

+
−

4x22

3x22

=
=

0
1

have the same coefficient matrix. Rather than solve the two systems represented by

[ 1
−1

4
−3

1
0] and [ 1

−1
4

−3
0
1]

separately, solve them simultaneously by adjoining the identity matrix to the coeficient 
matrix to obtain

[ 1
−1

4
−3

1
0

0
1].

By applying Gauss-Jordan elimination to this matrix, solve both systems with a single 
elimination process, as shown below.

[1
0

4
1

1
1

0
1] 

R2 + R1 → R2

[1
0

0
1

−3
1

−4
1] 

R1 + (−4)R2 → R1

Applying Gauss-Jordan elimination to the “doubly augmented” matrix [A I], you 
obtain the matrix [I A−1].

[ 1
−1

4
−3

1
0

0
1]  [1

0
0
1

−3
1

−4
1]

 A I I A−1

This procedure (or algorithm) works for an arbitrary n × n matrix. If A cannot be row 
reduced to In, then A is noninvertible (or singular). This procedure will be formally 
justified in the next section, after introducing the concept of an elementary matrix. For 
now, a summary of the algorithm is shown below.

finding the inverse of a Matrix by Gauss-Jordan elimination

Let A be a square matrix of order n.

1.  Write the n × 2n matrix that consists of A on the left and the n × n identity 
matrix I on the right to obtain [A I]. This process is called adjoining 
matrix I to matrix A.

2.  If possible, row reduce A to I using elementary row operations on the entire 
matrix [A I]. The result will be the matrix [I A−1]. If this is not 
possible, then A is noninvertible (or singular).

3. Check your work by multiplying to see that AA−1 = I = A−1A.

nostal6ie/Shutterstock.com

linear
alGeBra
applied

Recall Hooke’s law, which states that for relatively small 
deformations of an elastic object, the amount of deflection is 
directly proportional to the force causing the deformation. In 
a simply supported elastic beam subjected to multiple forces, 
deflection d is related to force w by the matrix equation

d = Fw

where F  is a flexibility matrix whose entries depend on the 
material of the beam. The inverse of the flexibility matrix, 
F −1, is the stiffness matrix. In Exercises 61 and 62, you are 
asked to find the stiffness matrix F−1 and the force matrix w 
for a given set of flexibility and deflection matrices.
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finding the inverse of a Matrix

See LarsonLinearAlgebra.com for an interactive version of this type of example.

Find the inverse of the matrix.

A = [
1
1

−6

−1
0
2

0
−1

3]
solUtion

Begin by adjoining the identity matrix to A to form the matrix

[A I] = [
1
1

−6

−1
0
2

0
−1

3

1
0
0

0
1
0

0
0
1].

Use elementary row operations to obtain the form 

[I A−1]

as shown below.

[
1
0

−6

−1
1
2

0
−1

3

1
−1

0

0
1
0

0
0
1] R2 + (−1)R1 → R2

[
1
0
0

−1
1

−4

0
−1

3

1
−1

6

0
1
0

0
0
1] 

R3 + (6)R1 → R3

[
1
0
0

−1
1
0

0
−1
−1

1
−1

2

0
1
4

0
0
1] 

R3 + (4)R2 → R3

[
1
0
0

−1
1
0

0
−1

1

1
−1
−2

0
1

−4

0
0

−1] 
(−1)R3 → R3

[
1
0
0

−1
1
0

0
0
1

1
−3
−2

0
−3
−4

0
−1
−1] R2 + R3 → R2

[
1
0
0

0
1
0

0
0
1

−2
−3
−2

−3
−3
−4

−1
−1
−1] 

R1 + R2 → R1

The matrix A is invertible, and its inverse is

A−1 = [
−2
−3
−2

−3
−3
−4

−1
−1
−1].

Confirm this by showing that 

AA−1 = I = A−1A. 

The process shown in Example 3 applies to any n × n matrix A and will find the 
inverse of A, if it exists. When A has no inverse, the process will also tell you that. The 
next example applies the process to a singular matrix (one that has no inverse).

technoloGy
Many graphing utilities and 
software programs can 
find the inverse of a square 
matrix. When you use a 
graphing utility, you may 
see something similar to the 
screen below for Example 3. 
The technology Guide at 
CengageBrain.com can help 
you use technology to find 
the inverse of a matrix.

A-1

[[1  -1 0 ]
[1  0  -1]
[-6 2  3 ]]

[[-2 -3 -1]
[-3 -3 -1]
[-2 -4 -1]]

A
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a singular Matrix

Show that the matrix has no inverse.

A = [
1
3

−2

2
−1

3

0
2

−2]
solUtion

Adjoin the identity matrix to A to form

[A I] = [
1
3

−2

2
−1

3

0
2

−2

1
0
0

0
1
0

0
0
1]

and apply Gauss-Jordan elimination to obtain

[
1
0
0

2
−7

0

0
2
0

1
−3
−1

0
1
1

0
0
1].

Note that the “A portion” of the matrix has a row of zeros. So it is not possible to  
rewrite the matrix [A I] in the form [I A−1]. This means that A has no inverse, or is 
noninvertible (or singular). 

Using Gauss-Jordan elimination to find the inverse of a matrix works well (even 
as a computer technique) for matrices of size 3 × 3 or greater. For 2 × 2 matrices, 
however, you can use a formula for the inverse rather than Gauss-Jordan elimination.

If A is a 2 × 2 matrix

A = [a
c

b
d]

then A is invertible if and only if ad − bc ≠ 0. Moreover, if ad − bc ≠ 0, then the 
inverse is

A−1 =
1

ad − bc[
d

−c
−b

a].

 finding inverses of 2 × 2 Matrices

If possible, find the inverse of each matrix.

a. A = [ 3
−2

−1
2] b. B = [ 3

−6
−1

2]
solUtion

a.  For the matrix A, apply the formula for the inverse of a 2 × 2 matrix to obtain 
ad − bc = (3)(2) − (−1)(−2) = 4. This quantity is not zero, so A is invertible. 
Form the inverse by interchanging the entries on the main diagonal, changing the 
signs of the other two entries, and multiplying by the scalar 14, as shown below.

A−1 = 1
4[2

2
1
3] = [

1
2
1
2

1
4
3
4
]

b.  For the matrix B, you have ad − bc = (3)(2) − (−1)(−6) = 0, which means that 
B is noninvertible.

reMarK
The denominator ad − bc is 
called the determinant of A. 
You will study determinants  
in detail in Chapter 3.
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properties of inverses

Theorem 2.8 below lists important properties of inverse matrices.

theoreM 2.8 properties of inverse Matrices

If A is an invertible matrix, k is a positive integer, and c is a nonzero scalar, then 
A−1, Ak, cA, and AT are invertible and the statements below are true.

1. (A−1)−1 = A 2. (Ak)−1 = A−1A−1 .  .  . A−1 = (A−1)k

 
 k factors

3. (cA)−1 =
1
c
A−1 4. (AT )−1 = (A−1)T

proof

The key to the proofs of Properties 1, 3, and 4 is the fact that the inverse of a matrix is 
unique (Theorem 2.7). That is, if BC = CB = I, then C is the inverse of B.

Property 1 states that the inverse of A−1 is A itself. To prove this, observe that 
A−1A = AA−1 = I, which means that A is the inverse of A−1. Thus, A = (A−1)−1.

Similarly, Property 3 states that 
1
c
A−1 is the inverse of (cA), c ≠ 0. To prove this, 

use the properties of scalar multiplication given in Theorems 2.1 and 2.3.

 (cA)(1
c
A−1) = (c

1
c)AA−1 = (1)I = I

 (1
c
A−1)(cA) = (1

c
c)A−1A = (1)I = I

So 
1
c
A−1 is the inverse of (cA), which implies that (cA)−1 =

1
c
A−1. Properties 2 and 4 

are left for you to prove. (See Exercises 63 and 64.) 

For nonsingular matrices, the exponential notation used for repeated multiplication 
of square matrices can be extended to include exponents that are negative integers. This 
may be done by defining A−k to be

 A−k = A−1A−1 .  .  .  A−1 = (A−1)k.
 
 k factors

Using this convention you can show that the properties AjAk = Aj+k and (Aj)k = Ajk are 
true for any integers j and k.

DISCOVERY
Let A = [1

1
2
3] and B = [2

1
−1
−1].

1. Find (AB )−1, A−1B−1, and B−1A−1.

2.  Make a conjecture about the inverse of a product of two nonsingular 
matrices. Then select two other nonsingular matrices of the same 
order and see whether your conjecture holds.

See LarsonLinearAlgebra.com for an interactive version of this type of exercise.
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68 Chapter 2 Matrices

 
the inverse of the square of a Matrix

Compute A−2 two different ways and show that the results are equal.

A = [1
2

1
4]

solUtion

One way to find A−2 is to find (A2)−1 by squaring the matrix A to obtain

A2 = [ 3
10

5
18]

and using the formula for the inverse of a 2 × 2 matrix to obtain

(A2)−1 = 1
4[ 18

−10
−5

3] = [
9
2

−5
2

−5
4
3
4
].

Another way to find A−2 is to find (A−1)2 by finding A−1

A−1 = 1
2[ 4

−2
−1

1] = [ 2

−1

−1
2
1
2
]

and then squaring this matrix to obtain

(A−1)2 = [
9
2

−5
2

−5
4
3
4
].

Note that both methods produce the same result. 

The next theorem gives a formula for computing the inverse of a product of  
two matrices.

theoreM 2.9 the inverse of a product

If A and B are invertible matrices of order n, then AB is invertible and

(AB)−1 = B−1A−1.

proof

 To show that  B−1A−1 is the inverse of AB, you need only show that it conforms to the 
definition of an inverse matrix. That is,

(AB)(B−1A−1) = A(BB−1)A−1 = A(I)A−1 = (AI)A−1 = AA−1 = I.

In a similar way, (B−1A−1)(AB) = I. So, AB is invertible and its inverse is B−1A−1.
 

Theorem 2.9 states that the inverse of a product of two invertible matrices is the 
product of their inverses taken in the reverse order. This can be generalized to include 
the product of more than two invertible matrices:

(A1A2A3 .  .  . An)−1 = An
−1 .  .  . A3

−1A2
−1A1

−1.

(See Example 4 in Appendix.)
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finding the inverse of a Matrix product

Find (AB)−1 for the matrices

A = [
1
1
1

3
4
3

3
3
4] and B = [

1
1
2

2
3
4

3
3
3]

using the fact that A−1 and B−1 are 

A−1 = [
7

−1
−1

−3
1
0

−3
0
1] and B−1 = [

1
−1

2
3

−2
1
0

1
0

−1
3
].

solUtion

Using Theorem 2.9 produces

 (AB)−1 = B−1A−1

 = [
1

−1
2
3

−2
1
0

1
0

−1
3
][

7
−1
−1

−3
1
0

−3
0
1]

 = [
8

−8
5

−5
4

−2

−2
3

−7
3
].  

One important property in the algebra of real numbers is the cancellation property. 
That is, if ac = bc (c ≠ 0), then a = b. Invertible matrices have similar cancellation 
properties.

theoreM 2.10 cancellation properties

If C is an invertible matrix, then the properties below are true.

1. If AC = BC, then A = B. Right cancellation property
2. If CA = CB, then A = B. Left cancellation property

proof

To prove Property 1, use the fact that C is invertible and write

 AC = BC

 (AC)C−1 = (BC)C−1

 A(CC−1) = B(CC−1)
 AI = BI

 A = B.

The second property can be proved in a similar way. (See Exercise 65.) 

Be sure to remember that Theorem 2.10 can be applied only when C is an  
invertible matrix. If C is not invertible, then cancellation is not usually valid. For 
instance, Example 5 in Section 2.2 gives an example of a matrix equation AC = BC  
in which A ≠ B, because C is not invertible in the example.

reMarK
Note that you reverse the order 
of multiplication to find the  
inverse of AB. That is, 
(AB)−1 = B−1A−1, and the  
inverse of AB is usually not 
equal to A−1B −1.
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systeMs of eqUations

For square systems of equations (those having the same number of equations as variables), 
you can use the theorem below to determine whether the system has a unique solution.

theoreM 2.11 systems of equations with Unique solutions

If A is an invertible matrix, then the system of linear equations Ax = b has a 
unique solution x = A−1b.

proof

The matrix A is nonsingular, so the steps shown below are valid.

 Ax = b
 A−1Ax = A−1b

 Ix = A−1b
 x = A−1b

This solution is unique because if x1 and x2 were two solutions, then you could apply 
the cancellation property to the equation Ax1 = b = Ax2 to conclude that x1 = x2.

One use of Theorem 2.11 is in solving several systems that all have the same  
coefficient matrix A. You could find the inverse matrix once and then solve each  
system by computing the product A−1b.

  solving systems of equations  
Using an inverse Matrix

Use an inverse matrix to solve each system.

a.
 
2x
3x
2x

+
+
+

3y
3y
4y

+
+
+

z
z
z

=
=
=

−1
1

−2
    

b.
 
2x
3x
2x

+
+
+

3y
3y
4y

+
+
+

z
z
z

=
=
=

4
8
5
    

c.
 
2x
3x
2x

+
+
+

3y
3y
4y

+
+
+

z
z
z

=
=
=

0
0
0

solUtion

First note that the coefficient matrix for each system is A = [
2
3
2

3
3
4

1
1
1].

Using Gauss-Jordan elimination, A−1 = [
−1
−1

6

1
0

−2

0
1

−3].

a. x = A−1b = [
−1
−1

6

1
0

−2

0
1

−3][
−1

1
−2] = [

2
−1
−2]  The solution is x = 2, 

y = −1, and z = −2.

b. x = A−1b = [
−1
−1

6

1
0

−2

0
1

−3][
4
8
5] = [

4
1

−7]   The solution is x = 4, 
y = 1, and z = −7.

c. x = A−1b = [
−1
−1

6

1
0

−2

0
1

−3][
0
0
0] = [

0
0
0]  The solution is trivial: 

x = 0, y = 0, and z = 0.
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2.3 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

the inverse of a Matrix In Exercises 1–6, show that B 
is the inverse of A.

 1. A = [2
5

1
3], B = [ 3

−5
−1

2]
 2. A = [ 1

−1
−1

2], B = [2
1

1
1]

 3. A = [1
3

2
4], B = [−2

3
2

1

−1
2
]

 4. A = [1
2

−1
3], B = [

3
5

−2
5

1
5
1
5
]

 5. A = [
−2

1
0

2
−1

1

3
0
4], B = 1

3[
−4
−4

1

−5
−8

2

3
3
0]

 6. A = [
  2

−1
0

−17
11
3

11
−7
−2], B = [

1
2
3

1
4
6

2
−3
−5]

finding the inverse of a Matrix In Exercises 7–30, 
find the inverse of the matrix (if it exists).

 7. [2
0

0
3]  8. [2

2
−2

2]
 9. [1

3
2
7] 10. [1

2
−2
−3]

11. [−7
4

33
−19] 12. [−1

3
1

−3]

13. [
1
3
3

1
5
6

1
4
5] 14. [

1
3

−1

2
7

−4

2
9

−7]
15. [

1
3
7

2
7

16

−1
−10
−21] 16. [

10
−5

3

5
1
2

−7
4

−2]
17. [

1
3

−2

1
1
0

2
0
3] 18. [

3
2

−4

2
2
4

5
4
0]

19. [
2
0
0

0
3
0

0
0
5] 20. [

−5
6

0

1

1
3
2
3

−1
2

11
6

2

−5
2

]
21. [

0.6
0.7

1

0
−1

0

−0.3
0.2

−0.9] 22. [
0.1

−0.3
0.5

0.2
0.2
0.5

0.3
0.2
0.5]

23. [
1
3
2

0
4
5

0
0
5] 24. [

1
3
2

0
0
5

0
0
5]

25. [
−8

0
0
0

0
1
0
0

0
0
0
0

0
0
0

−5
]  26. [

1
0
0
0

0
2
0
0

0
0

−2
0

0
0
0
3
]

27. [
1
3
2

−1

−2
−5
−5

4

−1
−2
−2

4

−2
−3
−5
11

]  28. [
4
2
0
3

8
5
2
6

−7
−4

1
−5

14
6

−7
10

]
29. [

1
0
1
0

0
2
0
2

3
0
3
0

0
4
0
4
]  30. [

1
0
0
0

3
2
0
0

−2
4

−2
0

0
6
1
5
]

finding the inverse of a 2 × 2 Matrix In Exercises 
31–36, use the formula on page 66 to find the inverse of 
the 2 × 2 matrix (if it exists).

31. [ 2
−1

3
5] 32. [ 1

−3
−2

2]
33. [−4

2
−6

3] 34. [−12
5

3
−2]

35. [ 
7
2
1
5

−3
4
4
5
] 36. [−1

4
5
3

9
4
8
9
]

finding the inverse of the square of a Matrix  
In Exercises 37–40, compute A−2 two different ways and 
show that the results are equal.

37. A = [ 0
−1

−2
3] 38. A = [ 2

−5
7
6]

39. A = [
−2

0
0

0
1
0

0
0
3] 40. A = [

6
−2

3

0
7
1

4
−1

2]
finding the inverses of products and transposes  
In Exercises 41–44, use the inverse matrices to find  
(a) (AB)−1, (b) (AT )−1, and (c) (2A)−1.

41. A−1 = [ 2
−7

5
6], B−1 = [7

2
−3

0]
42. A−1 = [−2

7
3
7

1
7
2
7
], B−1 = [

5
11
3

11

2
11

− 1
11
]

43. A−1 = [
1
3
2
1
4

−1
2
1
2

1

3
4

−2
1
2

], B−1 = [
2

−3
4
1
4

4

2
1
2

5
2
1
4

2
]

44. A−1 = [
1
0
4

−4
1
2

2
3
1], B−1 = [

6
−2

1

5
4
3

−3
−1

4]
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72 Chapter 2 Matrices

solving a system of equations Using an inverse 
In Exercises 45–48, use an inverse matrix to solve each 
system of linear equations.

45. (a) x
x

+
−

2y
2y

=
=

−1
3
 46. (a) 2x

2x
−
+

y
y

=
=

−3
7

 (b) x
x

+
−

2y
2y

=
=

10
−6

  (b) 2x
2x

−
+

y
y

=
=

−1
−3

47. (a) x1

x1

x1

+
+
−

2x2

2x2

2x2

+
−
+

x3

x3

x3

=
=
=

2
4

−2
 (b) x1

x1

x1

+
+
−

2x2

2x2

2x2

+
−
+

x3

x3

x3

=
=
=

1
3

−3
48. (a) x1

x1

x1

+
−
−

x2

2x2

x2

−
+
−

2x3

x3

x3

=
=
=

0
0

−1
 (b) x1

x1

x1

+
−
−

x2

2x2

x2

−
+
−

2x3

x3

x3

=
=
=

−1
2
0

solving a system of equations Using an inverse 
In Exercises 49–52, use a software program or a 
graphing utility to solve the system of linear equations 
using an inverse matrix.

49. x1

x1

2x1

x1

2x1

+
−
+
−
+

2x2

3x2

x2

x2

x2

−
+
+
+
−

x3

x3

x3

2x3

x3

+
+
−
+
+

3x4

2x4

3x4

x4

2x4

−
−
+
−
+

x5

x5

x5

x5

x5

=
=
=
=
=

−3
−3

6
2

−3

50. x1

2x1

x1

2x1

3x1

+
+
+
+
+

x2

x2

x2

x2

x2

−
+
−
+
+

x3

x3

x3

4x3

x3

+
+
+
+
−

3x4

x4

2x4

x4

2x4

−
+
−
−
+

x5

x5

x5

x5

x5

=
=
=
=
=

3
4
3

−1
5

51. 2x1

3x1

4x1

−5x1

x1

3x1

−
+
+
−
+
−

3x2

x2

x2

x2

x2

x2

+
−
−
+
−
+

x3

4x3

3x3

4x3

3x3

2x3

−
+
+
+
+
−

2x4

x4

4x4

2x4

4x4

3x4

+
−
−
−
−
+

x5

x5

x5

5x5

3x5

2x5

−
+
+
+
+
−

4x6

2x6

2x6

3x6

x6

6x6

=
=
=
=
=
=

20
−16
−12
−2

−15
25

52. 4x1

3x1

2x1

−x1

3x1

−2x1

−
+
−
+
−
+

2x2

6x2

3x2

4x2

x2

3x2

+
−
+
−
+
−

4x3

5x3

x3

4x3

5x3

4x3

+
−
+
−
+
−

2x4

6x4

3x4

6x4

2x4

6x4

−
+
−
+
−
+

5x5

3x5

x5

2x5

3x5

x5

−
+
−
+
−
+

x6

3x6

2x6

4x6

5x6

2x6

=
=
=
=
=
=

1
−11

0
−9

1
−12

Matrix equal to its own inverse In Exercises 53 and 
54, find x such that the matrix is equal to its own inverse.

53. A = [ 3
−2

x
−3] 54. A = [ 2

−1
x

−2]

singular Matrix In Exercises 55 and 56, find x such 
that the matrix is singular.

55. A = [ 4
−2

x
−3] 56. A = [ x

−3
2
4]

solving a Matrix equation In Exercises 57 and 58, 
find A.

57. (2A)−1 = [1
3

2
4] 58. (4A)−1 = [ 2

−3
4
2]

finding the inverse of a Matrix In Exercises 59 
and 60, show that the matrix is invertible and find its 
inverse.

59. A = [ sin θ
−cos θ

cos θ
sin θ] 60. A = [sec θ

tan θ
tan θ
sec θ]

Beam deflection In Exercises 61 and 62, forces w1, w2, 
and w3 (in pounds) act on a simply supported elastic 
beam, resulting in deflections d1, d2, and d3 (in inches) in 
the beam (see figure).

w1
w3

d1 d2
d3

w2

Use the matrix equation d = Fw, where

d = [d1

d2

d3
], w = [w1

w2

w3
]

and F is the 3 × 3 flexibility matrix for the beam, to find 
the stiffness matrix F−1 and the force matrix w. The 
entries of F are measured in inches per pound.

61. F = [
0.008
0.004
0.003

0.004
0.006
0.004

0.003
0.004
0.008], d = [

0.585
0.640
0.835]

62. F = [
0.017
0.010
0.008

0.010
0.012
0.010

0.008
0.010
0.017], d = [

0
0.15

0]
63.  proof Prove Property 2 of Theorem 2.8: If A is an 

invertible matrix and k is a positive integer, then

 (Ak)−1 = A−1A−1 .  .  . A−1 = (A−1)k

 
 k factors

64.   proof Prove Property 4 of Theorem 2.8: If A is an 
invertible matrix, then (AT)−1 = (A−1)T.

65.   proof Prove Property 2 of Theorem 2.10: If C is an 
invertible matrix such that CA = CB, then A = B.

66.   proof Prove that if A2 = A, then

 I − 2A = (I − 2A)−1.
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67.  Guided proof Prove that the inverse of a symmetric 
nonsingular matrix is symmetric.

  Getting Started: To prove that the inverse of A is  
symmetric, you need to show that (A−1)T = A−1.

 (i) Let A be a symmetric, nonsingular matrix.

 (ii) This means that AT = A and A−1 exists.

 (iii)  Use the properties of the transpose to show that 
(A−1)T is equal to A−1.

68.   proof Prove that if A, B, and C are square matrices 
and ABC = I, then B is invertible and B−1 = CA.

69.  proof Prove that if A is invertible and AB = O,  
then B = O.

70.  Guided proof Prove that if A2 = A, then either A is 
singular or A = I.

  Getting Started: You must show that either A is singular 
or A equals the identity matrix.

 (i)  Begin your proof by observing that A is either  
singular or nonsingular.

 (ii) If A is singular, then you are done.

 (iii)  If A is nonsingular, then use the inverse matrix A−1 
and the hypothesis A2 = A to show that A = I.

true or false? In Exercises 71 and 72, determine 
whether each statement is true or false. If a statement 
is true, give a reason or cite an appropriate statement 
from the text. If a statement is false, provide an example 
that shows the statement is not true in all cases or cite an 
appropriate statement from the text.

71. (a)  If the matrices A, B, and C satisfy BA = CA and A 
is invertible, then B = C.

 (b)  The inverse of the product of two matrices is the 
product of their inverses; that is, (AB)−1 = A−1B−1.

 (c)  If A can be row reduced to the identity matrix, then 
A is nonsingular.

72. (a)  The inverse of the inverse of a nonsingular matrix 
A, (A−1)−1, is equal to A itself.

 (b)  The matrix [a
c

b
d] is invertible when ab − dc ≠ 0.

 (c)  If A is a square matrix, then the system of linear 
equations Ax = b has a unique solution.

73.  Writing Is the sum of two invertible matrices  
invertible? Explain why or why not. Illustrate your  
conclusion with appropriate examples.

74. Writing Under what conditions will the diagonal matrix

A = [
a11

0

⋮
0

0
a22

⋮
0

0
0

⋮
0

.  .  .

.  .  .

.  .  .

0
0

⋮
ann

]
  be invertible? Assume that A is invertible and find  

its inverse.

75.  Use the result of Exercise 74 to find A−1 for each 
matrix.

 (a) A = [
−1

0
0

0
3
0

0
0
2]

 (b) A = [
1
2

0

0

0
1
3

0

0

0
1
4
]

76. Let A = [ 1
−2

2
1].

 (a)  Show that A2 − 2A + 5I = O, where I is the  
identity matrix of order 2.

 (b) Show that A−1 = 1
5(2I − A).

 (c)  Show that for any square matrix satisfying 
A2 − 2A + 5I = O, the inverse of A is

  A−1 = 1
5(2I − A).

77.  proof Let u be an n × 1 column matrix satisfying 
uTu = I1. The n × n matrix H = In − 2uuT is called a 
Householder matrix.

 (a) Prove that H is symmetric and nonsingular.

 (b) Let u = [
√2�2

√2�2

0
]. Show that uTu = I1 and find the

  Householder matrix H.

78.  proof Let A and B be n × n matrices. Prove that if the 
matrix I − AB is nonsingular, then so is I − BA.

79.  Let A, D, and P be n × n matrices satisfying AP = PD. 
Assume that P is nonsingular and solve this equation  
for A. Must it be true that A = D?

80.  Find an example of a singular 2 × 2 matrix satisfying 
A2 = A.

81.  Writing Explain how to determine whether the inverse 
of a matrix exists. If so, explain how to find the inverse.

82.  CAPSTONE As mentioned on page 66, if A 
is a 2 × 2 matrix

 A = [a
c

b
d]

  then A is invertible if and only if ad − bc ≠ 0. 
Verify that the inverse of A is

 A−1 =
1

ad − bc
 [ d

−c
−b

a].

83.  Writing Explain in your own words how to write a  
system of three linear equations in three variables as a 
matrix equation, Ax = b, as well as how to solve the 
system using an inverse matrix.
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2.4 Elementary Matrices

 Factor a matrix into a product of elementary matrices.

  Find and use an LU-factorization of a matrix to solve a system  
of linear equations.

ElEmEntary matricEs and ElEmEntary  
row opErations

Section 1.2 introduced the three elementary row operations for matrices listed below.

1. Interchange two rows.

2. Multiply a row by a nonzero constant.

3. Add a multiple of a row to another row.

In this section, you will see how to use matrix multiplication to perform these operations.

definition of an Elementary matrix

An n × n matrix is an elementary matrix when it can be obtained from the  
identity matrix In by a single elementary row operation.

  Elementary matrices and  
nonelementary matrices

Which of the matrices below are elementary? For those that are, describe the  
corresponding elementary row operation.

a. [
1
0
0

0
3
0

0
0
1] b. [1

0
0
1

0
0]

c. [
1
0
0

0
1
0

0
0
0] d. [

1
0
0

0
0
1

0
1
0]

e. [1
2

0
1] f. [

1
0
0

0
2
0

0
0

−1]
solution

a. This matrix is elementary. To obtain it from I3, multiply the second row of I3 by 3.

b. This matrix is not elementary because it is not square.

c.  This matrix is not elementary because to obtain it from I3, you must multiply the 
third row of I3 by 0 (row multiplication must be by a nonzero constant).

d.  This matrix is elementary. To obtain it from I3, interchange the second and third 
rows of I3.

e.  This matrix is elementary. To obtain it from I2, multiply the first row of I2 by 2 and 
add the result to the second row.

f.  This matrix is not elementary because it requires two elementary row operations to 
obtain from I3.

rEmarK
The identity matrix In is  
elementary by this definition 
because it can be obtained 
from itself by multiplying any 
one of its rows by 1.
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Elementary matrices are useful because they enable you to use matrix multiplication 
to perform elementary row operations, as demonstrated in Example 2.

  Elementary matrices and  
Elementary row operations

a.  In the matrix product below, E is the elementary matrix in which the first two rows 
of I3 are interchanged.

 E A

[
0
1
0

1
0
0

0
0
1][

0
1
3

2
−3

2

1
6

−1] = [
1
0
3

−3
2
2

6
1

−1]
 Note that the first two rows of A are interchanged when multiplying on the left by E.

b.  In the matrix product below, E is the elementary matrix in which the second row of 
I3 is multiplied by 12.

 E A

[
1
0
0

0
1
2

0

0
0
1][

1
0
0

0
2
1

−4
6
3

1
−4

1] = [
1
0
0

0
1
1

−4
3
3

1
−2

1]
 Note that the second row of A is multiplied by 12 when multiplying on the left by E.

c.  In the matrix product below, E is the elementary matrix in which 2 times the first 
row of I3 is added to the second row.

 E A

[
1
2
0

0
1
0

0
0
1][

1
−2

0

0
−2

4

−1
3
5] = [

1
0
0

0
−2

4

−1
1
5]

  Note that 2 times the first row of A is added to the second row when multiplying on 
the left by E. 

Notice from Example 2(b) that you can use matrix multiplication to perform 
elementary row operations on nonsquare matrices. If the size of A is n × p, then E 
must have order n.

In each of the three products in Example 2, you are able to perform elementary  
row operations by multiplying on the left by an elementary matrix. The next theorem,  
stated without proof, generalizes this property of elementary matrices.

thEorEm 2.12 representing Elementary row operations

Let E be the elementary matrix obtained by performing an elementary row  
operation on Im. If that same elementary row operation is performed on an m × n 
matrix A, then the resulting matrix is the product EA.

Most applications of elementary row operations require a sequence of operations. 
For instance, Gaussian elimination usually requires several elementary row operations  
to row reduce a matrix. This translates into multiplication on the left by several  
elementary matrices. The order of multiplication is important; the elementary matrix 
immediately to the left of A corresponds to the row operation performed first. Example 3 
demonstrates this process.

rEmarK
Be sure to remember in 
Theorem 2.12 to multiply A  
on the left by the elementary 
matrix E. This text does not 
consider right multiplication  
by elementary matrices, which 
involves column operations.
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using Elementary matrices

Find a sequence of elementary matrices that can be used to write the matrix A in  
row-echelon form.

A = [
0
1
2

1
−3
−6

3
0
2

5
2
0]

solution
  Elementary Row Elementary 
 Matrix Operation Matrix

 [
1
0
2

−3
1

−6

0
3
2

2
5
0] 

R1 ↔ R2

 E1 = [
0
1
0

1
0
0

0
0
1]

 [
1
0
0

−3
1
0

0
3
2

2
5

−4] R3 + (−2)R1 → R3 E2 = [
1
0

−2

0
1
0

0
0
1]

 [
1
0
0

−3
1
0

0
3
1

2
5

−2] 
(1

2)R3 → R3

 E3 = [
1
0
0

0
1
0

0
0
1
2
]

The three elementary matrices E1, E2, and E3 can be used to perform the same elimination.

 B = E3E2E1A = [
1
0
0

0
1
0

0
0
1
2
][

1
0

−2

0
1
0

0
0
1][

0
1
0

1
0
0

0
0
1][

0
1
2

1
−3
−6

3
0
2

5
2
0]

 = [
1
0
0

0
1
0

0
0
1
2
][

1
0

−2

0
1
0

0
0
1][

1
0
2

−3
1

−6

0
3
2

2
5
0]

 = [
1
0
0

0
1
0

0
0
1
2
][

1
0
0

−3
1
0

0
3
2

2
5

−4] = [
1
0
0

−3
1
0

0
3
1

2
5

−2] 

The two matrices in Example 3

A = [
0
1
2

1
−3
−6

3
0
2

5
2
0] and B = [

1
0
0

−3
1
0

0
3
1

2
5

−2]
are row-equivalent because you can obtain B by performing a sequence of row  
operations on A. That is, B = E3E2E1A.

The definition of row-equivalent matrices is restated below using elementary 
matrices.

definition of row Equivalence

Let A and B be m × n matrices. Matrix B is row-equivalent to A when there  
exists a finite number of elementary matrices E1, E2, .  .  . , Ek such that

B = EkEk−1 .  .  . E2E1A.

rEmarK
The procedure demonstrated  
in Example 3 is primarily of 
theoretical interest. In other 
words, this procedure is  
not a practical method for  
performing Gaussian  
elimination.
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You know from Section 2.3 that not all square matrices are invertible. Every  
elementary matrix, however, is invertible. Moreover, the inverse of an elementary 
matrix is itself an elementary matrix.

thEorEm 2.13 Elementary matrices are invertible

If E is an elementary matrix, then E−1 exists and is an elementary matrix.

The inverse of an elementary matrix E is the elementary matrix that converts E 
back to In. For instance, the inverses of the three elementary matrices in Example 3 are 
shown below.

 Elementary Matrix  Inverse Matrix

E1 = [
0
1
0

1
0
0

0
0
1] 

R1 ↔ R2 

E1
−1 = [

0
1
0

1
0
0

0
0
1] 

R1 ↔ R2

E2 = [
1
0

−2

0
1
0

0
0
1] 

R3 + (−2)R1 → R3

 E2
−1 = [

1
0
2

0
1
0

0
0
1] 

R3 + (2)R1 → R3

E3 = [
1
0
0

0
1
0

0
0
1
2
] 

(1
2)R3 → R3

 E3
−1 = [

1
0
0

0
1
0

0
0
2] 

(2)R3 → R3

Use matrix multiplication to check these results.
The next theorem states that every invertible matrix can be written as the product 

of elementary matrices.

thEorEm 2.14 a property of invertible matrices

A square matrix A is invertible if and only if it can be written as the product of 
elementary matrices.

proof

The phrase “if and only if” means that there are actually two parts to the theorem.  
On the one hand, you have to show that if A is invertible, then it can be written as the 
product of elementary matrices. Then you have to show that if A can be written as  
the product of elementary matrices, then A is invertible.

To prove the theorem in one direction, assume A is invertible. From Theorem 
2.11 you know that the system of linear equations represented by Ax = O has only the  
trivial solution. But this implies that the augmented matrix [A O] can be rewritten in 
the form [I O] (using elementary row operations corresponding to E1, E2, .  .  . , and 
Ek). So, Ek .  .  . E2E1A = I and it follows that A = E−1

1 E2
−1 .  .  . Ek

−1. A can be written 
as the product of elementary matrices.

To prove the theorem in the other direction, assume A is the product of elementary  
matrices. Every elementary matrix is invertible and the product of invertible matrices 
is invertible, so it follows that A is invertible. This completes the proof. 

Example 4 illustrates the first part of this proof.

rEmarK
E2

−1 is as shown because to 
convert E2 back to I3, in E2 you 
would add 2 times row 1 to 
row 3.
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  writing a matrix as the product  
of Elementary matrices

Find a sequence of elementary matrices whose product is the nonsingular matrix

A = [−1
3

−2
8].

solution

 Begin by finding a sequence of elementary row operations that can be used to rewrite A 
in reduced row-echelon form.

 Matrix Elementary Row Operation Elementary Matrix

 [1
3

2
8] 

(−1)R1 → R1 E1 = [−1
0

0
1]

 [1
0

2
2] 

R2 + (−3)R1 → R2

 E2 = [ 1
−3

0
1]

 [1
0

2
1] (1

2)R2 → R2

 E3 = [1
0

0
1
2
]

 [1
0

0
1] 

R1 + (−2)R2 → R1 E4 = [1
0

−2
1]

Now, from the matrix product E4E3E2E1A = I, solve for A to obtain  
A = E1

−1E2
−1E3

−1E4
−1. This implies that A is a product of elementary matrices.

 E1
−1 E2

−1 E3
−1 E4

−1

A = [−1
0

0
1][

1
3

0
1][

1
0

0
2][

1
0

2
1] = [−1

3
−2

8] 

In Section 2.3, you learned a process for finding the inverse of a nonsingular  
matrix A. There, you used Gauss-Jordan elimination to reduce the augmented matrix 
[A I] to [I A−1]. You can now use Theorem 2.14 to justify this procedure. 
Specifically, the proof of Theorem 2.14 allows you to write the product

I = Ek .  .  . E2E1A.

Multiplying both sides of this equation (on the right) by A−1, A−1 = Ek 
.  .  . E2E1I. In 

other words, a sequence of elementary matrices that reduces A to the identity I also 
reduces the identity I to A−1. Applying the corresponding sequence of elementary row 
operations to the matrices A and I simultaneously, you have

Ek .  .  . E2E1[A   I] = [I     A−1].

Of course, if A is singular, then no such sequence is possible.
The next theorem ties together some important relationships between n × n matrices 

and systems of linear equations. The essential parts of this theorem have already been 
proved (see Theorems 2.11 and 2.14); it is left to you to fill in the other parts of the proof.

thEorEm 2.15 Equivalent conditions

If A is an n × n matrix, then the statements below are equivalent.

1. A is invertible.
2. Ax = b has a unique solution for every n × 1 column matrix b.
3. Ax = O has only the trivial solution.
4. A is row-equivalent to In.
5. A can be written as the product of elementary matrices.
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thE LU-factoriZation

At the heart of the most efficient and modern algorithms for solving linear systems 
Ax = b is the LU-factorization, in which the square matrix A is expressed as a product, 
A = LU. In this product, the square matrix L is lower triangular, which means all the 
entries above the main diagonal are zero. The square matrix U is upper triangular,
which means all the entries below the main diagonal are zero.

[
a11

a21

a31

0
a22

a32

0
0

a33
] [

a11

0
0

a12

a22

0

a13

a23

a33
]

3 × 3 lower triangular matrix 3 × 3 upper triangular matrix

definition of LU-factorization

If the n × n matrix A can be written as the product of a lower triangular matrix 
L and an upper triangular matrix U, then A = LU is an LU-factorization of A.

 LU-factorizations

a. [1
1

2
0] = [1

1
0
1][

1
0

2
−2] = LU

 is an LU-factorization of the matrix 

 A = [1
1

2
0] 

 as the product of the lower triangular matrix 

 L = [1
1

0
1] 

 and the upper triangular matrix 

 U = [1
0

2
−2].

b. A = [
1
0
2

−3
1

−10

0
3
2] = [

1
0
2

0
1

−4

0
0
1][

1
0
0

−3
1
0

0
3

14] = LU

 is an LU-factorization of the matrix A. 

Goncharuk/Shutterstock.com

linEar
alGEBra
appliEd

Computational fluid dynamics (CFD) is the computer-based 
simulation of such real-life phenomena as fluid flow, heat 
transfer, and chemical reactions. Solving the conservation 
of energy, mass, and momentum equations involved in a 
CFD analysis can involve large systems of linear equations. 
So, for efficiency in computing, CFD analyses often use 
matrix partitioning and LU-factorization in their algorithms. 
Aerospace companies such as Boeing and Airbus have 
used CFD analysis in aircraft design. For instance, 
engineers at Boeing used CFD analysis to simulate 
airflow around a virtual model of their 787 aircraft to help 
produce a faster and more efficient design than those of 
earlier Boeing aircraft.
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If a square matrix A row reduces to an upper triangular matrix U using only 
the row operation of adding a multiple of one row to another row below it, then it is  
relatively easy to find an LU-factorization of the matrix A. All you need to do is keep 
track of the individual row operations, as shown in the next example.

 finding an LU-factorization of a matrix

Find an LU-factorization of the matrix A = [
1
0
2

−3
1

−10

0
3
2].

solution

 Begin by row reducing A to upper triangular form while keeping track of the elementary 
matrices used for each row operation.

 Matrix Elementary Row Operation Elementary Matrix

[
1
0
0

−3
1

−4

0
3
2] 

R3 + (−2)R1 → R3

 E1 = [
1
0

−2

0
1
0

0
0
1]

[
1
0
0

−3
1
0

0
3

14] 

R3 + (4)R2 → R3

 E2 = [
1
0
0

0
1
4

0
0
1]

The reduced matrix above is an upper triangular matrix U, and it follows that 
E2E1A = U, or A = E1

−1E2
−1U. The product of the lower triangular matrices

E1
−1E2

−1 = [
1
0
2

0
1
0

0
0
1][

1
0
0

0
1

−4

0
0
1] = [

1
0
2

0
1

−4

0
0
1]

is a lower triangular matrix L, so the factorization A = LU is complete. Notice that this 
is the same LU-factorization as in Example 5(b). 

If A row reduces to an upper triangular matrix U using only the row operation of 
adding a multiple of one row to another row below it, then A has an LU-factorization.

 Ek .  .  . E2E1A = U

 A = E1
−1E2

−1 .  .  . Ek
−1U = LU

Here L is the product of the inverses of the elementary matrices used in the row reduction.
Note that the multipliers in Example 6 are −2 and 4, which are the negatives of 

the corresponding entries in L. This is true in general. If U can be obtained from A 
using only the elementary row operation of adding a multiple of one row to another 
row below it, then the matrix L is lower triangular (with 1’s along the diagonal), and 
the negative of each multiplier is in the same position as that of the corresponding zero 
in U below the main diagonal.

Once you have obtained an LU-factorization of a matrix A, you can then solve the 
system of n linear equations in n variables Ax = b very efficiently in two steps.

1.  Write y = Ux and solve Ly = b for y.

2.  Solve Ux = y for x.

The column matrix x is the solution of the original system because Ax = LUx = Ly = b.
The second step is just back-substitution, because the matrix U is upper triangular. 

The first step is similar, except that it starts at the top of the matrix, because L is lower  
triangular. For this reason, the first step is often called forward substitution.
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  solving a linear system using
LU-factorization

See LarsonLinearAlgebra.com for an interactive version of this type of example.

Solve the linear system.

x1

2x1

−

−

3x2

x2

10x2

+
+

3x3

2x3

=
=
=

−5
−1

−20

solution

You obtained an LU-factorization of the coefficient matrix A in Example 6.

 A = [
1
0
2

−3
1

−10

0
3
2]

 = [
1
0
2

0
1

−4

0
0
1][

1
0
0

−3
1
0

0
3

14]
First, let y = Ux and solve the system Ly = b for y.

[
1
0
2

0
1

−4

0
0
1][

y1

y2

y3
] = [

−5
−1

−20]
Solve this system using forward substitution. Starting with the first equation, you have 
y1 = −5. The second equation gives y2 = −1. Finally, from the third equation,

 2y1 − 4y2 + y3 = −20

 y3 = −20 − 2y1 + 4y2

 y3 = −20 − 2(−5) + 4(−1)
 y3 = −14.

The solution of Ly = b is

y = [
−5
−1

−14].

Now solve the system Ux = y for x using back-substitution.

[
1
0
0

−3
1
0

0
3

14][
x1

x2

x3
] = [

−5
−1

−14]
From the bottom equation, x3 = −1. Then, the second equation gives 

x2 + 3(−1) = −1

or x2 = 2. Finally, the first equation gives 

x1 − 3(2) = −5

or x1 = 1. So, the solution of the original system of equations is 

x = [
1
2

−1]. 
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2.4 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

Elementary matrices In Exercises 1–8, determine 
whether the matrix is elementary. If it is, state the  
elementary row operation used to produce it.

 1. [1
0

0
2]  2. [1

0
0
0

0
1]

 3. [1
2

0
1]  4. [0

1
1
0]

 5. [
2
0
0

0
0
1

0
1
0]  6. [

1
0
2

0
1
0

0
0
1]

 7. [
1
0
0
0

0
1

−5
0

0
0
1
0

0
0
0
1
]

 8. [
1
2
0
0

0
1
0
0

0
0
1

−3

0
0
0
1
]

finding an Elementary matrix In Exercises 9–12,  
let A, B, and C be

A = [ 1
0

−1

2
1
2

−3
2
0], B = [−1

0
1

2
1
2

0
2

−3], and

C = [ 0
0

−1

4
1
2

−3
2
0].

 9. Find an elementary matrix E such that EA = B.

10. Find an elementary matrix E such that EA = C.

11. Find an elementary matrix E such that EB = A.

12. Find an elementary matrix E such that EC = A.

finding a sequence of Elementary matrices  
In Exercises 13–18, find a sequence of elementary matrices  
that can be used to write the matrix in row-echelon form.

13. [0
5

1
10

7
−5] 14. [

0
1
0

3
−1

0

−3
2
2

6
−2

2]
15. [

1
0

−6

−2
4

12

−1
8
8

0
−4

1] 16. [
1
2
3

3
5

−2

0
−1
−4]

17. [
−2

3
1

−1

1
−4
−2

2

0
0
2

−2
] 18. [

1
0
2
4

−6
−3

5
8

0
3

−1
−5

2
9
1
1
]

finding the inverse of an Elementary matrix  
In Exercises 19–24, find the inverse of the elementary 
matrix.

19. [0
1

1
0] 20. [5

0
0
1]

21. [
0
0
1

0
1
0

1
0
0] 22. [

1
0
0

0
1

−3

0
0
1]

23. [
k
0
0

0
1
0

0
0
1] 24. [

1
0
0
0

0
1
0
0

0
k
1
0

0
0
0
1
]

 k ≠ 0

finding the inverse of a matrix In Exercises 25–28, 
find the inverse of the matrix using elementary matrices.

25. [3
1

−2
0] 26. [2

1
0
1]

27. [
1
0
0

0
6
0

−1
−1

4] 28. [
1
0
0

0
2
0

−2
1
1]

finding a sequence of Elementary matrices  
In Exercises 29–36, find a sequence of elementary  
matrices whose product is the given nonsingular matrix.

29. [1
1

2
0] 30. [0

1
1
0]

31. [4
3

−1
−1] 32. [1

2
1
1]

33. [
1

−1
0

−2
3
0

0
0
1] 34. [

1
2
1

2
5
3

3
6
4]

35. [
1
0
0
0

0
−1

0
0

0
3
2
1

1
0
0

−1
] 36. [

4
0
0
1

0
1
0
0

0
0

−1
0

2
1
2

−2
]

37.  writing Is the product of two elementary matrices 
always elementary? Explain.

38.  writing E is the elementary matrix obtained by  
interchanging two rows in In. A is an n × n matrix.

 (a)  How will EA compare with A? (b) Find E2.

39.  Use elementary matrices to find the inverse of

A = [
1
0
a

0
1
b

0
0
c], c ≠ 0.
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40.  Use elementary matrices to find the inverse of

A = [
1
0
0

a
1
0

0
0
1] [

1
b
0

0
1
0

0
0
1] [

1
0
0

0
1
0

0
0
c],

c ≠ 0.

true or false? In Exercises 41 and 42, determine 
whether each statement is true or false. If a statement 
is true, give a reason or cite an appropriate statement 
from the text. If a statement is false, provide an example 
that shows the statement is not true in all cases or cite an 
appropriate statement from the text.

41. (a) The identity matrix is an elementary matrix.

 (b)  If E is an elementary matrix, then 2E is an  
elementary matrix.

 (c)  The inverse of an elementary matrix is an  
elementary matrix.

42. (a) The zero matrix is an elementary matrix.

 (b)  A square matrix is nonsingular when it can be  
written as the product of elementary matrices.

 (c)  Ax = O has only the trivial solution if and only  
if Ax = b has a unique solution for every n × 1  
column matrix b.

finding an LU-factorization of a matrix In  
Exercises 43–46, find an LU-factorization of the matrix.

43. [ 1
−2

0
1] 44. [−2

−6
1
4]

45. [
3
6

−3

0
1
1

1
1
0] 46. [

2
0

10

0
−3
12

0
1
3]

solving a linear system using LU-factorization  
In Exercises 47 and 48, use an LU-factorization of the 
coefficient matrix to solve the linear system.

47. 2x

−2x

+

+

y
y
y

−
+

=
z =
z =

1
2

−2

48. 2x1

−2x1

6x1

+
+

x2

2x2

−
+

x3

x3

−x4

=
=
=
=

4
−4
15

−1

idempotent matrices In Exercises 49–52, determine 
whether the matrix is idempotent. A square matrix A is 
idempotent when A2 = A.

49. [1
0

0
0] 50. [0

1
1
0]

51. [
0
0
1

0
1
0

1
0
0] 52. [

0
1
0

1
0
0

0
0
1]

53. Determine a and b such that A is idempotent.

A = [1
a

0
b]

54.  Guided proof Prove that A is idempotent if and only 
if AT is idempotent.

  Getting Started: The phrase “if and only if” means that 
you have to prove two statements:

 1. If A is idempotent, then AT is idempotent.

 2. If AT is idempotent, then A is idempotent.

 (i)  Begin your proof of the first statement by assuming 
that A is idempotent.

 (ii) This means that A2 = A.

 (iii)  Use the properties of the transpose to show that AT 
is idempotent.

 (iv)  Begin your proof of the second statement by  
assuming that AT is idempotent.

55.  proof Prove that if A is an n × n matrix that is  
idempotent and invertible, then A = In.

56.  proof Prove that if A and B are idempotent and 
AB = BA, then AB is idempotent.

57.  Guided proof Prove that if A is row-equivalent to B 
and B is row-equivalent to C, then A is row-equivalent 
to C.

  Getting Started: To prove that A is row-equivalent to C, 
you have to find elementary matrices E1, E2, .  .  . , Ek 
such that A = Ek .  .  . E2E1C.

 (i)  Begin by observing that A is row-equivalent to B 
and B is row-equivalent to C.

 (ii)  This means that there exist elementary matrices 
F1, F2, .  .  . , Fn and G1, G2, .  .  . , Gm such that 
A = Fn .  .  . F2F1B and B = Gm .  .  . G2G1C.

 (iii) Combine the matrix equations from step (ii).

58.  proof Prove that if A is row-equivalent to B, then B is 
row-equivalent to A.

59.  proof Let A be a nonsingular matrix. Prove that if B 
is row-equivalent to A, then B is also nonsingular.

60. CAPSTONE
(a) Explain how to find an elementary matrix.

(b)  Explain how to use elementary matrices to find an  
LU-factorization of a matrix.

(c)  Explain how to use LU-factorization to solve a 
linear system.

61.  Show that the matrix below does not have an  
LU-factorization.

A = [0
1

1
0]
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2.5 Markov Chains

  Use a stochastic matrix to find the nth state matrix of a Markov 
chain.

 Find the steady state matrix of a Markov chain.

 Find the steady state matrix of an absorbing Markov chain.

StochaStic MatriceS and Markov chainS

Many types of applications involve a finite set of states {S1, S2, .  .  . , Sn} of a  
population. For instance, residents of a city may live downtown or in the suburbs. 
Voters may vote Democrat, Republican, or Independent. Soft drink consumers may buy  
Coca-Cola, Pepsi Cola, or another brand.

The probability that a member of a population will change from the jth state to the 
ith state is represented by a number pij, where 0 ≤ pij ≤ 1. A probability of pij = 0 
means that the member is certain not to change from the jth state to the ith state,  
whereas a probability of pij = 1 means that the member is certain to change from the  
jth state to the ith state.

 From
 
 S1 S2 .  .  . Sn

P = [
p11

p21

⋮
pn1

p12

p22

⋮
pn2

 .  .  .
 .  .  .

 .  .  .

p1n

p2n

⋮
pnn

] 

S1

S2

⋮
Sn 
} To

P is called the matrix of transition probabilities because it gives the probabilities of 
each possible type of transition (or change) within the population.

At each transition, each member in a given state must either stay in that state or 
change to another state. For probabilities, this means that the sum of the entries in any 
column of P is 1. For instance, in the first column,

p11 + p21 + .  .  . + pn1 = 1.

Such a matrix is called stochastic (the term “stochastic” means “regarding  
conjecture”). That is, an n × n matrix P is a stochastic matrix when each entry is a 
number between 0 and 1 inclusive, and the sum of the entries in each column of P is 1.

  examples of Stochastic Matrices  
and nonstochastic Matrices

The matrices in parts (a), (b), and (c) are stochastic, but the matrices in parts (d), (e), 
and (f) are not.

a. [
1
0
0

0
1
0

0
0
1] b. [

1
4
1
4
1
4
1
4

1
5

13
60

1
3
1
4

1
3

0
1
3
1
3

1
2
1
6
1
6
1
6

] c. [0.9
0.1

0.8
0.2]

d. [
1
2

0

1
4
3
4
] e. [

1
2
1
3
1
4

1
4

0
3
4

1
4
2
3

0
] f. [

0.1
0.2
0.3
0.4

0.2
0.3
0.4
0.5

0.3
0.4
0.5
0.6

0.4
0.5
0.6
0.7

] 
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 2.5 Markov Chains 85

Example 2 describes the use of a stochastic matrix to measure consumer preferences.

 a consumer Preference Model

Two competing companies offer satellite television service to a city with 100,000 
households. Figure 2.1 shows the changes in satellite subscriptions each year.  
Company A now has 15,000 subscribers and Company B has 20,000 subscribers. How 
many subscribers will each company have in one year?

Solution

The matrix of transition probabilities is 

 From
 
 A B None

P = [
0.70
0.20
0.10

0.15
0.80
0.05

0.15
0.15
0.70] 

A
B
None  

To

and the initial state matrix representing the portions of the total population in the three 
states is 

X0 = [
0.1500
0.2000
0.6500]. 

A
B
None

To find the state matrix representing the portions of the population in the three states in 
one year, multiply P by X0 to obtain

X1 = PX0 = [
0.70
0.20
0.10

0.15
0.80
0.05

0.15
0.15
0.70][

0.1500
0.2000
0.6500] = [

0.2325
0.2875
0.4800].

In one year, Company A will have 0.2325(100,000) = 23,250 subscribers and 
Company B will have 0.2875(100,000) = 28,750 subscribers. 

A Markov chain, named after Russian mathematician Andrey Andreyevich Markov 
(1856–1922), is a sequence {Xn} of state matrices that are related by the equation 
Xk+1 = PXk, where P is a stochastic matrix. For instance, consider the consumer  
preference model discussed in Example 2. To find the state matrix representing the  
portions of the population in each state in three years, repeatedly multiply the initial 
state matrix X0 by the matrix of transition probabilities P.

X1 = PX0

X2 = PX1 = P ∙ PX0 = P2X0

X3 = PX2 = P ∙ P2X0 = P3X0

In general, the nth state matrix of a Markov chain is PnX0, as summarized below.

nth State Matrix of a Markov chain

The nth state matrix of a Markov chain for which P is the matrix of transition 
probabilities and X0 is the initial state matrix is

Xn = PnX0.

Example 3 uses the model discussed in Example 2 to demonstrate this process.

reMark
Always assume that the matrix 
P  of transition probabilities in a 
Markov chain remains constant 
between states.

Figure 2.1

Company
A

Satellite
Television

Company 
B

80%70%

70%

20%

15%
10%

5%

15%

15%

No
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86 Chapter 2 Matrices

a consumer Preference Model

Assuming the matrix of transition probabilities from Example 2 remains the same year 
after year, find the number of subscribers each satellite television company will have after 
(a) 3 years, (b) 5 years, (c) 10 years, and (d) 15 years.

Solution

a. To find the numbers of subscribers after 3 years, first find X3.

X3 = P3X0 ≈ [
0.3028
0.3904
0.3068]

A
B
None

After 3 years

  After 3 years, Company A will have about 0.3028(100,000) = 30,280 subscribers 
and Company B will have about 0.3904(100,000) = 39,040 subscribers.

b. To find the numbers of subscribers after 5 years, first find X5.

X5 = P5X0 ≈ [
0.3241
0.4381
0.2378]

A
B
None

After 5 years

  After 5 years, Company A will have about 0.3241(100,000) = 32,410 subscribers 
and Company B will have about 0.4381(100,000) = 43,810 subscribers.

c. To find the numbers of subscribers after 10 years, first find X10.

X10 = P10X0 ≈ [
0.3329
0.4715
0.1957]

A
B
None

After 10 years

  After 10 years, Company A will have about 0.3329(100,000) = 33,290 subscribers
and Company B will have about 0.4715(100,000) = 47,150 subscribers.

d. To find the numbers of subscribers after 15 years, first find X15.

X15 = P15X0 ≈ [
0.3333
0.4756
0.1911]

A
B
None

After 15 years

  After 15 years, Company A will have about 0.3333(100,000) = 33,330 subscribers 
and Company B will have about 0.4756(100,000) = 47,560 subscribers. 

d8nn/Shutterstock.com

linear
algebra
aPPlied

Google’s PageRank algorithm makes use of Markov chains. 
For a search set that contains n web pages, define an n × n 
matrix A such that aij = 1 when page j references page i 
and aij = 0 otherwise. Adjust A to account for web pages 
without external references, scale each column of A so 
that A is stochastic, and call this matrix B. Then define

M = pB +
1 − p

n
E

where p is the probability that a user follows a link on a 
page, 1 − p is the probability that the user goes to any 
page at random, and E is an n × n matrix whose entries 
are all 1. The Markov chain whose matrix of transition 
probabilities is M converges to a unique steady state 
matrix, which gives an estimate of page ranks. 
Section 10.3 discusses a method that can be used to 
estimate the steady state matrix.
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Steady State Matrix oF a Markov chain

In Example 3, notice that there is little difference between the numbers of subscribers 
after 10 years and after 15 years. If you continue the process shown in this example, 
then the state matrix Xn eventually reaches a steady state. That is, as long as the matrix 
P does not change, the matrix product PnX approaches a limit X. In Example 3, the limit 
is the steady state matrix

X = [
1
3

10
21
4

21

] ≈ [
0.3333
0.4762
0.1905]. 

A
B
None

 Steady state matrix

Check to see that PX = X, as shown below.

PX = [
0.70
0.20
0.10

0.15
0.80
0.05

0.15
0.15
0.70][

1
3

10
21
4

21

] = [
1
3

10
21
4

21

] = X

In Example 5, you will verify the above result by finding the steady state matrix X.
The matrix of transition probabilities P used above is an example of a regular 

stochastic matrix. A stochastic matrix P is regular when some power of P has only 
positive entries.

 
regular Stochastic Matrices

a. The stochastic matrix

P = [
0.70
0.20
0.10

0.15
0.80
0.05

0.15
0.15
0.70]

is regular because P1 has only positive entries.

b. The stochastic matrix

P = [0.50
0.50

1.00
0]

is regular because

P2 = [0.75
0.25

0.50
0.50]

has only positive entries.

c. The stochastic matrix

P = [
1
3
1
3
1
3

0

1

0

1

0

0
]

 is not regular because every power of P has two zeros in its second column.  
(Verify this.) 

When P is a regular stochastic matrix, the corresponding regular Markov chain

PX0, P
2X0, P

3X0, .  .  .

approaches a unique steady state matrix X. You are asked to prove this in Exercise 56.

reMark
For a regular stochastic matrix 
P, the sequence of successive 
powers

P, P 2, P 3, .  .  .

approaches a stable matrix P . 
 The entries in each column of 
P are equal to the corresponding 
entries in the steady state 
matrix X . You are asked to 
show this in Exercise 55.
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Finding a Steady State Matrix

See LarsonLinearAlgebra.com for an interactive version of this type of example.

Find the steady state matrix X of the Markov chain whose matrix of transition 
probabilities is the regular matrix

P = [
0.70
0.20
0.10

0.15
0.80
0.05

0.15
0.15
0.70].

Solution

Note that P is the matrix of transition probabilities that you found in Example 2 and 
whose steady state matrix X you verified at the top of page 87. To find X, begin by

letting X = [
x1

x2

x3
]. Then use the matrix equation PX = X to obtain

[
0.70
0.20
0.10

0.15
0.80
0.05

0.15
0.15
0.70][

x1

x2

x3
] = [

x1

x2

x3
]

or

0.70x1

0.20x1

0.10x1

+
+
+

0.15x2

0.80x2

0.05x2

+
+
+

0.15x3

0.15x3

0.70x3

=
=
=

x1

x2

x3.

Use these equations and the fact that x1 + x2 + x3 = 1 to write the system of linear 
equations below.

−0.30x1

0.20x1

0.10x1

x1

+
−
+
+

0.15x2

0.20x2

0.05x2

x2

+
+
−
+

0.15x3

0.15x3

0.30x3

x3

=
=
=
=

0
0
0
1.

Use any appropriate method to verify that the solution of this system is

x1 = 1
3, x2 = 10

21, and x3 = 4
21.

So the steady state matrix is

X = [
1
3

10
21
4

21

] ≈ [
0.3333
0.4762
0.1905].

Check that PX = X.

A summary for finding the steady state matrix X of a Markov chain is below.

Finding the Steady State Matrix of a Markov chain

1. Check to see that the matrix of transition probabilities P is a regular matrix.

2.  Solve the system of linear equations obtained from the matrix equation 
PX = X along with the equation x1 + x2 + .  .  . + xn = 1.

3. Check the solution found in Step 2 in the matrix equation PX = X.

reMark
Recall from Example 2 that the 
state matrix consists of entries 
that are portions of the whole. 
So it should make sense that

x1 + x2 + x3 = 1.

reMark
If P  is not regular, then the 
corresponding Markov chain 
may or may not have a unique 
steady state matrix.
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abSorbing Markov chainS

The Markov chain discussed in Examples 3 and 5 is regular. Other types of Markov 
chains can be used to model real-life situations. One of these includes absorbing 
Markov chains.

Consider a Markov chain with n different states {S1, S2, .  .  . , Sn}. The ith state Si 
is an absorbing state when, in the matrix of transition probabilities P, pii = 1. That 
is, the entry on the main diagonal of P is 1 and all other entries in the ith column of P 
are 0. An absorbing Markov chain has the two properties listed below.

1. The Markov chain has at least one absorbing state.

2.  It is possible for a member of the population to move from any nonabsorbing state 
to an absorbing state in a finite number of transitions.

 absorbing and nonabsorbing Markov chains

a. For the matrix

 From
 
 S1 S2 S3

P = [
0.4
   0
0.6

  0
  1
  0

   0
0.5
0.5] 

S1

S2

S3

  To

 the second state, represented by the second column, is absorbing. Moreover, the 
corresponding Markov chain is also absorbing because it is possible to move from 
S1 to S2 in two transitions, and it is possible to move from S3 to S2 in one transition. 
(See Figure 2.2.)

b. For the matrix

 From
 
 S1 S2 S3 S4

P = [
0.5
0.5

0
0

0 
1 
0 
0 

0
0

0.4
0.6

0
0

0.5
0.5

] 

S1

S2

S3

S4

  To

 the second state is absorbing. However, the corresponding Markov chain is not 
absorbing because there is no way to move from state S3 or state S4 to state S2. (See 
Figure 2.3.)

c. The matrix

 From
 
 S1 S2 S3 S4

P = [
0.5
0.2
0.1
0.2

0
1
0
0

0.2
0.3
0.4
0.1

0
0
0
1
] 

S1

S2

S3

S4

  To

 has two absorbing states: S2 and S4. Moreover, the corresponding Markov chain is 
also absorbing because it is possible to move from either of the nonabsorbing 
states, S1 or S3, to either of the absorbing states in one step. (See Figure 2.4.) 

reMark
In Exercise 50, you will  
investigate another type of 
Markov chain, one with  
reflecting boundaries.

Figure 2.2

S1

S2 S3

50%100%

40%

50%

60%

Figure 2.3

100%50%

50%

50%40%

60%

50%

S1 S2

S3 S4

Figure 2.4

100%

40%

20%
10%

50%

20%20%
100%
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S1
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S4
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It is possible for some absorbing Markov chains to have a unique steady state 
matrix. Other absorbing Markov chains have an infinite number of steady state  
matrices. Example 7 demonstrates.

  Finding Steady State Matrices of absorbing 
Markov chains

Find the steady state matrix X of each absorbing Markov chain with matrix of transition 
probabilities P.

a. P = [
0.4

0
0.6

0 
1 
0 

0
0.5
0.5] b. P = [

0.5
0.2
0.1
0.2

0
1
0
0

0.2
0.3
0.4
0.1

0
0
0
1
]

Solution

a. Use the matrix equation PX = X, or

[
0.4

0
0.6

0 
1 
0 

0
0.5
0.5][

x1

x2

x3
] = [

x1

x2

x3
]

along with the equation x1 + x2 + x3 = 1 to write the system of linear equations

−0.6x1

0.6x1

x1 + x2

−
+

0.5x3

0.5x3

x3

=
=
=
=

0
0
0
1.

 The solution of this system is x1 = 0, x2 = 1, and x3 = 0, so the steady state matrix 
is X = [0 1 0]T. Note that X coincides with the second column of the matrix of 
transition probabilities P.

b. Use the matrix equation PX = X, or

[
0.5
0.2
0.1
0.2

0 
1 
0 
0 

0.2
0.3
0.4
0.1

0  
0  
0  
1  
][

x1

x2

x3

x4

] = [
x1

x2

x3

x4

]
along with the equation x1 + x2 + x3 + x4 = 1 to write the system of linear equations

−0.5x1

0.2x1

0.1x1

0.2x1

x1 + x2

+
+
−
+
+

0.2x3

0.3x3

0.6x3

0.1x3

x3 + x4

=
=
=
=
=

0
0
0
0
1.

 The solution of this system is x1 = 0, x2 = 1 − t, x3 = 0, and x4 = t, where t is any real 
number such that 0 ≤ t ≤ 1. So, the steady state matrix is X = [0    1 − t    0    t]T.
The Markov chain has an infinite number of steady state matrices. 

In general, a regular Markov chain or an absorbing Markov chain with one 
absorbing state has a unique steady state matrix regardless of the initial state matrix. 
Further, an absorbing Markov chain with two or more absorbing states has an infinite 
number of steady state matrices, which depend on the initial state matrix. In Exercise 
49, you are asked to show this dependence for the Markov chain whose matrix of  
transition probabilities is given in Example 7(b).

reMark
Note that the steady state 
matrix for an absorbing 
Markov chain has nonzero 
values only in the absorbing 
state(s). These states absorb 
the population.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 2.5 Exercises 91

2.5 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

Stochastic Matrices In Exercises 1–6, determine 
whether the matrix is stochastic.

 1. [
2
5
3
5

−2
5
7
5
]  2. [1 + √2

−√2
1 − √2

√2]

 3. [
0.3
0.3
0.3

0.16
0.6
0.16

0.25
0.25
0.5 ]  4. [

0.3
0.1
0.8

0.5
0.2
0.1

0.2
0.7
0.1]

 5. [
1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1
]

 6. [
1
2
1
6
1
6
1
6

2
9
1
3
2
9
2
9

1
4
1
4
1
4
1
4

4
15
4

15
4

15
1
5

]
 7.  airplane allocation An airline has 30 airplanes in 

Los Angeles, 12 airplanes in St. Louis, and 8 airplanes 
in Dallas. During an eight-hour period, 20% of the 
planes in Los Angeles fly to St. Louis and 10% fly to  
Dallas. Of the planes in St. Louis, 25% fly to Los Angeles  
and 50% fly to Dallas. Of the planes in Dallas, 12.5% 
fly to Los Angeles and 50% fly to St. Louis. How many 
planes are in each city after 8 hours?

 8.  chemistry In a chemistry experiment, a test tube  
contains 10,000 molecules of a compound. Initially, 20% 
of the molecules are in a gas state, 60% are in a liquid  
state, and 20% are in a solid state. After introducing 
a catalyst, 40% of the gas molecules change to liquid, 
30% of the liquid molecules change to solid, and 50% 
of the solid molecules change to liquid. How many  
molecules are in each state after introducing the catalyst?

Finding State Matrices In Exercises 9 and 10, use 
the matrix of transition probabilities P and initial state 
matrix X0 to find the state matrices X1, X2, and X3.

 9. P = [
0.6
0.2
0.2

0.1
0.7
0.2

0.1
0.1
0.8], X0 = [

0.1
0.1
0.8]

10. P = [
0.6
0.2
0.2

0.2
0.7
0.1

0
0.1
0.9], X0 = [

1
3
1
3
1
3

]

11.  Purchase of a Product The market research  
department at a manufacturing plant determines that 
20% of the people who purchase the plant’s product 
during any month will not purchase it the next month. 
On the other hand, 30% of the people who do not  
purchase the product during any month will purchase 
it the next month. In a population of 1000 people,  
100 people purchased the product this month. How 
many will purchase the product (a) next month and (b) in  
2 months?

12.  Spread of a virus A medical researcher is studying 
the spread of a virus in a population of 1000 laboratory 
mice. During any week, there is an 80% probability 
that an infected mouse will overcome the virus, and 
during the same week there is a 10% probability that a  
noninfected mouse will become infected. Three  
hundred mice are currently infected with the virus. How 
many will be infected (a) next week and (b) in 3 weeks?

13.  television Watching A college dormitory houses 
200 students. Those who watch an hour or more of  
television on any day always watch for less than an hour 
the next day. One-fourth of those who watch television 
for less than an hour one day will watch an hour or more 
the next day. Half of the students watched television for 
an hour or more today. How many will watch television 
for an hour or more (a) tomorrow, (b) in 2 days, and (c) 
in 30 days?

14.  Sports activities Students in a gym class have a 
choice of swimming or playing basketball each day. 
Thirty percent of the students who swim one day will 
swim the next day. Sixty percent of the students who 
play basketball one day will play basketball the next 
day. Today, 100 students swam and 150 students played 
basketball. How many students will swim (a) tomorrow, 
(b) in two days, and (c) in four days?

15.  Smokers and nonsmokers In a population of 
10,000, there are 5000 nonsmokers, 2500 smokers of 
one pack or less per day, and 2500 smokers of more 
than one pack per day. During any month, there is a 
5% probability that a nonsmoker will begin smoking 
a pack or less per day, and a 2% probability that a  
nonsmoker will begin smoking more than a pack 
per day. For smokers who smoke a pack or less per 
day, there is a 10% probability of quitting and a 10%  
probability of increasing to more than a pack per day. 
For smokers who smoke more than a pack per day, there 
is a 5% probability of quitting and a 10% probability of 
dropping to a pack or less per day. How many people 
will be in each group (a) in 1 month, (b) in 2 months, 
and (c) in 1 year?
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16.  consumer Preference In a population of 100,000 
consumers, there are 20,000 users of Brand A, 30,000 
users of Brand B, and 50,000 who use neither brand. 
During any month, a Brand A user has a 20% probability  
of switching to Brand B and a 5% probability of not 
using either brand. A Brand B user has a 15% probability  
of switching to Brand A and a 10% probability of not 
using either brand. A nonuser has a 10% probability of 
purchasing Brand A and a 15% probability of purchasing  
Brand B. How many people will be in each group (a) in 
1 month, (b) in 2 months, and (c) in 18 months?

regular and Steady State Matrices In Exercises 
17–30, determine whether the stochastic matrix P is  
regular. Then find the steady state matrix X of the 
Markov chain with matrix of transition probabilities P.

17. P = [0.5
0.5

0.1
0.9] 18. P = [0

1
0.3
0.7]

19. P = [1
0

0.75
0.25] 20. P = [0.2

0.8
0
1]

21. P = [
1
2
1
2

1
3
2
3
] 22. P = [

2
5
3
5

7
10
3

10
]

23. P = [
2
5
1
5
2
5

3
10
1
5
1
2

1
2
1

10
2
5

] 24. P = [
2
9
1
3
4
9

1
4
1
2
1
4

1
3
1
3
1
3

]
25. P = [

1
0
0

0
1
0

0.15
0.10
0.75]

26. P = [
1
2
1
3
1
6

1
5
1
5
3
5

1

0

0
]

27. P = [
0.22
0.62
0.16

0.20
0.60
0.20

0.65
0.15
0.20]

28. P = [
0.1
0.7
0.2

0
1
0

0.3
0.3
0.4]

29. P = [
1
4
1
4
1
4
1
4

1
3
1
3
1
3

0

1
2
1
2

0

0

1

0

0

0
]

30. P = [
1
0
0
0

0
0
1
0

0
1
0
0

0
0
0
1
]

31. (a)  Find the steady state matrix X using the matrix of 
transition probabilities P in Exercise 9.

 (b)  Find the steady state matrix X using the matrix of 
transition probabilities P in Exercise 10.

32.  Find the steady state matrix for each stochastic matrix 
in Exercises 1–6.

33.  Fundraising A nonprofit organization collects  
contributions from members of a community. During 
any year, 40% of those who make contributions will 
not contribute the next year. On the other hand, 10% of 
those who do not make contributions will contribute the 
next year. Find and interpret the steady state matrix for 
this situation.

34.  grade distribution In a college class, 70% of the 
students who receive an “A” on one assignment will 
receive an “A” on the next assignment. On the other 
hand, 10% of the students who do not receive an “A” 
on one assignment will receive an “A” on the next  
assignment. Find and interpret the steady state matrix 
for this situation.

35.  Stock Sales and Purchases Eight hundred fifty 
stockholders invest in one of three stocks. During any 
month, 25% of Stock A holders move their investment 
to Stock B and 10% to Stock C. Of Stock B holders, 
10% move their investment to Stock A. Of Stock C 
holders, 15% move their investment to Stock A and 5% 
to Stock B. Find and interpret the steady state matrix for 
this situation.

36.  customer Preference Two movie theatres that 
show several different movies each night compete for 
the same audience. Of the people who attend Theatre A 
one night, 10% will attend again the next night and 5% 
will attend Theatre B the next night. Of the people who 
attend Theatre B one night, 8% will attend again the 
next night and 6% will attend Theatre A the next night. 
Of the people who attend neither theatre one night, 3% 
will attend Theatre A the next night and 4% will attend 
Theatre B the next night. Find and interpret the steady 
state matrix for this situation.

absorbing Markov chains In Exercises 37–40,  
determine whether the Markov chain with matrix of 
transition probabilities P is absorbing. Explain.

37. P = [
0.8
0.2

0

0.3
0.1
0.6

0
0
1] 38. P = [

1
0
0

0
0.3
0.7

0
0.9
0.1]

39. P = [
2
5
1
5
2
5

0

1
5
3
5
1
5

0

0

0

1

0

0
1
2

0
1
2

] 40. P = [
0.3
0.2
0.1
0.4

0.7
0.1
0.1
0.1

0.2
0.1
0.1
0.6

0
0
0
1
]
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Finding a Steady State Matrix In Exercises 41–44, 
find the steady state matrix X of the absorbing Markov 
chain with matrix of transition probabilities P.

41. P = [
0.6
0.2
0.2

0
1
0

0.3
0.6
0.1] 42. P = [

0.1
0.2
0.7

0
1
0

0
0
1]

43. P = [
1
0
0
0

0.2
0.3
0.1
0.4

0.1
0.6
0.2
0.1

0.3
0.3
0.2
0.2

]
44. P = [

0.7
0.1

0
0.2

0
1
0
0

0.2
0.5
0.2
0.1

0.1
0.6
0.2
0.1

]
45.  epidemic Model In a population of 200,000 people, 

40,000 are infected with a virus. After a person becomes 
infected and then recovers, the person is immune  
(cannot become infected again). Of the people who 
are infected, 5% will die each year and the others will 
recover. Of the people who have never been infected, 
25% will become infected each year. How many people 
will be infected in 4 years?

46.  chess tournament Two people are engaged in a 
chess tournament. Each starts with two playing chips. 
After each game, the loser must give the winner one 
chip. Player 2 is more advanced than Player 1 and has a 
70% chance of winning each game. The tournament is 
over when one player obtains all four chips. What is the 
probability that Player 1 will win the tournament?

47.  Explain how you can determine the steady state matrix 
X of an absorbing Markov chain by inspection.

48. CAPSTONE
(a)  Explain how to find the nth state matrix of a 

Markov chain.

(b)  Explain how to find the steady state matrix of a 
Markov chain.

(c) What is a regular Markov chain?

(d) What is an absorbing Markov chain?

(e)  How is an absorbing Markov chain different than a 
regular Markov chain?

49.  Consider the Markov chain whose matrix of transition 
probabilities P is given in Example 7(b). Show that the 
steady state matrix X depends on the initial state matrix 
X0 by finding X for each X0.

(a) X0 = [
0.25
0.25
0.25
0.25

] (b) X0 = [
0.25
0.25
0.40
0.10

]

50.  Markov chain with reflecting boundaries The 
figure below illustrates an example of a Markov chain 
with reflecting boundaries.

40%

60% 70%

30%

100%

100%

S2S1 S4S3

 (a)  Explain why it is appropriate to say that this type of 
Markov chain has reflecting boundaries.

 (b)  Use the figure to write the matrix of transition  
probabilities P for the Markov chain.

 (c)  Find P30 and P31. Find several other high even  
powers 2n and odd powers 2n + 1 of P. What do 
you observe?

 (d)  Find the steady state matrix X of the Markov chain. 
How are the entries in the columns of P2n and P2n+1 
related to the entries in X?

nonabsorbing Markov chain In Exercises 51 and 52, 
consider the matrix P in Example 6(b).

51.  Is it possible to find a steady state matrix X for the 
corresponding Markov chain? If so, find a steady state 
matrix. If not, explain why.

52.  Create a new matrix P′ by changing the second column 
of P to [0.6 0.4 0 0]T, resulting in a second 
state that is no longer absorbing. Determine whether 
each matrix X below can be a steady state matrix for the 
Markov chain corresponding to P′. Explain.

(a) X = [
6

11
5

11

0

0
]  (b) X = [

0

0
5

11
6

11

]
53.  Proof Prove that the product of two 2 × 2 stochastic 

matrices is stochastic.

54.  Proof Let P be a 2 × 2 stochastic matrix. Prove that 
there exists a 2 × 1 state matrix X with nonnegative 
entries such that PX = X.

55.  In Example 5, show that for the regular stochastic 
matrix P, the sequence of successive powers

P, P2, P3, .  .  .

  approaches a stable matrix P, where the entries in each 
column of P are equal to the corresponding entries in the  
steady state matrix X. Repeat for several other regular 
stochastic matrices P and corresponding steady state 
matrices X.

56.  Proof Prove that when P is a regular stochastic 
matrix, the corresponding regular Markov chain

PX0, P
2X0, P

3X0, .  .  .

 approaches a unique steady state matrix X.
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2.6 More applications of Matrix operations

 Use matrix multiplication to encode and decode messages.

Use matrix algebra to analyze an economic system (Leontief 
input-output model).

 Find the least squares regression line for a set of data.

CryptograpHy

A cryptogram is a message written according to a secret code (the Greek word kryptos
means “hidden”). One method of using matrix multiplication to encode and decode
messages is introduced below.

To begin, assign a number to each letter in the alphabet (with 0 assigned to a blank 
space), as shown.

0 = −−  9 = I  18 = R
1 = A  10 = J  19 = S
2 = B  11 = K  20 = T
3 = C 12 = L  21 = U
4 = D 13 = M 22 = V
5 = E  14 = N  23 = W
6 = F  15 = O  24 = X
7 = G 16 = P  25 = Y
8 = H  17 = Q  26 = Z

Then convert the message to numbers and partition it into uncoded row matrices, each 
having n entries, as demonstrated in Example 1.

 forming uncoded row Matrices

Write the uncoded row matrices of size 1 × 3 for the message MEET ME MONDAY.

solution

Partitioning the message (including blank spaces, but ignoring punctuation) into groups 
of three produces the uncoded row matrices shown below.

[13
M

5
E

5]
E

  
[20
T

0
   

13]
M

  
[5
E

0
   

13]
M

  
[15
O

14
N

4]
D

   
[1
A

25
Y

0]
    

Note the use of a blank space to fill out the last uncoded row matrix. 

linEar
algEBra
appliED

Information security is of the utmost importance when 
conducting business online. If a malicious party should 
receive confidential information such as passwords, 
personal identification numbers, credit card numbers, 
Social Security numbers, bank account details, or sensitive 
company information, then the effects can be damaging. To 
protect the confidentiality and integrity of such information, 
Internet security can include the use of data encryption, the 
process of encoding information so that the only way to 
decode it, apart from an “exhaustion attack,” is to use a key. 
Data encryption technology uses algorithms based on the 
material presented here, but on a much more sophisticated 
level, to prevent malicious parties from discovering the key.

Andrea Danti/Shutterstock.com
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To encode a message, choose an n × n invertible matrix A and multiply the 
uncoded row matrices (on the right) by A to obtain coded row matrices. Example 2  
demonstrates this process.

 Encoding a Message

Use the invertible matrix

A = [
1

−1
1

−2
1

−1

2
3

−4]
to encode the message MEET ME MONDAY.

solution

Obtain the coded row matrices by multiplying each of the uncoded row matrices found 
in Example 1 by the matrix A, as shown below.

 Uncoded Encoding Coded Row 
 Row Matrix Matrix A Matrix

 [13 5 5][
1

−1
1

−2
1

−1

2
3

−4] = [13 −26 21]

 [20 0 13][
1

−1
1

−2
1

−1

2
3

−4] = [33 −53 −12]

 [5 0 13][
1

−1
1

−2
1

−1

2
3

−4] = [18 −23 −42]

 [15 14 4][
1

−1
1

−2
1

−1

2
3

−4] = [5 −20 56]

 [1 25 0][
1

−1
1

−2
1

−1

2
3

−4] = [−24 23 77]

The sequence of coded row matrices is

[13 −26 21][33 −53 −12][18 −23 −42][5 −20 56][−24 23 77].

Finally, removing the matrix notation produces the cryptogram

13 −26 21 33 −53 −12 18 −23 −42 5 −20 56 −24 23 77. 

For those who do not know the encoding matrix A, decoding the cryptogram 
found in Example 2 is difficult. But for an authorized receiver who knows the  
encoding matrix A, decoding is relatively simple. The receiver just needs to multiply 
the coded row matrices by A−1 to retrieve the uncoded row matrices. In other words, if 

X = [x1  x2  .  .  .  xn]

is an uncoded 1 × n matrix, then Y = XA is the corresponding encoded matrix. The 
receiver of the encoded matrix can decode Y  by multiplying on the right by A−1 to 
obtain

YA−1 = (XA)A−1 = X.

Example 3 demonstrates this procedure.
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Decoding a Message

Use the inverse of the matrix

A = [
1

−1
1

−2
1

−1

2
3

−4]
to decode the cryptogram

13 −26 21 33 −53 −12 18 −23 −42 5 −20 56 −24 23 77.

solution

Begin by using Gauss-Jordan elimination to find A−1.

 [A      I] [I     A−1]

[
1

−1
1

−2
1

−1

2
3

−4

1
0
0

0
1
0

0
0
1]    [

1
0
0

0
1
0

0
0
1

−1
−1

0

−10
−6
−1

−8
−5
−1]

Now, to decode the message, partition the message into groups of three to form the 
coded row matrices

[13 −26 21][33 −53 −12][18 −23 −42][5 −20 56][−24 23 77].

To obtain the decoded row matrices, multiply each coded row matrix by A−1  
(on the right).

 Coded Row Decoding Decoded 
 Matrix Matrix A−1 Row Matrix

 [13 −26 21][
−1
−1

0

−10
−6
−1

−8
−5
−1] = [13 5 5]

 [33 −53 −12][
−1
−1

0

−10
−6
−1

−8
−5
−1] = [20 0 13]

 [18 −23 −42][
−1
−1

0

−10
−6
−1

−8
−5
−1] = [5 0 13]

 [5 −20 56][
−1
−1

0

−10
−6
−1

−8
−5
−1] = [15 14 4]

[−24 23 77][
−1
−1

0

−10
−6
−1

−8
−5
−1] = [1 25 0]

The sequence of decoded row matrices is

[13 5 5][20 0 13][5 0 13][15 14 4][1 25 0]

and the message is

13
M

5
E

5
E

20
T

0
   

13
M

5
E

0
   

13
M

15
O

14
N

4
D

1
A

25
Y

0.
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lEontiEf input-output MoDEls

In 1936, American economist Wassily W. Leontief (1906–1999) published a model  
concerning the input and output of an economic system. In 1973, Leontief received a 
Nobel prize for his work in economics. A brief discussion of Leontief’s model follows.

Consider an economic system that has n different industries I1, I2, .  .  . , In, each  
having input needs (raw materials, utilities, etc.) and an output (finished product). 
In producing each unit of output, an industry may use the outputs of other industries, 
including itself. For example, an electric utility uses outputs from other industries, such 
as coal and water, and also uses its own electricity.

Let dij be the amount of output the jth industry needs from the ith industry to produce 
one unit of output per year. The matrix of these coefficients is the input-output matrix.

 User (Output)
 
 I1 I2 .  .  . In

D = [
d11

d21

⋮
dn1

d12

d22

⋮
dn2

.  .  .

.  .  .

.  .  .

d1n

d2n

⋮
dnn

] 

I1

I2

⋮
In

  Supplier (Input)

To understand how to use this matrix, consider d12 = 0.4. This means that  
for Industry 2 to produce one unit of its product, it must use 0.4 unit of Industry 1’s 
product. If d33 = 0.2, then Industry 3 needs 0.2 unit of its own product to produce one 
unit. For this model to work, the values of dij must satisfy 0 ≤ dij ≤ 1 and the sum of 
the entries in any column must be less than or equal to 1.

 forming an input-output Matrix

Consider a simple economic system consisting of three industries: electricity, water, 
and coal. Production, or output, of one unit of electricity requires 0.5 unit of itself,  
0.25 unit of water, and 0.25 unit of coal. Production of one unit of water requires  
0.1 unit of electricity, 0.6 unit of itself, and 0 units of coal. Production of one unit of 
coal requires 0.2 unit of electricity, 0.15 unit of water, and 0.5 unit of itself. Find the 
input-output matrix for this system.

solution

The column entries show the amounts each industry requires from the others, and from 
itself, to produce one unit of output.

 User (Output)
 
 E W C

[
0.5  
0.25
0.25

0.1
0.6
0

0.2  
0.15
0.5  ] 

E
W
C

  Supplier (Input)

The row entries show the amounts each industry supplies to the others, and to itself, 
for that industry to produce one unit of output. For instance, the electricity industry  
supplies 0.5 unit to itself, 0.1 unit to water, and 0.2 unit to coal. 

To develop the Leontief input-output model further, let the total output of the 
ith industry be denoted by xi. If the economic system is closed (that is, the economic  
system sells its products only to industries within the system, as in the example above), 
then the total output of the ith industry is

xi = di1x1 + di2x2 + .  .  . + dinxn. Closed system
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On the other hand, if the industries within the system sell products to nonproducing 
groups (such as governments or charitable organizations) outside the system, then the 
system is open and the total output of the ith industry is

xi = di1x1 + di2x2 + .  .  . + dinxn + ei Open system

where ei represents the external demand for the ith industry’s product. The system of 
n linear equations below represents the collection of total outputs for an open system.

x1 =
x2 =

⋮  
xn =

d11x1 +
d21x1 +

dn1x1 +

d12x2 +
d22x2 +

dn2x2 +

.  .  . +

.  .  . +

.  .  . +

d1nxn +
d2nxn +

dnnxn +

e1

e2

en

The matrix form of this system is X = DX + E, where X is the output matrix and E
is the external demand matrix.

  solving for the output Matrix 
of an open system

See LarsonLinearAlgebra.com for an interactive version of this type of example.

An economic system composed of three industries has the input-output matrix shown 
below.
 User (Output)

 A B C

D = [
0.1
0.15
0.23

0.43
0
0.03

0
0.37
0.02] 

A
B
C

  Supplier (Input)

Find the output matrix X when the external demands are

E = [
20,000
30,000
25,000]. 

A
B
C

solution

Letting I be the identity matrix, write the equation X = DX + E as IX − DX = E,
which means that (I − D)X = E. Using the matrix D above produces

I − D = [−
−

0.9
0.15
0.23

     −

−

0.43
1
0.03

     
−

0
0.37
0.98].

Using Gauss-Jordan elimination,

(I − D)−1 ≈ [
1.25
0.30
0.30

0.55
1.14
0.16

0.21
0.43
1.08].

So, the output matrix is

X = (I − D)−1E ≈ [
1.25
0.30
0.30

0.55
1.14
0.16

0.21
0.43
1.08][

20,000
30,000
25,000] = [

46,750
50,950
37,800] 

A
B
C

To produce the given external demands, the outputs of the three industries must be 
approximately 46,750 units for industry A, 50,950 units for industry B, and 37,800 units 
for industry C. 

rEMarK
The economic systems 
described in Examples 4 and 5 
are, of course, simple ones. 
In the real world, an economic 
system would include many 
industries or industrial groups. 
A detailed analysis using 
the Leontief input-output 
model could easily require 
an input-output matrix greater 
than 100 × 100 in size. Clearly, 
this type of analysis would 
require the aid of a computer.
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lEast squarEs rEgrEssion analysis

You will now look at a procedure used in statistics to develop linear models. The next 
example demonstrates a visual method for approximating a line of best fit for a set of 
data points.

 a Visual straight-line approximation

Determine a line that appears to best fit the points (1, 1), (2, 2), (3, 4), (4, 4), and (5, 6).

solution

Plot the points, as shown in Figure 2.5. It appears that a good choice would be the line 
whose slope is 1 and whose y-intercept is 0.5. The equation of this line is

y = 0.5 + x. 

An examination of the line in Figure 2.5 reveals that you can improve the fit  
by rotating the line counterclockwise slightly, as shown in Figure 2.6. It seems clear  
that this line, whose equation is y = 1.2x, fits the points better than the original line.

y

x
1

1

2

3

4

5

6

2 3 4 5 6

(1, 1)

(2, 2)

(3, 4) (4, 4)

(5, 6)

y = 0.5 + x

 

x
1

1

2

3

4

5

6

2 3 4 5 6

(1, 1)

(2, 2)

(3, 4) (4, 4)

(5, 6)

y

y = 0.5 + x

y = 1.2x

figure 2.5 figure 2.6

One way of measuring how well a function y = f(x) fits a set of points

(x1, y1), (x2, y2), .  .  . , (xn, yn)

is to compute the differences between the values from the function f(xi) and the 
actual values yi. These values are shown in Figure 2.7. By squaring the differences and  
summing the results, you obtain a measure of error called the sum of squared error.  
The table shows the sums of squared errors for the two linear models.

Model 1: f(x) = 0.5 + x Model 2: f(x) = 1.2x

xi yi f(xi) [ yi − f(xi)]2 xi yi f(xi) [ yi − f(xi)]2

1 1 1.5 (−0.5)2 1 1 1.2 (−0.2)2

2 2 2.5 (−0.5)2 2 2 2.4 (−0.4)2

3 4 3.5 (+0.5)2 3 4 3.6 (+0.4)2

4 4 4.5 (−0.5)2 4 4 4.8 (−0.8)2

5 6 5.5 (+0.5)2 5 6 6.0 (0.0)2

  Sum 1.25   Sum 1.00

x
1

1

2

3

4

5

6

2 3 4 5 6

(1, 1)

(2, 2)

(3, 4) (4, 4)

(5, 6)Model 1

y

y = 0.5 + x

x
1

1

2

3

4

5

6

2 3 4 5 6

(1, 1)

(2, 2)

(3, 4) (4, 4)

(5, 6)Model 2

y

y = 1.2x

figure 2.7
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100 Chapter 2 Matrices

The sums of squared errors confirm that the second model fits the points better 
than the first model.

Of all possible linear models for a given set of points, the model that has the best 
fit is the one that minimizes the sum of squared error. This model is the least squares 
regression line, and the procedure for finding it is the method of least squares.

To find the least squares regression line for a set of points, begin by forming the 
system of linear equations

y1 = f(x1) + [y1 − f(x1)]
y2 = f(x2) + [y2 − f(x2)]
   ⋮
yn = f(xn) + [yn − f(xn)]

where the right-hand term

[yi − f(xi)]

of each equation is the error in the approximation of yi by f(xi). Then write this  
error as

ei = yi − f(xi)

and write the system of equations in the form

y1 = (a0 + a1x1) + e1

y2 = (a0 + a1x2) + e2

   ⋮
yn = (a0 + a1xn) + en.

Now, if you define Y, X, A, and E as

Y = [
y1

y2

⋮
yn

],  X = [
1
1

⋮
1

x1

x2

⋮
xn

],  A = [a0

a1
],  E = [

e1

e2

⋮
en

]
then the n linear equations may be replaced by the matrix equation

Y = XA + E.

Note that the matrix X has a column of 1’s (corresponding to a0) and a column  
containing the xi’s. This matrix equation can be used to determine the coefficients of 
the least squares regression line, as shown on the next page.

Definition of least squares regression line

For a set of points

(x1, y1), (x2, y2), .  .  . , (xn yn)

the least squares regression line is the linear function

f(x) = a0 + a1x

that minimizes the sum of squared error

[y1 − f(x1)]2 + [y2 − f(x2)]2 + .  .  . + [yn − f(xn)]2.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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Example 7 demonstrates the use of this procedure to find the least squares  
regression line for the set of points from Example 6.

 finding the least squares regression line

Find the least squares regression line for the points (1, 1), (2, 2), (3, 4), (4, 4),  
and (5, 6).

solution

The matrices X and Y  are

X = [
1
1
1
1
1

1
2
3
4
5
]  and  Y = [

1
2
4
4
6
].

This means that

XTX = [1
1

1
2

1
3

1
4

1
5][

1
1
1
1
1

1
2
3
4
5
] = [ 5

15
15
55]

and

XTY = [1
1

1
2

1
3

1
4

1
5][

1
2
4
4
6
] = [17

63].

Now, using (XTX)−1 to find the coefficient matrix A, you have

 A = (XTX)−1XTY

 = 1
50[ 55

−15
−15

5][
17
63]

 = [−0.2
1.2].

So, the least squares regression line is

y = −0.2 + 1.2x

as shown in Figure 2.8. The sum of squared error for this line is 0.8 (verify this), which 
means that this line fits the data better than either of the two experimental linear  
models determined earlier. 

Matrix form for linear regression

For the regression model Y = XA + E, the coefficients of the least squares  
regression line are given by the matrix equation

A = (XTX)−1XTY

and the sum of squared error is ETE.

x
1

1

2

3

4

5

6

2 3 4 5 6

(1, 1)

(2, 2)

(3, 4) (4, 4)

(5, 6)

Least Squares Regression Line

y

y = −0.2 + 1.2x

figure 2.8

rEMarK
You will learn more about this 
procedure in Section 5.4.
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102 Chapter 2 Matrices

2.6 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

Encoding a Message In Exercises 1 and 2, write the 
uncoded row matrices for the message. Then encode the 
message using the matrix A.

 1. Message: SELL CONSOLIDATED

 Row Matrix Size: 1 × 3

 Encoding Matrix: A = [
1
1

−6

−1
0
2

0
−1

3]
 2. Message: HELP IS COMING

 Row Matrix Size: 1 × 4

 Encoding Matrix: A = [
−2
−1
−1

3

3
1

−1
1

−1
1
1

−2

−1
1
2

−4
]

Decoding a Message In Exercises 3–6, use A−1 to 
decode the cryptogram.

 3. A = [1
3

2
5],

 11 21 64 112 25 50 29 53 23 46 40 75 55 92

 4. A = [2
3

3
4],

  85 120 6 8 10 15 84 117 42 56 90 125 60 80  
30 45 19 26

 5. A = [
1
3

−1

2
7

−4

2
9

−7],

  13 19 10 −1 −33 −77 3 −2 −14 4 1 −9 −5 
−25 −47 4 1 −9

 6. A = [
3
0
4

−4
2

−5

2
1
3],

  112 −140 83 19 −25 13 72 −76 61 95 −118  
71 20 21 38 35 −23 36 42 −48 32

 7.  Decoding a Message The cryptogram below was 
encoded with a 2 × 2 matrix. The last word of the  
message is __RON. What is the message?

  8 21 −15 −10 −13 −13 5 10 5 25 5 19 −1 6 
20 40 −18 −18 1 16

 8.  Decoding a Message The cryptogram below was 
encoded with a 2 × 2 matrix. The last word of the  
message is __SUE. What is the message?

  5 2 25 11 −2 −7 −15 −15 32 14 −8 −13 38 
19 −19 −19 37 16

 9.  Decoding a Message Use a software program or a 
graphing utility to decode the cryptogram.

A = [
1
2
0

0
−1

1

2
1
2]

  38 −14 29 56 −15 62 17 3 38 18 20 76 18 −5 
21 29 −7 32 32 9 77 36 −8 48 33 −5 51 41 
3 79 12 1 26 58 −22 49 63 −19 69 28 8 67 31 
−11 27 41 −18 28

10.  Decoding a Message A code breaker intercepted 
the encoded message below.

  45 −35 38 −30 18 −18 35 −30 81 −60 42 
−28 75 −55 2 −2 22 −21 15 −10

 Let the inverse of the encoding matrix be

 A−1 = [w
y

x
z].

 (a)  You know that [45 −35] A−1 = [10 15] and 
[38 −30] A−1 = [8 14]. Write and solve two 
systems of equations to find w, x, y, and z.

 (b) Decode the message.

11.  industrial system A system composed of two  
industries, coal and steel, has the input requirements 
below.

 (a)  To produce $1.00 worth of output, the coal industry 
requires $0.10 of its one product and $0.80 of steel.

 (b)  To produce $1.00 worth of output, the steel industry 
requires $0.10 of its own product and $0.20 of coal.

  Find D, the input-output matrix for this system. 
Then solve for the output matrix X in the equation 
X = DX + E, where E is the external demand matrix

 E = [10,000
20,000].

12.  industrial system An industrial system has two 
industries with the input requirements below.

 (a)  To produce $1.00 worth of output, Industry A 
requires $0.30 of its own product and $0.40 of 
Industry B’s product.

 (b)  To produce $1.00 worth of output, Industry B 
requires $0.20 of its own product and $0.40 of 
Industry A’s product.

  Find D, the input-output matrix for this system. 
Then solve for the output matrix X in the equation 
X = DX + E, where E is the external demand matrix

 E = [10,000
20,000].
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13.  solving for the output Matrix A small community 
includes a farmer, a baker, and a grocer and has the 
input-output matrix D and external demand matrix E 
below.

      Farmer Baker Grocer

 D = [
0.4
0.3
0.2

0.5
0.0
0.2

0.5
0.3
0.0] 

Farmer

Baker

Grocer

 and E = [
1000
1000
1000]

  Solve for the output matrix X in the equation 
X = DX + E.

14.  solving for the output Matrix An industrial system  
with three industries has the input-output matrix D and 
external demand matrix E below.

 D = [ 
0.2
0.4
0.0

0.4
0.2
0.2

0.4
0.2
0.2] and E = [

5000
2000
8000]

  Solve for the output matrix X in the equation 
X = DX + E.

least squares regression analysis In Exercises 
15–18, (a) sketch the line that appears to be the best fit 
for the given points, (b) find the least squares regression 
line, and (c) determine the sum of squared error.

15. 

21−1−2

2

1

3

4

x
(−2, 0) (0, 1)

(2, 3)

y  16. 

2

2 31−1

−2

3

4

x

(3, 2)

(1, 1)
(−1, 1)

(−3, 0)

y

17. 

x
1 2

1

−1

2

3

4
(0, 4)

(1, 3)

(1, 1) (2, 0)

y

3

 18. 

5 6

2

1

−2

3

4

x

(4, 2)
(5, 2)

(6, 2)

(4, 1)

(3, 1)
(1, 0)

(3, 0)(2, 0)
−1

y

finding the least squares regression line In 
Exercises 19–26, find the least squares regression line.

19. (0, 0), (1, 1), (2, 4)
20. (1, 0), (3, 3), (5, 6)
21. (−2, 0), (−1, 1), (0, 1), (1, 2)
22. (−4, −1), (−2, 0), (2, 4), (4, 5)
23. (−5, 1), (1, 3), (2, 3), (2, 5)
24. (−3, 4), (−1, 2), (1, 1), (3, 0)
25. (−5, 10), (−1, 8), (3, 6), (7, 4), (5, 5)
26. (0, 6), (4, 3), (5, 0), (8, −4), (10, −5)

27.  Demand A hardware retailer wants to know the 
demand for a rechargeable power drill as a function 
of price. The ordered pairs (25, 82), (30, 75), (35, 67), 
and (40, 55) represent the price x (in dollars) and the  
corresponding monthly sales y.

 (a) Find the least squares regression line for the data.

 (b) Estimate the demand when the price is $32.95.

28.  Wind Energy Consumption The table shows the 
wind energy consumptions y (in quadrillions of Btus, 
or British thermal units) in the United States from 
2009 through 2013. Find the least squares regression  
line for the data. Let t represent the year, with t = 9 
corresponding to 2009. Use the linear regression  
capabilities of a graphing utility to check your work. 
(Source: U.S. Energy Information Administration)

Year 2009 2010 2011 2012 2013

Consumption, y 0.72 0.92 1.17 1.34 1.60

29.  Wildlife A wildlife management team studied the 
reproduction rates of deer in three tracts of a wildlife 
preserve. The team recorded the number of females x in 
each tract and the percent of females y in each tract that 
had offspring the following year. The table shows the 
results.

Number, x 100 120 140

Percent, y 75 68 55

 (a)  Find the least squares regression line for the data.

 (b)  Use a graphing utility to graph the model and the 
data in the same viewing window.

 (c)  Use the model to create a table of estimated values for 
y. Compare the estimated values with the actual data.

 (d)  Use the model to estimate the percent of females 
that had offspring when there were 170 females.

 (e)  Use the model to estimate the number of females 
when 40% of the females had offspring.

30. CAPSTONE
(a)  Explain how to use matrix multiplication to encode 

and decode messages.

(b)  Explain how to use a Leontief input-output model 
to analyze an economic system.

(c)  Explain how to use matrices to find the least 
squares regression line for a set of data.

31.  Use your school’s library, the Internet, or some other 
reference source to derive the matrix form for linear 
regression given at the top of page 101.
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2 Review Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

Operations with Matrices In Exercises 1 –6, perform 
the matrix operations.

 1. [2
0

1
5

0
−4] − 3[5

0
3

−2
−6

5]

 2. −2[
1
5
6

2
−4

0] + 8[
7
1
1

1
2
4]

 3. [
1
5
6

2
−4

0] [6
4

−2
0

8
0]

 4. [1
2

5
−4] [6

4
−2

0
8
0]

 5. [
1
0
0

3
2
0

2
−4

3] [
4
0
0

−3
3
0

2
−1

2]
 6. [2

6
1
0] [ 4

−3
2
1] + [−2

0
4
4]

Solving a System of Linear Equations In Exercises 
7–10, write the system of linear equations in the form 
Ax = b. Then use Gaussian elimination to solve this 
matrix equation for x.

 7. 2x1

x1

+
+

x2

4x2

=
=

−8
−4

  8. 2x1

3x1

−
+

x2

2x2

=
=

5
−4

 9. −3x1

2x1

x1

−
+
−

x2

4x2

2x2

+
−
+

x3

5x3

3x3

=
=
=

0
−3

1

10.
 
2x1

2x1

4x1

+
−
−

3x2

3x2

2x2

+
−
+

x3

3x3

3x3

=
=
=

10
22

−2

Finding and Multiplying with a Transpose  
In Exercises 11–14, find AT, ATA, and AAT.

11. A = [1
0

2
1

−3
2] 12. A = [3

2
−1

0]

13. A = [
1
3

−1] 14. A = [1 −2 −3]

Finding the Inverse of a Matrix In Exercises 15–18, 
find the inverse of the matrix (if it exists).

15. [3
2

−1
−1] 16. [ 4

−8
−1

2]

17. [
2
2
4

3
−3

0

1
−3

3] 18. [
1
0
0

1
1
0

1
1
1]

Using the Inverse of a Matrix In Exercises 19–26, 
use an inverse matrix to solve each system of linear  
equations or matrix equation.

19. 5x1

−x1

+
+

4x2

x2

=
=

2
−22

 20. 3x1

x1

+
+

2x2

4x2

=
=

1
−3

21. −x1

2x1

5x1

+
+
+

x2

3x2

4x2

+
+
+

2x3

x3

2x3

=
=
=

1
−2

4

22. x1

x1

2x1

+
−
+

x2

x2

x2

+
+
+

2x3

x3

x3

=
=
=

0
−1

2

23. [ 5
−1

4
1] [x

y] = [−15
−6]

24. [2
3

−1
4] [x

y] = [ 5
−2]

25. [
0

−1
2

1
3

−2

−2
1
4] [

x1

x2

x3
] = [

−1
0
2]

26. [
0
3
4

1
2

−3

2
1

−4] [
x
y
z] = [

0
−1
−7]

Solving a Matrix Equation In Exercises 27 and 28, 
find A.

27. (3A)−1 = [4
2

−1
3] 28. (2A)−1 = [2

0
4
1]

Nonsingular Matrix In Exercises 29 and 30, find x 
such that the matrix A is nonsingular.

29. A = [3
x

1
−1] 30. A = [2

1
x
4]

Finding the Inverse of an Elementary Matrix  
In Exercises 31 and 32, find the inverse of the elementary 
matrix.

31. [
1
0
0

0
1
0

4
0
1] 32. [

1
0
0

0
6
0

0
0
1]

Finding a Sequence of Elementary Matrices  
In Exercises 33–36, find a sequence of elementary  
matrices whose product is the given nonsingular matrix.

33. [2
0

3
1] 34. [−3

1
13

−4]

35. [
1
0
0

0
1
0

1
−2

4] 36. [
3
0
1

0
2
0

6
0
3]
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37. Find two 2 × 2 matrices A such that A2 = I.

38. Find two 2 × 2 matrices A such that A2 = O.

39.  Find three 2 × 2 idempotent matrices. (Recall that a 
square matrix A is idempotent when A2 = A.)

40.  Find 2 × 2 matrices A and B such that AB = O but 
BA ≠ O.

41. Consider the matrices below.

 X = [
1
2
0
1
], Y = [

−1
0
3
2
], Z = [

3
4

−1
2
], W = [

3
2

−4
−1

]
 (a)  Find scalars a, b, and c such that W = aX + bY + cZ.

 (b)  Show that there do not exist scalars a and b such 
that Z = aX + bY.

 (c)  Show that if aX + bY + cZ = O, then a = b = c = 0.

42.  Proof Let A, B, and A + B be nonsingular matrices. 
Prove that A−1 + B−1 is nonsingular by showing that

(A−1 + B−1)−1 = A(A + B)−1B.

Finding an LU-Factorization of a Matrix In Exercises 
43–46, find an LU-factorization of the matrix.

43. [2
6

5
14] 44. [−3

12
1
0]

45. [
4
0

−16

1
3

11

0
−7

1] 46. [
1
1
1

1
2
2

1
2
3]

Solving a Linear System Using LU-Factorization  
In Exercises 47 and 48, use an LU-factorization of the 
coefficient matrix to solve the linear system.

47. x
2x
3x

+
+

y
2y

+
+
+

z
2z
6z

=
=
=

3
7
8

48. 2x1

2x1

+

+

x2

3x2

x2

+
+

+

x3

x3

−2x3

x3

−
−

−

x4

x4

2x4

=
=
=
=

7
−3

2
8

49.  Manufacturing A company manufactures tables and 
chairs at two locations. Matrix C gives the costs of 
manufacturing at each location.

 Location 1 Location 2

C = [  
627
135

681
150

  ] 
Tables
Chairs

 (a)  Labor accounts for 2
3 of the cost. Determine the 

matrix L that gives the labor costs at each location. 

 (b)  Find the matrix M that gives material costs at  
each location. (Assume there are only labor and 
material costs.)

50.  Manufacturing A corporation has four factories, 
each of which manufactures sport utility vehicles and 
pickup trucks. In the matrix

A = [100
40

90
20

70
60

30
60]

  aij represents the number of vehicles of type i produced 
at factory j in one day. Find the production levels when 
production increases by 10%.

51.  Gasoline Sales Matrix A shows the numbers of  
gallons of 87-octane, 89-octane, and 93-octane gasoline 
sold at a convenience store over a weekend.

 Octane
 
 87 89 93

A = [
580
560
860

840
420

1020

320
160
540] 

Friday
Saturday
Sunday

  Matrix B gives the selling prices (in dollars per gallon)  
and the profits (in dollars per gallon) for the three 
grades of gasoline.

    Selling Price     Profit

B = [
b11

b21

b31

0.05
0.08
0.10] 

87
89
93

  Octane

 (a)  Find AB and interpret the result.

 (b)  Find the convenience store’s profit from gasoline 
sales for the weekend.

52.  Final Grades Two midterms and a final exam  
determine the final grade in a course at a liberal arts 
college. The matrices below show the grades for six 
students and two possible grading systems.

 Midterm  Midterm  Final 
 1 2 Exam

 A = [
78
84
92
88
74
96

82
88
93
86
78
95

80
85
90
90
80
98
] 

Student 1
Student 2
Student 3
Student 4
Student 5
Student 6

 Grading  Grading 
 System 1 System 2

 B = [
0.25
0.25
0.50

0.20
0.20
0.60]  

Midterm 1
Midterm 2
Final Exam

 (a)  Describe the grading systems in matrix B.

 (b)  Compute the numerical grades for the six students 
(to the nearest whole number) using the two grading 
systems.

 (c)  How many students received an “A” in each  
grading system? (Assume 90 or greater is an “A.”)
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Polynomial Function In Exercises 53 and 54, find f(A) 
using the definition below.

If f(x) = a0 + a1x + a2x2 + .  .  . + anxn is a polynomial 
function, then for a square matrix A,

f(A) = a0I + a1A + a2A2 + .  .  . + anAn.

53. f(x) = 6 − 7x + x2, A = [5
1

4
2]

54. f(x) = 2 − 3x + x3, A = [ 2
−1

1
0]

Stochastic Matrices In Exercises 55–58, determine 
whether the matrix is stochastic.

55. [
12
25
13
25

2
25
23
25
] 56. [0.3

0
0.7

1]

57. [
1
0
0

0
0.5
0.1

0
0.1
0.5] 58. [

0.3
0.2
0.5

0.4
0.4
0.2

0.1
0.5
0.4]

Finding State Matrices In Exercises 59–62, use the 
matrix of transition probabilities P and initial state 
matrix X0 to find the state matrices X1, X2, and X3.

59. P = [
1
2
1
2

1
4
3
4
], X0 = [

2
3
1
3
]

60. P = [0.23
0.77

0.45
0.55], X0 = [0.65

0.35]

61. P = [
0.50
0.25
0.25

0.25
0.70
0.05

0
0.15
0.85], X0 = [

0.5
0.5

0]
62. P = [

1
3
1
3
1
3

1
3

0
2
3

2
3
1
3

0
], X0 = [

2
9
4
9
1
3

]
63.  Caribbean Cruise Three hundred people go on a 

Caribbean cruise. When the ship stops at a port, each 
person has a choice of going on shore or not. Seventy 
percent of the people who go on shore one day will not 
go on shore the next day. Sixty percent of the people 
who do not go on shore one day will go on shore the 
next day. Today, 200 people go on shore. How many 
people will go on shore (a) tomorrow and (b) the day 
after tomorrow?

64.  Population Migration A country has three regions. 
Each year, 10% of the residents of Region 1 move  
to Region 2 and 5% move to Region 3, 15% of the  
residents of Region 2 move to Region 1 and 5% move 
to Region 3, and 10% of the residents of Region 3 move 
to Region 1 and 10% move to Region 2. This year, each 
region has a population of 100,000. Find the populations  
of each region (a) in 1 year and (b) in 3 years.

Regular and Steady State Matrix In Exercises 65–68, 
determine whether the stochastic matrix P is regular. 
Then find the steady state matrix X of the Markov chain 
with matrix of transition probabilities P.

65. P = [0.8
0.2

0.5
0.5] 66. P = [1

0

4
7
3
7
]

67. P = [
1
3
1
6
1
2

1
6

0
5
6

0

0

1
] 68. P = [

0
0.5
0.5

0
0.9
0.1

0.2
0

0.8]
69.  Sales Promotion As a promotional feature, a store 

conducts a weekly raffle. During any week, 40% of the 
customers who turn in one or more tickets do not bother 
to turn in tickets the following week. On the other hand, 
30% of the customers who do not turn in tickets will 
turn in one or more tickets the following week. Find and 
interpret the steady matrix for this situation.

70.  Classified Documents A courtroom has 2000  
documents, of which 1250 are classified. Each week, 
10% of the classified documents become declassified 
and 20% are shredded. Also, 20% of the unclassified 
documents become classified and 5% are shredded. 
Find and interpret the steady state matrix for this  
situation.

Absorbing Markov Chains In Exercises 71 and 72, 
determine whether the Markov chain with matrix of 
transition probabilities P is absorbing. Explain.

71. P = [
0

0.7
0.3

0.4
0.3
0.3

0.1
0.4
0.5] 72. P = [

1
0
0

0
0.30
0.70

0.38
0

0.62]
True or False? In Exercises 73–76, determine whether 
each statement is true or false. If a statement is true, give 
a reason or cite an appropriate statement from the text. 
If a statement is false, provide an example that shows the 
statement is not true in all cases or cite an appropriate 
statement from the text.

73. (a) Addition of matrices is not commutative.

 (b)  The transpose of the sum of matrices is equal to the 
sum of the transposes of the matrices.

74. (a)  If an n × n matrix A is not symmetric, then ATA is 
not symmetric.

 (b)  If A and B are nonsingular n × n matrices, then 
A + B is a nonsingular matrix.

75. (a) A stochastic matrix can have negative entries.

 (b)  A Markov chain that is not regular can have a 
unique steady state matrix.

76. (a) A regular stochastic matrix can have entries of 0.

 (b)  The steady state matrix of an absorbing Markov 
chain always depends on the initial state matrix.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 Review Exercises 107

Encoding a Message In Exercises 77 and 78, write the 
uncoded row matrices for the message. Then encode the 
message using the matrix A.

77. Message: ONE IF BY LAND

 Row Matrix Size: 1 × 2

 Encoding Matrix: A = [5
2

2
1]

78. Message: BEAM ME UP SCOTTY

 Row Matrix Size: 1 × 3

 Encoding Matrix: A = [
2
3

−2

1
1

−1

4
3

−3]
Decoding a Message In Exercises 79–82, use A−1 to 
decode the cryptogram.

79. A = [ 3
−4

−2
3],

  −45 34 36 −24 −43 37 −23 22 −37 29 57 −38 
−39 31

80. A = [ 1
−1

4
−3],

  11 52 −8 −9 −13 −39 5 20 12 56 5 20 −2 7 
9 41 25 100

81. A = [
1

−1
1

−2
1

−1

2
3

−4]
  −2 2 5 39 −53 −72 −6 −9 93 4 −12 27 31 

−49 −16 19 −24 −46 −8 −7 99

82. A = [
2
2
1

0
−1

2

1
0

−4]
  66 27 −31 37 5 −9 61 46 −73 46 −14 9 94  

21 −49 32 −4 12 66 31 −53 47 33 −67 32 19 
−56 43 −9 −20 68 23 −34

83.  Industrial System An industrial system has two 
industries with the input requirements below.

 (a)  To produce $1.00 worth of output, Industry A 
requires $0.20 of its own product and $0.30 of 
Industry B’s product.

 (b)  To produce $1.00 worth of output, Industry B 
requires $0.10 of its own product and $0.50 of 
Industry A’s product.

  Find D, the input-output matrix for this system. 
Then solve for the output matrix X in the equation 
X = DX + E, where E is the external demand matrix

 E = [40,000
80,000].

84.  Solving for the Output Matrix An industrial system  
with three industries has the input-output matrix D and 
external demand matrix E below.

 D = [
0.1
0.0
0.4

0.3
0.2
0.1

0.2
0.3
0.1] and E = [

3000
3500
8500]

  Solve for the output matrix X in the equation 
X = DX + E.

Finding the Least Squares Regression Line In 
Exercises 85–88, find the least squares regression line.

85. (1, 5), (2, 4), (3, 2)
86. (2, 1), (3, 3), (4, 2), (5, 4), (6, 4)
87. (1, 1), (1, 3), (1, 2), (1, 4), (2, 5)
88. (−2, 4), (−1, 2), (0, 1), (1, −2), (2,−3)

89.  Cellular Phone Subscribers The table shows the 
numbers of cellular phone subscribers y (in millions) 
in the United States from 2008 through 2013. (Source: 
CTIA–The Wireless Association)

Year 2008 2009 2010 2011 2012 2013

Number, y 270 286 296 316 326 336

 (a)  Find the least squares regression line for the data. 
Let x represent the year, with x = 8 corresponding 
to 2008.

 (b)  Use the linear regression capabilities of a graphing 
utility to find a linear model for the data. How does 
this model compare with the model obtained in  
part (a)?

 (c)  Use the linear model to create a table of estimated 
values for y. Compare the estimated values with the 
actual data.

90.  Major League Baseball Salaries The table shows 
the average salaries y (in millions of dollars) of Major 
League Baseball players on opening day of baseball 
season from 2008 through 2013. (Source: Major League 
Baseball)

Year 2008 2009 2010 2011 2012 2013

Salary, y 2.93 3.00 3.01 3.10 3.21 3.39

 (a)  Find the least squares regression line for the data. 
Let x represent the year, with x = 8 corresponding 
to 2008.

 (b)  Use the linear regression capabilities of a graphing 
utility to find a linear model for the data. How does 
this model compare with the model obtained in  
part (a)?

 (c)  Use the linear model to create a table of estimated 
values for y. Compare the estimated values with the 
actual data.
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2 Projects

1 Exploring Matrix Multiplication
The table shows the first two test scores for Anna, Bruce, Chris, and David. Use the 
table to create a matrix M to represent the data. Input M into a software program or 
a graphing utility and use it to answer the questions below.

1. Which test was more difficult? Which was easier? Explain.

2. How would you rank the performances of the four students?

3. Describe the meanings of the matrix products M[1
0] and M[0

1].

4. Describe the meanings of the matrix products [1 0 0 0]M and [0 0 1 0]M.

5. Describe the meanings of the matrix products M[1
1] and 12M[1

1].

6. Describe the meanings of the matrix products [1 1 1 1]M and 14[1 1 1 1]M.

7. Describe the meaning of the matrix product [1 1 1 1]M[1
1].

8.  Use matrix multiplication to find the combined overall average score on 
both tests.

9.  How could you use matrix multiplication to scale the scores on test 1 by a 
factor of 1.1?

2 Nilpotent Matrices
Let A be a nonzero square matrix. Is it possible that a positive integer k exists such 
that Ak = O? For example, find A3 for the matrix

 A = [
0
0
0

1
0
0

2
1
0].

A square matrix A is nilpotent of index k when A ≠ O, A2 ≠ O, .  .  . , Ak−1 ≠ O, 
but Ak = O. In this project you will explore nilpotent matrices.

1. The matrix in the example above is nilpotent. What is its index?

2.  Use a software program or a graphing utility to determine which matrices below 
are nilpotent and find their indices.

 (a) [0
0

1
0]  (b) [0

1
1
0]  (c) [0

1
0
0]

 (d) [1
1

0
0]  (e) [

0
0
0

0
0
0

1
0
0] (f) [

0
1
1

0
0
1

0
0
0]

3. Find 3 × 3 nilpotent matrices of indices 2 and 3.

4. Find 4 × 4 nilpotent matrices of indices 2, 3, and 4.

5. Find a nilpotent matrix of index 5.

6. Are nilpotent matrices invertible? Prove your answer.

7. When A is nilpotent, what can you say about AT? Prove your answer.

8. Show that if A is nilpotent, then I − A is invertible.

Test 1 Test 2

Anna 84 96

Bruce 56 72

Chris 78 83

David 82 91

Supri Suharjoto/Shutterstock.com
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110 Chapter 3 Determinants

3.1 The Determinant of a Matrix

 Find the determinant of a 2 × 2 matrix.

 Find the minors and cofactors of a matrix.

 Use expansion by cofactors to find the determinant of a matrix.

 Find the determinant of a triangular matrix.

The DeTerminanT of a 2 × 2 maTrix

Every square matrix can be associated with a real number called its determinant. 
Historically, the use of determinants arose from the recognition of special patterns that 
occur in the solutions of systems of linear equations. For example, the system

a11x1

a21x1

+
+

a12x2

a22x2

=
=

b1

b2

has the solution

x1 =
b1a22 − b2a12

a11a22 − a21a12
 and x2 =

b2a11 − b1a21

a11a22 − a21a12

when a11a22 − a21a12 ≠ 0. (See Exercise 53.) Note that both fractions have the same 
denominator, a11a22 − a21a12. This quantity is the determinant of the coefficient matrix 
of the system.

Definition of the Determinant of a 2 × 2 matrix

The determinant of the matrix

A = [a11

a21

a12

a22
]

is det(A) = ∣A∣ = a11a22 − a21a12.

The diagram below shows a convenient method for remembering the formula for 
the determinant of a 2 × 2 matrix.

∣A∣ = ∣a11

a21

a12

a22∣ = a11a22 − a21a12

The determinant is the difference of the products of the two diagonals of the matrix. 
Note that the order of the products is important.

 Determinants of matrices of order 2

a. For A = [2
1

−3
2], ∣A∣ = ∣21 −3

2∣ = 2(2) − 1(−3) = 4 + 3 = 7.

b. For B = [2
4

1
2], ∣B∣ = ∣24 1

2∣ = 2(2) − 4(1) = 4 − 4 = 0.

c. For C = [0
2

3
2

4], ∣C∣ = ∣02 3
2

4∣ = 0(4) − 2(3
2) = 0 − 3 = −3. 

remarK
In this text, det(A) and ∣A∣  
are used interchangeably to 
represent the determinant of A. 
Although vertical bars are also 
used to denote the absolute 
value of a real number, the 
context will show which use  
is intended. Furthermore, it is 
common practice to delete the 
matrix brackets and write

∣a11

a21

a12

a22∣
instead of

∣[a11

a21

a12

a22
]∣.

remarK
Notice that the determinant of  
a matrix can be positive, zero, 
or negative.
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Delete row 2 and column 1. Delete row 2 and column 2.

minors anD CofaCTors

To define the determinant of a square matrix of order higher than 2, it is convenient to 
use minors and cofactors.

minors and Cofactors of a square matrix

If A is a square matrix, then the minor Mij of the entry aij is the determinant of 
the matrix obtained by deleting the ith row and jth column of A. The cofactor Cij 
of the entry aij is Cij = (−1)i+ jMij.

For example, if A is a 3 × 3 matrix, then the minors and cofactors of a21 and a22 
are as shown below.

 Minor of a21 Minor of a22

[
a11

a21

a31

a12

a22

a32

a13

a23

a33
], M21 = ∣a12

a32

a13

a33∣  [
a11

a21

a31

a12

a22

a32

a13

a23

a33
], M22 = ∣a11

a31

a13

a33∣
 Cofactor of a21 Cofactor of a22

 C21 = (−1)2+1M21 = −M21 C22 = (−1)2+2M22 = M22

The minors and cofactors of a matrix can differ only in sign. To obtain the cofactors of 
a matrix, first find the minors and then apply the checkerboard pattern of +’s and −’s 
shown at the left. Note that odd positions (where i + j is odd) have negative signs, and 
even positions (where i + j is even) have positive signs.

 minors and Cofactors of a matrix

Find all the minors and cofactors of

A = [
0
3
4

2
−1

0

1
2
1].

soluTion

 To find the minor M11, delete the first row and first column of A and evaluate the  
determinant of the resulting matrix.

[
0
3
4

2
−1

0

1
2
1], M11 = ∣−1

0
2
1∣ = −1(1) − 0(2) = −1

Verify that the minors are 

M11

M21

M31

=
=
=

−1
2
5
  

M12

M22

M32

=
=
=

−5
−4
−3

  
M13

M23

M33

=
=
=

4
−8
−6.

Now, to find the cofactors, combine these minors with the checkerboard pattern of 
signs for a 3 × 3 matrix shown above.

C11

C21

C31

=
=
=

−1
−2

5
  

C12

C22

C32

=
=
=

5
−4

3
  

C13

C23

C33

=
=
=

4
8

−6
 

Sign Pattern for Cofactors

[
+
−
+

−
+
−

+
−
+ ]

3 × 3 matrix

[
+
−
+
−

−
+
−
+

+
−
+
−

−
+
−
+

]
4 × 4 matrix

[
+
−
+
−
+
⋮  

−
+
−
+
−
⋮  

+
−
+
−
+
⋮  

−
+
−
+
−
⋮  

+
−
+
−
+
⋮  

.  .  .

.  .  .

.  .  .

.  .  .

.  .  .]
n × n matrix
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The DeTerminanT of a square maTrix

The definition below is inductive because it uses the determinant of a square matrix of 
order n − 1 to define the determinant of a square matrix of order n.

Definition of the Determinant of a square matrix

If A is a square matrix of order n ≥ 2, then the determinant of A is the sum of 
the entries in the first row of A multiplied by their respective cofactors. That is,

det(A) = ∣A∣ = ∑
n

j=1
a1jC1j = a11C11 + a12C12 + .  .  . + a1nC1n.

Confirm that, for 2 × 2 matrices, this definition yields 

∣A∣ = a11a22 − a21a12 

as previously defined.
When you use this definition to evaluate a determinant, you are expanding by 

cofactors in the first row. Example 3 demonstrates this procedure.

 The Determinant of a matrix of order 3

Find the determinant of

A = [
0
3
4

2
−1

0

1
2
1].

soluTion

 This is the same matrix as in Example 2. There you found the cofactors of the entries 
in the first row to be

C11 = −1, C12 = 5, C13 = 4.

So, by the definition of a determinant, you have

 ∣A∣ = a11C11 + a12C12 + a13C13 First row expansion

 = 0(−1) + 2(5) + 1(4)
 = 14. 

Although the determinant is defined as an expansion by the cofactors in the first row, 
it can be shown that the determinant can be evaluated by expanding in any row or column. 
For instance, you could expand the matrix in Example 3 in the second row to obtain

 ∣A∣ = a21C21 + a22C22 + a23C23  Second row expansion

 = 3(−2) + (−1)(−4) + 2(8)
 = 14

or in the first column to obtain

 ∣A∣ = a11C11 + a21C21 + a31C31 First column expansion

 = 0(−1) + 3(−2) + 4(5)
 = 14.

Try other possibilities to confirm that the determinant of A can be evaluated by  
expanding in any row or column. The theorem on the next page states this, and is 
known as Laplace’s Expansion of a Determinant, after the French mathematician Pierre 
Simon de Laplace (1749–1827).

remarK
The determinant of a matrix  
of order 1 is simply the entry 
of the matrix. For example, if 
A = [−2], then

det(A) = −2.
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When expanding by cofactors, you do not need to find cofactors of zero entries, 
because zero times its cofactor is zero.

 aijCij = (0)Cij

 = 0

The row (or column) containing the most zeros is usually the best choice for expansion 
by cofactors. The next example demonstrates this.

 The Determinant of a matrix of order 4

Find the determinant of

A = [
1

−1
0
3

−2
1
2
4

3
0
0
0

0
2
3

−2
].

soluTion

Notice that three of the entries in the third column are zeros. So, to eliminate some of 
the work in the expansion, use the third column.

∣A∣ = 3(C13) + 0(C23) + 0(C33) + 0(C43)

The cofactors C23, C33, and C43 have zero coefficients, so you need only find the  
cofactor C13. To do this, delete the first row and third column of A and evaluate the 
determinant of the resulting matrix.

 C13 = (−1)1+3∣−1
0
3

1
2
4

2
3

−2∣ Delete 1st row and 3rd column.

 = ∣−1
0
3

1
2
4

2
3

−2∣ Simplify.

Expanding by cofactors in the second row yields

 C13 = (0)(−1)2+1∣14 2
−2∣ + (2)(−1)2+2∣−1

3
2

−2∣ + (3)(−1)2+3∣−1
3

1
4∣

 = 0 + 2(1)(−4) + 3(−1)(−7)
 = 13.

You obtain 

 ∣A∣ = 3(13)
 = 39. 

Theorem 3.1 expansion by Cofactors

Let A be a square matrix of order n. Then the determinant of A is

det(A) = ∣A∣ = ∑
n

j=1
aijCij = ai1Ci1 + ai2Ci2 + .  .  . + ainCin

or

det(A) = ∣A∣ = ∑
n

i=1
aijCij = a1jC1j + a2jC2j + .  .  . + anjCnj.

ith row  
expansion

jth column  
expansion

TeChnology
Many graphing utilities and 
software programs can  
find the determinant of  
a square matrix. If you use  
a graphing utility, then you may 
see something similar to the 
screen below for Example 4. 
The Technology guide at 
CengageBrain.com can help 
you use technology to find a 
determinant.

39

[[1  -2 3 0 ]
[-1 1  0 2 ]

A

det A

[0  2  0 3 ]
[3  4  0  -2]]
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114 Chapter 3 Determinants

Add these three products.

Subtract these three products.

magnetix/Shutterstock.com

linear
algeBra
applieD

Recall that a tetrahedron is a polyhedron consisting of four 
triangular faces. One practical application of determinants is 
in finding the volume of a tetrahedron in a coordinate plane. 
If the vertices of a tetrahedron are (x1, y1, z1), (x2, y2, z2), 
(x3, y3, z3), and (x4, y4, z4), then the volume is

Volume = ±1
6det[

x1

x2

x3

x4

y1

y2

y3

y4

z1

z2

z3

z4

1
1
1
1
].

You will study this and other applications of determinants 
in Section 3.4.

An alternative method is commonly used to evaluate the determinant of a 3 × 3
matrix A. To apply this method, copy the first and second columns of A to form fourth 
and fifth columns. Then obtain the determinant of A by adding (or subtracting) the 
products of the six diagonals, as shown in the diagram below.

a11

a21

a31

a12

a22

a32

a13

a23

a33

a11

a21

a31

a12

a22

a32

Confirm that the determinant of A is

∣A∣ = a11a22a33 + a12a23a31 + a13a21a32 − a31a22a13 − a32a23a11 − a33a21a12.

 The Determinant of a matrix of order 3

See LarsonLinearAlgebra.com for an interactive version of this type of example.

Find the determinant of

A = [
0
3
4

2
−1
−4

1
2
1].

soluTion

Begin by copying the first two columns and then computing the six diagonal products 
as shown below.

 −4 0 6 Subtract these products.

0
3
4

2
−1
−4

1
2
1

0
3
4

2
−1
−4

 0 16 −12 Add these products.

Now, by adding the lower three products and subtracting the upper three products, you 
can find the determinant of A to be 

∣A∣ = 0 + 16 + (−12) − (−4) − 0 − 6 = 2. 

The diagonal process illustrated in Example 5 is valid only for matrices of order 3. 
For matrices of higher order, you must use another method.
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Triangular maTriCes

Recall from Section 2.4 that a square matrix is upper triangular when it has all zero 
entries below its main diagonal, and lower triangular when it has all zero entries above 
its main diagonal, as shown in the diagram at the left. A matrix that is both upper and 
lower triangular is a diagonal matrix. That is, a diagonal matrix is one in which all 
entries above and below the main diagonal are zero.

To find the determinant of a triangular matrix, simply form the product of the 
entries on the main diagonal. It should be easy to see that this procedure is valid for 
triangular matrices of order 2 or 3. For example, to find the determinant of 

A = [
2
0
0

3
−1

0

−1
2
3]

expand in the third row to obtain

 ∣A∣ = 0(−1)3+1∣ 3
−1

−1
2∣ + 0(−1)3+2∣20 −1

2∣ + 3(−1)3+3∣20 3
−1∣

 = 3(1)(−2)
 = −6

which is the product of the entries on the main diagonal.

proof

Use mathematical induction* to prove this theorem for the case in which A is an upper 
triangular matrix. The proof of the case in which A is lower triangular is similar. If A 
has order 1, then A = [a11] and the determinant is ∣A∣ = a11. Assuming the theorem  
is true for any upper triangular matrix of order k − 1, consider an upper triangular 
matrix A of order k. Expanding in the kth row, you obtain

∣A∣ = 0Ck1 + 0Ck2 + .  .  . + 0Ck(k−1) + akkCkk = akkCkk.

Now, note that Ckk = (−1)2kMkk = Mkk, where Mkk is the determinant of the upper  
triangular matrix formed by deleting the kth row and kth column of A. This matrix is of 
order k − 1, so apply the induction assumption to write

∣A∣ = akkMkk = akk(a11a22a33 .  .  . ak−1, k−1) = a11a22a33 .  .  . akk. 

 The Determinant of a Triangular matrix

The determinant of the lower triangular matrix

A = [
2
4

−5
1

0
−2

6
5

0
0
1
3

0
0
0
3
]

is ∣A∣ = (2)(−2)(1)(3) = −12. 

*See Appendix for a discussion of mathematical induction.

Upper Triangular Matrix

[
a11

0
0

⋮
0

a12

a22

0

⋮
0

a13

a23

a33

⋮
0

.  .  .

.  .  .

.  .  .

.  .  .

a1n

a2n

a3n

⋮
ann

]
Lower Triangular Matrix

[
a11

a21

a31

⋮
an1

0
a22

a32

⋮
an2

0
0

a33

⋮
an3

.  .  .

.  .  .

.  .  .

.  .  .

0
0
0

⋮
ann

]

Theorem 3.2 Determinant of a Triangular matrix

If A is a triangular matrix of order n, then its determinant is the product of the 
entries on the main diagonal. That is,

det(A) = ∣A∣ = a11a22a33 .  .  . ann.
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116 Chapter 3 Determinants

3.1 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

The Determinant of a matrix In Exercises 1–12, find 
the determinant of the matrix.

 1. [1]   2. [−3]

 3. [2
3

1
4]  4. [−3

5
1
2]

 5. [ 5
−6

2
3]  6. [2

4
−2

3]
 7. [−7

1
2

6
3]  8. [

1
3

4
5

−9]
 9. [0

0
8
4] 10. [ 2

−6
−3

9]
11. [λ − 3

4
2

λ − 1] 12. [λ − 2
4

  0
        λ − 4]

finding the minors and Cofactors of a matrix In 
Exercises 13–16, find all (a) minors and (b) cofactors of 
the matrix.

13. [1
3

2
4] 14. [−5

1
6
0]

15. [
−3

4
2

2
5

−3

1
6
1] 16. [

−3
6
4

4
3

−7

2
1

−8]
17.  Find the determinant of the matrix in Exercise 15  

using the method of expansion by cofactors. Use (a) the  
second row and (b) the second column.

18.  Find the determinant of the matrix in Exercise 16 using 
the method of expansion by cofactors. Use (a) the third 
row and (b) the first column.

finding a Determinant In Exercises 19–32, use 
expansion by cofactors to find the determinant of  
the matrix.

19. [
1
3

−1

4
2
4

−2
0
3] 20. [

3
4

−2

−1
1
0

2
4
1]

21. [
2
0
0

4
3
0

6
1

−5] 22. [
−3

7
1

0
11
2

0
0
2]

23. [
−0.4

0.2
0.3

0.4
0.2
0.2

0.3
0.2
0.2] 24. [

0.1
−0.3

0.5

0.2
0.2
0.4

0.3
0.2
0.4]

25. [
x
3
1

y
2
1

−1
0
1] 26. [

x
−2

1

y
−2

5

1
1
1]

27. [
5
4
0
0

3
6
2
1

0
4

−3
−2

6
12
4
2
] 28. [

3
2
4
1

0
6
1
5

7
11

−1
2

0
12
2

10
]

29. [
w

21
−10
−40

x
−15

24
22

y
24

−32
32

z
30
18

−35
]

30. [
w

10
−30

30

x
15
20
35

y
−25
−15
−25

z
30

−10
−40

]
31. [

5
0
0
0
0

2
1
0
0
0

0
4
2
3
0

0
3
6
4
0

−2
2
3
1
2
]

32. [
−4

1
−6

0
1

3
−2

2
0

−4

2
7

−5
0

−2

−1
−13
−6

0
0

−2
−12
−7

0
−9

]
finding a Determinant In Exercises 33 and 34, use  
the method demonstrated in Example 5 to find the  
determinant of the matrix.

33. [
3

−2
1

0
4

−3

4
1
1] 34. [

3
0
8

8
−5

1

−7
4
6]

finding a Determinant In Exercises 35–38, use a 
software program or a graphing utility to find the  
determinant of the matrix.

35. [
0.1
0.7
0.1

0.6
−0.1

0.3

−0.3
0.1

−0.8] 36. [
4
1

−3
6

3
6
2
1

2
−1

4
3

5
2
5

−2
]

37. [
1
0
0
1

2
1
3
2

−1
2
2
0

4
−2
−1
−2

]
38. [

8
−1

0
1
2

5
0
8
2
6

1
7
6
5

−2

−2
1
5

−8
0

0
6

−3
4
6
]

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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finding the Determinant of a Triangular matrix In 
Exercises 39–42, find the determinant of the triangular 
matrix.

39. [
−2

4
−3

0
6
7

0
0
2] 40. [

4
0
0

0
7
0

0
0

−2]
41. [

5
0
0
0

8
0
0
0

−4
6
2
0

2
0
2

−1
] 42. [

4
−1

3
−8

0
1
2

5
7

0
0
3
0

0
0
0

−2
]

True or false? In Exercises 43 and 44, determine 
whether each statement is true or false. If a statement 
is true, give a reason or cite an appropriate statement 
from the text. If a statement is false, provide an example 
that shows the statement is not true in all cases or cite an 
appropriate statement from the text.

43. (a)  The determinant of a 2 × 2 matrix A is 
a21a12 − a11a22.

 (b)  The determinant of a matrix of order 1 is the entry 
of the matrix.

 (c)  The ij-cofactor of a square matrix A is the matrix 
obtained by deleting the ith row and jth column of A.

44. (a)  To find the determinant of a triangular matrix, add 
the entries on the main diagonal.

 (b)  To find the determinant of a matrix, expand by 
cofactors in any row or column.

 (c)  When expanding by cofactors, you need not  
evaluate the cofactors of zero entries.

solving an equation In Exercises 45–48, solve for x.

45. ∣x + 3
1

2
x + 2∣ = 0 46. ∣x − 6

−2
3

x + 1∣ = 0

47. ∣x − 1
3

2
x − 2∣ = 0 48. ∣x + 3

−4
1

x − 1∣ = 0

solving an equation In Exercises 49–52, find the  
values of λ for which the determinant is zero.

49. ∣λ + 2
1

2
λ∣ 50. ∣λ − 5

1
3

λ − 5∣
51. ∣λ      

0      
0      

2
      λ + 1

  1

0
2
λ∣ 52. ∣λ02 0

λ
2

1
3

λ − 2∣
53. Show that the system of linear equations

a11x1

a21x1

+
+

a12x2

a22x2

=
=

b1

b2

 has the solution

x1 =
b1a22 − b2a12

a11a22 − a21a12
 and x2 =

b2a11 − b1a21

a11a22 − a21a12

 when a11a22 − a21a12 ≠ 0.

54.  CAPSTONE For an n × n matrix A, explain 
how to find each value.

(a) The minor Mij of the entry aij

(b) The cofactor Cij of the entry aij

(c) The determinant of A

entries involving expressions In Exercises 55–62, 
evaluate the determinant, in which the entries are  
functions. Determinants of this type occur when changes 
of variables are made in calculus.

55. ∣ 6u
−1

−1
3v∣ 56. ∣3x2

1
−3y2

1∣
57. ∣ e2x

2e2x

e3x

3e3x∣ 58. ∣ e−x

−e−x

xe−x

(1 − x)e−x∣
59. ∣x

1
ln x
1�x∣ 60. ∣x

1
x ln x

1 + ln x∣
61. ∣cos θ

sin θ
0

−r sin θ 
r cos θ 

0 

0
0
1∣ 62. ∣ 1 − v

v(1 − w)
vw

−u
u(1 − w)

uw

0
−uv

uv∣
Verifying an equation In Exercises 63–68, evaluate 
the determinants to verify the equation.

63. ∣wy x
z∣ = −∣ y

w
z
x∣

64. ∣wy cx
cz∣ = c∣wy x

z∣
65. ∣wy x

z∣ = ∣wy x + cw
z + cy∣

66. ∣ w
cw

x
cx∣ = 0

67. ∣111 x
y
z

x2

y2

z2∣ = (y − x)(z − x)(z − y)

68. ∣ 1
a

a3

1
b

b3

1
c

c3∣ = (a − b)(b − c)(c − a)(a + b + c)

69. You are given the equation

∣ x
−1

0

0
x

−1

c
b
a∣ = ax2 + bx + c.

 (a) Verify the equation.

 (b)  Use the equation as a model to find a determinant 
that is equal to ax3 + bx2 + cx + d.

70.  The determinant of a 2 × 2 matrix involves two  
products. The determinant of a 3 × 3 matrix involves 
six triple products. Show that the determinant of a  
4 × 4 matrix involves 24 quadruple products.
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118 Chapter 3 Determinants

3.2 Determinants and Elementary Operations

 Use elementary row operations to evaluate a determinant.

 Use elementary column operations to evaluate a determinant.

 Recognize conditions that yield zero determinants.

DEtErminants anD ElEmEntary rOw OpEratiOns

Which of the determinants below is easier to evaluate?

∣A∣ = ∣ 1
4

−2
3

−2
−6

4
−6

3
3

−9
9

1
2

−3
2∣ or ∣B∣ = ∣1000 −2

2
0
0

3
−9
−3

0

1
−2
−1
−1∣

Given what you know about the determinant of a triangular matrix, it should be clear 
that the second determinant is much easier to evaluate. Its determinant is simply the 
product of the entries on the main diagonal. That is, ∣B∣ = (1)(2)(−3)(−1) = 6. 
Using expansion by cofactors (the only technique discussed so far) to evaluate the first  
determinant is messy. For example, when you expand by cofactors in the first row, you have

∣A∣ = 1∣−6
4

−6

3
−9

9

2
−3

2∣ + 2∣ 4
−2

3

3
−9

9

2
−3

2∣ + 3∣ 4
−2

3

−6
4

−6

2
−3

2∣ − 1∣ 4
−2

3

−6
4

−6

3
−9

9∣.
Evaluating the determinants of these four 3 × 3 matrices produces

∣A∣ = (1)(−60) + (2)(39) + (3)(−10) − (1)(−18) = 6.

Note that ∣A∣ and ∣B∣ have the same value. Also note that you can obtain matrix B from 
matrix A by adding multiples of the first row to the second, third, and fourth rows. 
(Verify this.) In this section, you will see the effects of elementary row (and column) 
operations on the value of a determinant.

  the Effects of Elementary row  
Operations on a Determinant

a. The matrix B is obtained from A by interchanging the rows of A.

∣A∣ = ∣21 −3
4∣ = 11 and ∣B∣ = ∣12 4

−3∣ = −11

b.  The matrix B is obtained from A by adding −2 times the first row of A to the second 
row of A.

∣A∣ = ∣12 −3
−4∣ = 2 and ∣B∣ = ∣10 −3

2∣ = 2

c. The matrix B is obtained from A by multiplying the first row of A by 12.

∣A∣ = ∣ 2
−2

−8
9∣ = 2 and ∣B∣ = ∣ 1

−2
−4

9∣ = 1 

In Example 1, notice that interchanging the two rows of A changes the sign of its 
determinant, adding −2 times the first row of A to the second row does not change its 
determinant, and multiplying the first row of A by 12 multiplies its determinant by 12. The 
next theorem generalizes these observations.
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3.2 Determinants and Elementary Operations 119

prOOf

 The proof of the first property is below. The proofs of the other two properties are left as 
exercises. (See Exercises 47 and 48.) Assume that A and B are 2 × 2 matrices

A = [a11

a21

a12

a22
] and B = [a21

a11

a22

a12
].

Then, you have ∣A∣ = a11a22 − a21a12 and ∣B∣ = a21a12 − a11a22. So ∣B∣ = −∣A∣.
Using mathematical induction, assume the property is true for matrices of order (n − 1).
Let A be an n × n matrix such that B is obtained from A by interchanging two rows of 
A. Then, to find ∣A∣ and ∣B∣, expand in a row other than the two interchanged rows. By 
the induction assumption, the cofactors of B will be the negatives of the cofactors of A 
because the corresponding (n − 1) × (n − 1) matrices have two rows interchanged. 
Finally, ∣B∣ = −∣A∣ and the proof is complete. 

Theorem 3.3 provides a practical way to evaluate determinants. To find the 
determinant of a matrix A, you can use elementary row operations to obtain a 
triangular matrix B that is row-equivalent to A. For each step in the elimination process, use 
Theorem 3.3 to determine the effect of the elementary row operation on the determinant. 
Finally, find the determinant of B by multiplying the entries on its main diagonal. 

  finding a Determinant using 
Elementary row Operations

Find the determinant of

A = [
0
1
0

−7
2
3

14
−2
−8].

sOlutiOn

Using elementary row operations, rewrite A in triangular form as shown below.

 ∣010 −7
2
3

14
−2
−8∣ = −∣100 2

−7
3

−2
14

−8∣  Interchange the first two rows.

 = 7∣100 2
1
3

−2
−2
−8∣  Factor −7 out of the second row.

 = 7∣100 2
1
0

−2
−2
−2∣

The above matrix is triangular, so the determinant is

∣A∣ = 7(1)(1)(−2) = −14. 

tHEOrEm 3.3 Elementary row Operations and Determinants

Let A and B be square matrices.

1.  When B is obtained from A by interchanging two rows of A, det(B) = −det(A). 
2.  When B is obtained from A by adding a multiple of a row of A to another 

row of A, det(B) = det(A).
3.  When B is obtained from A by multiplying a row of A by a nonzero constant c,

det(B) = c det(A).

rEmarK
Note that the third property 
enables you to divide a row 
by the common factor. For 
example,

∣21 4
3∣ = 2∣11 2

3∣.   
Factor 2 
out of 
first row.

augustin-louis cauchy
(1789–1857)

Cauchy’s contributions to 
the study of mathematics 
were revolutionary, and
he is often credited with
bringing rigor to modern 
mathematics. For instance,
he was the first to 
rigorously define limits, 
continuity, and the 
convergence of an infinite 
series. In addition to being
known for his work in 
complex analysis, he 
contributed to the theories 
of determinants and 
differential equations. 
It is interesting to note 
that Cauchy’s work on 
determinants
preceded 
Cayley’s 
development 
of matrices.

Add −3 times the second row to the 
third row to produce a new third row.

SSPL/Getty Images
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120 Chapter 3 Determinants

DEtErminants anD ElEmEntary cOlumn OpEratiOns

Although Theorem 3.3 is stated in terms of elementary row operations, the therem 
remains valid when the word “column” replaces the word “row.” Operations 
performed on the columns (rather than on the rows) of a matrix are elementary column 
operations, and two matrices are column-equivalent when one can be obtained from 
the other by elementary column operations. Here are illustrations of the column versions
of Theorem 3.3 Properties 1 and 3.

∣240 1
0
0

−3
1
2∣ = −∣100 2

4
0

−3
1
2∣

∣ 2
4

−2

3
1
4

−5
0

−3∣ = 2∣ 1
2

−1

3
1
4

−5
0

−3∣
In evaluating a determinant, it is occasionally convenient to use elementary column 
operations, as shown in Example 3.

  finding a Determinant using Elementary 
column Operations

See LarsonLinearAlgebra.com for an interactive version of this type of example.

Find the determinant of A = [
−1

3
5

2
−6

−10

2
4

−3].

sOlutiOn

The first two columns of A are multiples of each other, so you can obtain a column of 
zeros by adding 2 times the first column to the second column, as shown below.

∣−1
3
5

2
−6

−10

2
4

−3∣ = ∣−1
3
5

0
0
0

2
4

−3∣
At this point, you do not need to rewrite the matrix in triangular form, because there is 
an entire column of zeros. Simply conclude that the determinant is zero. The validity 
of this conclusion follows from Theorem 3.1. Specifically, by expanding by cofactors 
in the second column, you have

∣A∣ = (0)C12 + (0)C22 + (0)C32 = 0. 

Interchange the first two columns.

Factor 2 out of the first column.

iStockphoto.com/jirkaejc

linEar
alGEBra
appliED

In a Sudoku puzzle, the object is to fill out a partially 
completed 9 × 9 grid of boxes with numbers from 1 to 9 
so that each column, row, and 3 × 3 sub-grid contains each 
number once. For a completed Sudoku grid to be valid, no 
two rows (or columns) will have the numbers in the same 
order. If this should happen, then the determinant of the 
9 × 9 matrix formed by the numbers will be zero. This is a 
direct result of condition 2 of Theorem 3.4 on the next page. 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 3.2 Determinants and Elementary Operations 121

The third column is a 
multiple of the first column.

The first and third 
rows are the same.

The first row 
has all zeros.

matricEs anD ZErO DEtErminants

Example 3 shows that when two columns of a matrix are scalar multiples of each  
other, the determinant of the matrix is zero. This is one of three conditions that yield  
a determinant of zero.

tHEOrEm 3.4 conditions that yield a Zero Determinant

If A is a square matrix and any one of the conditions below is true, then det(A) = 0.

1. An entire row (or an entire column) consists of zeros.
2. Two rows (or columns) are equal.
3. One row (or column) is a multiple of another row (or column).

prOOf

 Verify each part of this theorem by using elementary row operations and expansion by 
cofactors. For instance, if an entire row or column consists of zeros, then each cofactor 
in the expansion is multiplied by zero. When condition 2 or 3 is true, use elementary
row or column operations to create an entire row or column of zeros. 

Recognizing the conditions listed in Theorem 3.4 can make evaluating a  
determinant much easier. For example,

∣023 0
4

−5

0
−5

2∣ = 0, ∣101 −2
1

−2

4
2
4∣ = 0, ∣ 1

2
−2

2
−1

0

−3
−6

6∣ = 0.

Do not conclude, however, that Theorem 3.4 gives the only conditions that produce 
a zero determinant. This theorem is often used indirectly. That is, you may begin with a 
matrix that does not satisfy any of the conditions of Theorem 3.4 and, through elementary 
row or column operations, obtain a matrix that does satisfy one of the conditions. 
Example 4 demonstrates this.

 a matrix with a Zero Determinant

Find the determinant of

A = [
1
2
0

4
−1
18

1
0
4].

sOlutiOn

Adding −2 times the first row to the second row produces

 ∣A∣ = ∣ 1
2 + (−2)(1)

0

4
−1 + (−2)(4)

18

1
0 + (−2)(1)

4∣
 = ∣100 4

−9
18

1
−2

4∣.
The second and third rows are multiples of each other, so the determinant is zero. 
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In Example 4, you could have obtained a matrix with a row of all zeros by  
performing an additional elementary row operation (adding 2 times the second row 
to the third row). This is true in general. That is, a square matrix has a determinant of  
zero if and only if it is row- (or column-) equivalent to a matrix that has at least one 
row (or column) consisting entirely of zeros.

You have now studied two methods for evaluating determinants. Of these, the 
method of using elementary row operations to reduce the matrix to triangular form is 
usually faster than cofactor expansion along a row or column. If the matrix is large, 
then the number of arithmetic operations needed for cofactor expansion can become 
extremely large. For this reason, most computer and calculator algorithms use the 
method involving elementary row operations. The table below shows the maximum 
numbers of additions (plus subtractions) and multiplications (plus divisions) needed for 
each of these two methods for matrices of orders 3, 5, and 10. (Verify this.)

Cofactor Expansion Row Reduction

Order n Additions Multiplications Additions Multiplications

3 5 9 8 10

5 119 205 40 44

10 3,628,799 6,235,300 330 339

In fact, the maximum number of additions alone for the cofactor expansion of 
an n × n matrix is n! − 1. The factorial 30! is approximately equal to 2.65 × 1032, 
so even a relatively small 30 × 30 matrix could require an extremely large number of 
operations. If a computer could do one trillion operations per second, it could still take 
more than 22 trillion years to compute the determinant of this matrix using cofactor 
expansion. Yet, row reduction would take only a fraction of a second.

When evaluating a determinant by hand, you sometimes save steps by using 
elementary row (or column) operations to create a row (or column) having zeros in all 
but one position and then using cofactor expansion to reduce the order of the matrix  
by 1. The next two examples illustrate this approach.

 finding a Determinant 

Find the determinant of

A = [
−3

2
−3

5
−4

0

2
−1

6].

sOlutiOn

 Notice that the matrix A already has one zero in the third row. Create another zero in 
the third row by adding 2 times the first column to the third column, as shown below.

∣A∣ = ∣−3
2

−3

5
−4

0

2
−1

6∣ = ∣−3
2

−3

5
−4

0

−4
3
0∣

Expanding by cofactors in the third row produces

∣A∣ = ∣−3
2

−3

5
−4

0

−4
3
0∣ = −3(−1)4∣ 5

−4
−4

3∣ = −3(1)(−1) = 3. 
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finding a Determinant 

Find the determinant of

A = [
2

−2
1
3
1

0
1
0

−1
1

1
3

−1
2
3

3
2
2
4
2

−2
−1

3
−3

0
].

sOlutiOn

The second column of this matrix already has two zeros, so choose it for cofactor 
expansion. Create two additional zeros in the second column by adding the second row 
to the fourth row, and then adding −1 times the second row to the fifth row.

 ∣A∣ = ∣ 2
−2

1
3
1

0
1
0

−1
1

1
3

−1
2
3

3
2
2
4
2

−2
−1

3
−3

0∣
 = ∣ 2

−2
1
1
3

0
1
0
0
0

1
3

−1
5
0

3
2
2
6
0

−2
−1

3
−4

1∣
 = (1)(−1)4∣2113 1

−1
5
0

3
2
6
0

−2
3

−4
1∣

You have now reduced the problem of finding the determinant of a 5 × 5 matrix to the 
problem of finding the determinant of a 4 × 4 matrix. The fourth row already has two 
zeros, so choose it for the next cofactor expansion. Add −3 times the fourth column 
to the first column.

 ∣A∣ = ∣2113 1
−1

5
0

3
2
6
0

−2
3

−4
1∣ = ∣ 8

−8
13
0

1
−1

5
0

3
2
6
0

−2
3

−4
1∣

 = (1)(−1)8∣ 8
−8
13

1
−1

5

3
2
6∣

Add the second row to the first row and then expand by cofactors in the first row.

 ∣A∣ = ∣ 8
−8
13

1
−1

5

3
2
6∣ = ∣ 0

−8
13

0
−1

5

5
2
6∣

 = 5(−1)4∣−8
13

−1
5∣

 = 5(1)(−27)
 = −135  
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3.2 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

properties of Determinants In Exercises 1–20,  
determine which property of determinants the equation 
illustrates.

 1. ∣21 −6
−3∣ = 0  2. ∣−4

12
5

−15∣ = 0

 3. ∣105 4
0
6

2
0

−7∣ = 0  4. ∣−3
6

−3

2
0
2

1
0
1∣ = 0

 5. ∣ 1
−7

6

3
2
1

4
−5

2∣ = −∣ 1
−7

6

4
−5

2

3
2
1∣

 6. ∣ 1
−2

1
0

3
2
6
5

4
0
2
3

−5
1

−7
8∣ = ∣ 1

−2
1
0

6
2
3
5

2
0
4
3

−7
1

−5
8∣

 7. ∣52 10
−7∣ = 5∣12 2

−7∣
 8. ∣93 1

12∣ = 3∣31 1
12∣

 9. ∣137 8
−12

4

−3
6
9∣ = 12∣137 2

−3
1

−1
2
3∣

10. ∣145 2
−8

4

3
6

12∣ = 6∣145 1
−4

2

1
2
4∣

11. ∣−10
35
0

5
−20

15

5
25
30∣ = 53∣−2

7
0

1
−4

3

1
5
6∣

12. ∣6000 0
6
0
0

0
0
6
0

0
0
0
6∣ = 64∣1000 0

1
0
0

0
0
1
0

0
0
0
1∣

13. ∣28 −3
7∣ = ∣20 −3

19∣
14. ∣20 1

−1∣ = ∣24 1
1∣

15. ∣ 1
5

−1

−3
2
0

2
−1

6∣ = ∣ 1
0

−1

−3
17
0

2
−11

6∣
16. ∣ 3

−2
5
4

2
1

−7
−1

4
5

−20
13

11
6

15
12∣ = ∣ 3

−2
5
4

2
1

−7
−1

−6
0

15
8

11
6

15
12∣

17. ∣547 4
−3

6

2
4
3∣ = −∣ 5

−4
7

4
3
6

2
−4

3∣
18. ∣ 3

−1
4

2
0
2

−2
3
0∣ = −∣ 3

4
−1

2
2
0

−2
0
3∣

19. ∣ 2
1
3
0

−1

1
0
6
4
8

−1
1
1
0
5

0
3

−3
2
3

4
2
6
0
2∣ = 0

20. ∣4
9
3
5
6

3
−1

4
2
0

1
2
6
0
3

9
3
9
6
0

9
−3
12
6
0∣ = 0

finding a Determinant In Exercises 21–24, use either 
elementary row or column operations, or cofactor 
expansion, to find the determinant by hand. Then use 
a software program or a graphing utility to verify  
your answer.

21. ∣ 1
−1

2

0
1
0

2
4
3∣ 22. ∣−1

0
1

3
2
1

2
0

−1∣
23. ∣ 5

1
2

−1

1
0
0
0

0
−1

1
3

1
−1

2
1∣ 24. ∣ 3

−1
4
3

2
0
1
1

1
2

−1
1

1
0
0
0∣

finding a Determinant In Exercises 25–36, use  
elementary row or column operations to find the  
determinant.

25. ∣114 7
3
8

−3
1
1∣ 26. ∣121 1

−1
−2

1
−2
−1∣

27. ∣ 2
1

−6

−1
3
3

−1
2
3∣ 28. ∣321 0

−3
−2

6
4
2∣

29. ∣ 3
7

−1

2
5
2

−3
1
6∣ 30. ∣306 8

−5
1

−7
4
6∣

31. ∣4630 −7
2
6
7

9
7

−3
4

1
0
3

−1∣ 32. ∣9247 −4
7
1
3

2
6

−2
4

5
−5

0
10∣
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33. ∣1334 −2
−4

6
5

7
5
1
3

9
5

−1
2∣

34. ∣ 0
9

−5
−8

−4
2
7
0

9
−2

0
0

3
7

11
16∣

35. ∣1
2
2
0
0

−1
6
0
2
1

8
0
2
8
1

4
−4

6
0
2

2
3
2
0
2∣

36. ∣ 3
−1

5
4
1

−2
0

−1
7
2

4
2
0

−8
3

3
1
3
0
0

1
0
2
0
2∣

true or false? In Exercises 37 and 38, determine 
whether each statement is true or false. If a statement 
is true, give a reason or cite an appropriate statement 
from the text. If a statement is false, provide an example 
that shows the statement is not true in all cases or cite an 
appropriate statement from the text.

37. (a)  Interchanging two rows of a square matrix changes 
the sign of its determinant.

 (b)  Multiplying a column of a square matrix by a 
nonzero constant results in the determinant being 
multiplied by the same nonzero constant.

 (c)  If two rows of a square matrix are equal, then its 
determinant is 0.

38. (a)  Adding a multiple of one column of a square matrix  
to another column changes only the sign of the 
determinant.

 (b)  Two matrices are column-equivalent when one 
matrix can be obtained by performing elementary 
column operations on the other.

 (c)  If one row of a square matrix is a multiple of another 
row, then the determinant is 0.

finding the Determinant of an Elementary matrix In 
Exercises 39–42, find the determinant of the  
elementary matrix. (Assume k ≠ 0.)

39. [
1
0
0

0
k
0

0
0
1] 40. [

0
0
1

0
1
0

1
0
0]

41. [
1
k
0

0
1
0

0
0
1] 42. [

1
0
0

0
1
k

0
0
1]

43. proof Prove the property.

  ∣a11

a21

a31

a12

a22

a32

a13

a23

a33∣ + ∣b11

b21

b31

a12

a22

a32

a13

a23

a33∣ = ∣(a11 + b11)
(a21 + b21)
(a31 + b31)

a12  a13

a22  a23

a32  a33∣
44. proof Prove the property.

∣1 + a
1
1

1
1 + b

1

1
1

1 + c∣ = abc(1 +
1
a

+
1
b

+
1
c),

a ≠ 0, b ≠ 0, c ≠ 0

45. Find each determinant.

 (a) ∣ cos θ
−sin θ

sin θ
cos θ∣ (b) ∣sin θ

1
1

sin θ∣
46.  CAPSTONE Evaluate each determinant 

when a = 1, b = 4, and c = −3.

 (a) ∣0a0 b
0
0

0
0
c∣ (b) ∣a0b 0

c
0

1
0

−16∣
47.  Guided proof Prove Property 2 of Theorem 3.3: 

When B is obtained from A by adding a multiple of a 
row of A to another row of A, det(B) = det(A).

  Getting Started: To prove that the determinant of B is 
equal to the determinant of A, you need to show that 
their respective cofactor expansions are equal.

 (i)  Begin by letting B be the matrix obtained by adding 
c times the jth row of A to the ith row of A.

 (ii)  Find the determinant of B by expanding in this  
ith row.

 (iii)  Distribute and then group the terms containing  
a coefficient of c and those not containing a  
coefficient of c.

 (iv)  Show that the sum of the terms not containing a 
coefficient of c is the determinant of A, and the 
sum of the terms containing a coefficient of c is 
equal to 0.

48.  Guided proof Prove Property 3 of Theorem 3.3: 
When B is obtained from A by multiplying a row of A 
by a nonzero constant c, det(B) = c det(A).

  Getting Started: To prove that the determinant of B is 
equal to c times the determinant of A, you need to show 
that the determinant of B is equal to c times the cofactor 
expansion of the determinant of A.

 (i)  Begin by letting B be the matrix obtained by  
multiplying c times the ith row of A.

 (ii)  Find the determinant of B by expanding in this  
ith row.

 (iii) Factor out the common factor c.

 (iv) Show that the result is c times the determinant of A.
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126 Chapter 3 Determinants

3.3 Properties of Determinants

  Find the determinant of a matrix product and a scalar multiple of  
a matrix.

  Find the determinant of an inverse matrix and recognize equivalent 
conditions for a nonsingular matrix.

 Find the determinant of the transpose of a matrix.

Matrix ProDucts anD scalar MultiPles

In this section, you will learn several important properties of determinants. You will 
begin by considering the determinant of the product of two matrices.

 the Determinant of a Matrix Product

Find ∣A∣, ∣B∣, and ∣AB∣ for the matrices

A = [
1
0
1

−2
3
0

2
2
1]  and  B = [

2
0
3

0
−1

1

1
−2
−2].

solution

∣A∣ and ∣B∣ have the values

∣A∣ = ∣101 −2
3
0

2
2
1∣ = −7  and  ∣B∣ = ∣203 0

−1
1

1
−2
−2∣ = 11.

The matrix product AB is

AB = [
1
0
1

−2
3
0

2
2
1] [

2
0
3

0
−1

1

1
−2
−2] = [

8
6
5

4
−1

1

1
−10
−1].

Finally,

∣AB∣ = ∣865 4
−1

1

1
−10
−1∣ = −77. 

In Example 1, note that ∣AB∣ = ∣A∣∣B∣, or −77 = (−7)(11). This is true in general.

Proof

To begin, observe that if E is an elementary matrix, then, by Theorem 3.3, the next three 
statements are true. If you obtain E from I by interchanging two rows, then ∣E∣ = −1. 
If you obtain E by multiplying a row of I by a nonzero constant c, then ∣E∣ = c.  
If you obtain E by adding a multiple of one row of I to another row of I, then ∣E∣ = 1. 
Additionally, by Theorem 2.12, if E results from performing an elementary row  
operation on I and the same elementary row operation is performed on B, then the 
matrix EB results. It follows that ∣EB∣ = ∣E∣ ∣B∣.

tHeoreM 3.5  Determinant of a Matrix Product

If A and B are square matrices of order n, then det(AB) = det(A) det(B).

reMarK
Theorem 3.5 can be extended 
to include the product of any 
finite number of matrices.  
That is,

∣A1A2A3 .  .  . Ak∣
= ∣A1∣∣A2∣∣A3∣ .  .  . ∣Ak∣.
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This can be generalized to conclude that ∣Ek .  .  . E2E1B∣ = ∣Ek∣ .  .  . ∣E2∣∣E1∣∣B∣, 
where Ei is an elementary matrix. Now consider the matrix AB. If A is nonsingular, 
then, by Theorem 2.14, it can be written as the product A = Ek .  .  . E2E1, and

 ∣AB∣ = ∣Ek .  .  . E2E1B∣
 = ∣Ek∣ .  .  . ∣E2∣∣E1∣∣B∣
 = ∣Ek .  .  . E2E1∣∣B∣
 = ∣A∣∣B∣.

If A is singular, then A is row-equivalent to a matrix with an entire row of zeros. 
From Theorem 3.4, ∣A∣ = 0. Moreover, it follows that AB is also singular. (If AB were  
nonsingular, then A[B(AB)−1] = I would imply that A is nonsingular.) So, ∣AB∣ = 0,
and you can conclude that ∣AB∣ = ∣A∣∣B∣. 

The next theorem shows the relationship between ∣A∣ and ∣cA∣.

Proof

This formula can be proven by repeated applications of Property 3 of Theorem 3.3. 
Factor the scalar c out of each of the n rows of ∣cA∣ to obtain ∣cA∣ = cn∣A∣. 

  the Determinant of a scalar  
Multiple of a Matrix

Find the determinant of the matrix.

A = [
10 
30 

−20 

−20
0

−30

40
50
10]

solution

A = 10[
1
3

−2

−2
0

−3

4
5
1]  and  ∣ 1

3
−2

−2
0

−3

4
5
1∣ = 5

so apply Theorem 3.6 to conclude that

∣A∣ = 103∣ 1
3

−2

−2
0

−3

4
5
1∣ = 1000(5) = 5000. 

Theorems 3.5 and 3.6 give formulas for the determinants of the product of two 
matrices and a scalar multiple of a matrix. These theorems do not, however, give a  
formula for the determinant of the sum of two matrices. The sum of the determinants 
of two matrices usually does not equal the determinant of their sum. That is, in general, 

∣A∣ + ∣B∣ ≠ ∣A + B∣. For example, if

A = [6
2

2
1]  and  B = [3

0
7

−1]
then ∣A∣ = 2 and ∣B∣ = −3, but A + B = [9

2
9
0] and ∣A + B∣ = −18.

tHeoreM 3.6  Determinant of a scalar Multiple of a Matrix

If A is a square matrix of order n and c is a scalar, then the determinant of cA is 

det(cA) = cn det(A).
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DeterMinants anD tHe inVerse of a Matrix

It can be difficult to tell simply by inspection whether a matrix has an inverse. Can you 
tell which of the matrices below is invertible?

A = [
0
3
3

2
−2

2

−1
1

−1]  or  B = [
0
3
3

2
−2

2

−1
1
1]

The next theorem suggests that determinants are useful for classifying square matrices 
as invertible or noninvertible.

Proof

To prove the theorem in one direction, assume A is invertible. Then AA−1 = I, and 
by Theorem 3.5 you can write ∣A∣∣A−1∣ = ∣I∣. Now, ∣I∣ = 1, so you know that neither 
determinant on the left is zero. Specifically, ∣A∣ ≠ 0.

To prove the theorem in the other direction, assume the determinant of A is nonzero. 
Then, using Gauss-Jordan elimination, find a matrix B, in reduced row-echelon form, 
that is row-equivalent to A. The matrix B must be the identity matrix I or it must have 
at least one row that consists entirely of zeros, because B is in reduced row-echelon 
form. But if B has a row of all zeros, then by Theorem 3.4 you know that ∣B∣ = 0,
which would imply that ∣A∣ = 0. You assumed that ∣A∣ is nonzero, so you can conclude 
that B = I. The matrix A is, therefore, row-equivalent to the identity matrix, and by 
Theorem 2.15 you know that A is invertible. 

  classifying square Matrices
as singular or nonsingular

Determine whether each matrix has an inverse.

a. [
0
3
3

2
−2

2

−1
1

−1] b. [
0
3
3

2
−2

2

−1
1
1]

solution

a. ∣033 2
−2

2

−1
1

−1∣ = 0

 so this matrix has no inverse (it is singular).

b. ∣033 2
−2

2

−1
1
1∣ = −12 ≠ 0

 so this matrix has an inverse (it is nonsingular). 

The next theorem provides a way to find the determinant of an inverse matrix.

tHeoreM 3.7  Determinant of an invertible Matrix

A square matrix A is invertible (nonsingular) if and only if det(A) ≠ 0.

tHeoreM 3.8  Determinant of an inverse Matrix

If A is an n × n invertible matrix, then det(A−1) =
1

det(A).

DISCOVERY
Let 

A = [
6
0
1

4
2
1

1
3
2].

1.  Use a software 
program or a 
graphing utility 
to find A−1.

2.  Compare det(A−1) with 
det(A).

3.  Make a conjecture 
about the determinant 
of the inverse of 
a matrix.
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Proof

The matrix A is invertible, so AA−1 = I, and using Theorem 3.5, ∣A∣∣A−1∣ = ∣I∣ = 1. 
By Theorem 3.7, you know that ∣A∣ ≠ 0, so you can divide each side by ∣A∣ to obtain

∣A−1∣ =
1

∣A∣. 

 the Determinant of the inverse of a Matrix

Find ∣A−1∣ for the matrix

A = [
1
0
2

0
−1

1

3
2
0].

solution

One way to solve this problem is to find A−1 and then evaluate its determinant. It is  
easier, however, to apply Theorem 3.8, as shown below. Find the determinant of A,

∣A∣ = ∣102 0
−1

1

3
2
0∣ = 4

and then use the formula ∣A−1∣ = 1�∣A∣ to conclude that ∣A−1∣ = 1
4.  

Note that Theorem 3.7 provides another equivalent condition that can be added to 
the list in Theorem 2.15, as shown below.

 systems of linear equations

Which of the systems has a unique solution?

a.
 

2x2

3x1 − 2x2

3x1 + 2x2

− x3 =
+ x3 =
− x3 =

−1
4

−4
 

b.
 3x1 −
3x1 +

2x2 − x3 =
2x2 + x3 =
2x2 + x3 =

−1
4

−4

solution

From Example 3, you know that the coefficient matrices for these two systems have the 
determinants shown below.

a. ∣033 2
−2

2

−1
1

−1∣ = 0 b. ∣033 2
−2

2

−1
1
1∣ = −12

Using the preceding list of equivalent conditions, you can conclude that only the 
second system has a unique solution. 

equivalent conditions for a nonsingular Matrix

If A is an n × n matrix, then the statements below are equivalent.

1. A is invertible.
2. Ax = b has a unique solution for every n × 1 column matrix b.
3. Ax = O has only the trivial solution.
4. A is row-equivalent to In.
5. A can be written as the product of elementary matrices.
6. det(A) ≠ 0

reMarK
The inverse of A is

A−1 = [
−1

2

1
1
2

3
4

−3
2

−1
4

3
4

−1
2

−1
4
].

Evaluate the determinant  
of this matrix directly. Then 
compare your answer with  
that obtained in Example 4.

reMarK
In Section 3.2, you saw that  
a square matrix A has a  
determinant of zero when A is 
row-equivalent to a matrix that 
has at least one row consisting 
entirely of zeros. The validity 
of this statement follows from 
the equivalence of Statements 
4 and 6.
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DeterMinants anD tHe transPose of a Matrix

The next theorem tells you that the determinant of the transpose of a square matrix 
is equal to the determinant of the original matrix. This theorem can be proven using 
mathematical induction and Theorem 3.1, which states that a determinant can be 
evaluated using cofactor expansion in a row or a column. The details of the proof are 
left to you. (See Exercise 66.)

 the Determinant of a transpose

See LarsonLinearAlgebra.com for an interactive version of this type of example.

Show that ∣A∣ = ∣AT∣ for the matrix below.

A = [
3
2

−4

1
0

−1

−2
0
5]

solution

To find the determinant of A, expand by cofactors in the second row to obtain

 ∣A∣ = 2(−1)3∣ 1
−1

−2
5∣

 = (2)(−1)(3)
 = −6.

To find the determinant of

AT = [
3
1

−2

2
0
0

−4
−1

5]
expand by cofactors in the second column to obtain

 ∣AT∣ = 2(−1)3∣ 1
−2

−1
5∣

 = (2)(−1)(3)

 = −6. 

tHeoreM 3.9  Determinant of a transpose

If A is a square matrix, then

det(A) = det(AT ).

William Perugini/Shutterstock.com 

linear
alGeBra
aPPlieD

Systems of linear differential equations often arise in 
engineering and control theory. For a function f (t) that is 
defined for all positive values of t, the laplace transform 
of f (t) is

F(s) = ∫∞

0
e−stf (t)dt

provided that the improper integral exists. Laplace 
transforms and Cramer’s Rule, which uses determinants 
to solve a system of linear equations, can sometimes be 
used to solve a system of differential equations. You will 
study Cramer’s Rule in the next section.
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3.3 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

the Determinant of a Matrix Product In Exercises 
1–6, find (a) ∣A∣, (b) ∣B∣, (c) AB, and (d) ∣AB∣. Then 
verify that ∣A∣∣B∣ = ∣AB∣.
 1. A = [−2

4
1

−2],  B = [1
0

1
−1]

 2. A = [3
4

4
3],  B = [2

5
−1

0]

 3. A = [
−1

1
0

2
0
1

1
1
0],  B = [

−1
0
0

0
2
0

0
0
3]

 4. A = [
2
1
3

0
−1

1

1
2
0],  B = [

2
0
3

−1
1

−2

4
3
1]

 5. A = [
2
1
2
1

0
−1

3
2

1
0
1
3

1
1
0
0
],  B = [

1
2
1
3

0
1
1
2

−1
0

−1
1

1
2
0
0
]

 6. A = [
2
1
0
1

4
−2

0
−1

7
1
2
1

0
1
1
0
],

 B = [
6

−1
0
0

1
2
0
0

−1
1
1
0

0
1
2

−1
]

the Determinant of a scalar Multiple of a Matrix 
In Exercises 7–14, use the fact that ∣cA∣ = cn∣A∣ to  
evaluate the determinant of the n × n matrix.

 7. A = [ 5
10

15
−20]  8. A = [21

28
7

−56]

 9. A = [
−3

6
9

6
9

12

9
12
15] 10. A = [

4
12
16

16
−8
20

0
8

−4]
11. A = [

2
−4

6

−4
6

−8

6
−8
10] 12. A = [

40
30
15

25
5

35

10
20
45]

13. A = [
5
0

−10
0

0
5
0

−20

−15
0
5
0

0
0
0
5
]

14. A = [
0

−16
8

−8

16
8

−24
32

−8
−8

8
0

−32
16

−8
32

]

the Determinant of a Matrix sum In Exercises 15–18,  
find (a) ∣A∣, (b) ∣B∣, (c) A + B, and (d) ∣A + B∣. Then 
verify that ∣A∣ + ∣B∣ ≠ ∣A + B∣.
15. A = [−1

2
1
0],  B = [ 1

−2
−1

0]
16. A = [1

1
−2

0],  B = [3
0

−2
0]

17. A = [
−1

0
1

1
1
1

2
1

−1],  B = [
1

−1
0

0
1
1

1
2
2]

18. A = [
0
1
2

1
−1

1

2
0
1],  B = [

0
2
0

1
1
1

−1
1
1]

classifying Matrices as singular or nonsingular 
In Exercises 19–24, use a determinant to decide whether 
the matrix is singular or nonsingular.

19. [ 5
10

4
8] 20. [3

4
−6

2]

21. [
1
2
2
3

1

3
2

−1
3

1

2

0

1
] 22. [

14
−15

1

5 
 0 

−5 

7
3

−10]
23. [

1
0
0
0

0
8
0
0

−8
−1

0
0

2
10
1
2
] 24. [

0.8
−1.2

0.7
0.2

0.2
0.6

−0.3
−0.3

−0.6
0.6
0.1
0.6

0.1  
0  
0  
0  
]

the Determinant of the inverse of a Matrix 
In Exercises 25–30, find ∣A−1∣. Begin by finding A−1, 
and then evaluate its determinant. Verify your result  
by finding ∣A∣ and then applying the formula from 

Theorem 3.8, ∣A−1∣ =
1

∣A∣.

25. A = [2
1

3
4] 26. A = [1

2
−2

2]

27. A = [
2
1
3

−2
−1

0

3
2
3] 28. A = [

1
2
1

0
−1
−2

1
2
3]

29. A = [
1
1
2
1

0
0
0

−3

−1
3
2
1

3
−2
−1

2
]

30. A = [
0
1
0
1

1
−2

0
−2

0
−3

2
−4

3
1

−2
1
]
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132 Chapter 3 Determinants

system of linear equations In Exercises 31–36, use the  
determinant of the coefficient matrix to determine whether  
the system of linear equations has a unique solution.

31.
 

x1 −
2x1 +

3x2 = 2
x2 = 1

 
32.

 
3x1 −
2
3x1 −

4x2 = 2
8
9x2 = 1

33.
 

x1 −
2x1 −
3x1 −

x2 +
x2 +

2x2 +

x3 = 4
x3 = 6

2x3 = 0

34.
 

x1 +
2x1 −
3x1 −

x2 −
x2 +

2x2 +

x3 = 4
x3 = 6

2x3 = 0

35.

 

2x1 +
x1 +

2x1 +
x1 +

x2 +
x2 −

2x2 +
5x2 −

5x3 +
3x3 −
2x3 −
6x3      

x4 =
4x4 =
3x4 =

=

5
−1

2
3

36.

 

x1 − x2 − x3 − x4 = 0
x1 + x2 − x3 − x4 = 0
x1 + x2 + x3 − x4 = 0
x1 + x2 + x3 + x4 = 6

singular Matrices In Exercises 37–42, find the value(s) 
of k such that A is singular.

37. A = [k − 1
2

3
k − 2] 38. A = [k − 1

2
2

k + 2]

39. A = [
1
2
4

0
−1

2

3
0
k] 40. A = [

1
−2

3

k
0
1

2
−k
−4]

41. A = [
0
k
1

k
1
k

1
k
0] 42. A = [

k
−2

k

−3
k
1

−k
1
0]

finding Determinants In Exercises 43–50, find  
(a) ∣AT∣, (b) ∣A2∣, (c) ∣AAT∣, (d) ∣2A∣, and (e) ∣A−1∣.
43. A = [6

4
−11
−5] 44. A = [−4

5
10
6]

45. A = [
5
1
0

0
−3
−1

0
0
2] 46. A = [

1
0
0

5
−6

0

4
2

−3]
47. A = [

2
4
3

0
−1

2

5
6
1] 48. A = [

4
−1
−3

1
0
3

9
−2

0]
49. A = [

−3
0
0
0

0
2
0
0

0
0
1
0

0
0
0
5
]

50. A = [
2
0
0
1

0
−3

0
0

0
0
4
0

1
0
0
1
]

finding Determinants In Exercises 51–56, use a  
software program or a graphing utility to find (a) ∣A∣,  
(b) ∣AT∣, (c) ∣A2∣, (d) ∣2A∣, and (e) ∣A−1∣.
51. A = [ 4

−1
2
5] 52. A = [−2

6
4
8]

53. A = [
3
2

−3

1
−1

1

−2
3
2]

54. A = [
3
4
2
3

−1
4

2
3

1
1
3

−1
4
1
3
3
4

]
55. A = [

4
3
6
2

−2
8
8
3

1
2
9

−1

5
−1

2
0
]

56. A = [
6

−2
6
2

5
4
1
2

1
3

−4
1

−1
5

−2
3
]

57.  Let A and B be square matrices of order 4 such that  

∣A∣ = −5 and ∣B∣ = 3. Find (a) ∣A2∣, (b) ∣B2∣, (c) ∣A3∣, 
and (d) ∣B4∣.

58.  CAPSTONE Let A and B be square matrices 
of order 3 such that ∣A∣ = 4 and ∣B∣ = 5.

(a) Find ∣AB∣.    (b) Find ∣2A∣.
(c) Are A and B singular or nonsingular? Explain.

(d) If A and B are nonsingular, find ∣A−1∣ and ∣B−1∣.
(e) Find ∣(AB)T∣.

59.  Proof Let A and B be n × n matrices such that 
AB = I. Prove that ∣A∣ ≠ 0 and ∣B∣ ≠ 0.

60.  Proof Let A and B be n × n matrices such that AB  
is singular. Prove that either A or B is singular.

61. Find two 2 × 2 matrices such that ∣A∣ + ∣B∣ = ∣A + B∣.
62. Verify the equation.

∣a + b
a
a

a
a + b

a

a
a

a + b∣ = b2(3a + b)

63.  Let A be an n × n matrix in which the entries of each 
row sum to zero. Find ∣A∣.

64. Illustrate the result of Exercise 63 with the matrix

A = [
2

−3
0

−1
1

−2

−1
2
2].
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65.  Guided Proof Prove that the determinant of an 
invertible matrix A is equal to ±1 when all of the entries 
of A and A−1 are integers.

  Getting Started: Denote det(A) as x and det(A−1) as y. 
Note that x and y are real numbers. To prove that det(A) 
is equal to ±1, you must show that both x and y are  
integers such that their product xy is equal to 1.

 (i)  Use the property for the determinant of a matrix 
product to show that xy = 1.

 (ii)  Use the definition of a determinant and the fact that 
the entries of A and A−1 are integers to show that  
both x = det(A) and y = det(A−1) are integers.

 (iii)  Conclude that x = det(A) must be either 1 or −1 
because these are the only integer solutions to the 
equation xy = 1.

66.  Guided Proof Prove Theorem 3.9: If A is a square 
matrix, then det(A) = det(AT).

  Getting Started: To prove that the determinants of A 
and AT are equal, you need to show that their cofactor 
expansions are equal. The cofactors are ±  determinants 
of smaller matrices, so you need to use mathematical 
induction.

 (i) Initial step for induction: If A is of order 1, then 

  A = [a11] = AT

  so

  det(A) = det(AT ) = a11.

 (ii)  Assume the inductive hypothesis holds for all 
matrices of order n − 1. Let A be a square matrix 
of order n. Write an expression for the determinant 
of A by expanding in the first row.

 (iii)  Write an expression for the determinant of AT by 
expanding in the first column.

 (iv)  Compare the expansions in (ii) and (iii). The 
entries of the first row of A are the same as  
the entries of the first column of AT. Compare 
cofactors (these are the ±  determinants of smaller 
matrices that are transposes of one another) and 
use the inductive hypothesis to conclude that they 
are equal as well.

67.  Writing Let A and P be n × n matrices, where P is 
invertible. Does P−1AP = A? Illustrate your conclusion 
with appropriate examples. What can you say about the 
two determinants ∣P−1AP∣ and ∣A∣?

68.  Writing Let A be an n × n nonzero matrix  
satisfying A10 = O. Explain why A must be singular.  
What properties of determinants are you using in your  
argument?

69.  Proof A square matrix is skew-symmetric when  
AT = −A. Prove that if A is an n × n skew-symmetric 
matrix, then ∣A∣ = (−1)n∣A∣.

70.  Proof Let A be a skew-symmetric matrix of odd order. 
Use the result of Exercise 69 to prove that ∣A∣ = 0.

true or false? In Exercises 71 and 72, determine 
whether each statement is true or false. If a statement is 
true, give a reason or cite an appropriate statement from 
the text. If a statement is false, provide an example that 
shows that the statement is not true in all cases or cite an 
appropriate statement from the text.

71. (a)  If A is an n × n matrix and c is a nonzero scalar, 
then the determinant of the matrix cA is nc ∙ det(A).

 (b)  If A is an invertible matrix, then the determinant of 
A−1 is equal to the reciprocal of the determinant of A.

 (c)  If A is an invertible n × n matrix, then Ax = b has 
a unique solution for every b.

72. (a)  The determinant of the sum of two matrices equals 
the sum of the determinants of the matrices.

 (b)  If A and B are square matrices of order n, and 
det(A) = det(B), then det(AB) = det(A2).

 (c)  If the determinant of an n × n matrix A is nonzero, 
then Ax = O has only the trivial solution.

orthogonal Matrices In Exercises 73–78, determine 
whether the matrix is orthogonal. An invertible square 
matrix A is orthogonal when A−1 = AT.

73. [0
1

1
0] 74. [1

1
0
1]

75. [ 1
−1

−1
−1] 76. [ 1�√2

−1�√2
−1�√2
−1�√2]

77. [
1
0
0

0
0
1

0
1
0] 78. [

1�√2

0

1�√2

0    

1    

0    

−1�√2

0

1�√2
]

79.  Proof Prove that the n × n identity matrix is  
orthogonal.

80. Proof Prove that if A is an orthogonal matrix, then

∣A∣ = ±1.

orthogonal Matrices In Exercises 81 and 82, use a 
graphing utility to determine whether A is orthogonal. 
Then verify that ∣A∣ = ±1.

81. A = [
3
5

0
4
5

0

1

0

−4
5

0
3
5
] 82. A = [

2
3
2
3
1
3

−2
3
1
3
2
3

1
3

−2
3
2
3
]

83.  Proof If A is an idempotent matrix (A2 = A), then 
prove that the determinant of A is either 0 or 1.

84.  Proof Let S be an n × n singular matrix. Prove that 
for any n × n matrix B, the matrix SB is also singular.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



134 Chapter 3 Determinants

3.4 Applications of Determinants

  Find the adjoint of a matrix and use it to find the inverse of  
the matrix.

  Use Cramer’s Rule to solve a system of n linear equations in  
n variables.

  Use determinants to find area, volume, and the equations of  
lines and planes.

The AdjoinT of A MATrix

So far in this chapter, you have studied procedures for evaluating, and properties of, 
determinants. In this section, you will study an explicit formula for the inverse of a  
nonsingular matrix and use this formula to prove a theorem known as Cramer’s Rule. 
You will also use Cramer’s Rule to solve systems of linear equations, and study several 
other applications of determinants.

Recall from Section 3.1 that the cofactor Cij of a square matrix A is (−1)i+ j times 
the determinant of the matrix obtained by deleting the ith row and jth column of A. The 
matrix of cofactors of A has the form

[
C11

C21

⋮
Cn1

C12

C22

⋮
Cn2

.  .  .

.  .  .

.  .  .

C1n

C2n

⋮
Cnn

].

The transpose of this matrix is the adjoint of A and is denoted adj(A). That is,

adj(A) = [
C11

C12

⋮
C1n

C21

C22

⋮
C2n

.  .  .

.  .  .

.  .  .

Cn1

Cn2

⋮
Cnn

].

 finding the Adjoint of a Square Matrix

Find the adjoint of A = [
−1

0
1

3
−2

0

2
1

−2].

SoluTion

The cofactor C11 is

[
−1

0
1

3
−2

0

2
1

−2]  C11 = (−1)2∣−2
0

1
−2∣ = 4.

Continuing this process produces the matrix of cofactors of A shown below.

[
4
6
7

1
0
1

2
3
2]

The transpose of this matrix is the adjoint of A. That is, adj(A) = [
4
1
2

6
0
3

7
1
2]. 
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The adjoint of a matrix A can be useful for finding the inverse of A, as shown in 
the next theorem.

TheoreM 3.10 The inverse of a Matrix using its Adjoint

If A is an n × n invertible matrix, then A−1 =
1

det(A)adj(A).

proof

 Begin by proving that the product of A and its adjoint is equal to the product of the 
determinant of A and In. Consider the product

A[adj(A)] = [
a11

a21

⋮
ai1

⋮
an1

a12

a22

⋮
ai2

⋮
an2

.  .  .

.  .  .

.  .  .

.  .  .

a1n

a2n

⋮
ain

⋮
ann

][C11

C12

⋮
C1n

C21

C22

⋮
C2n

.  .  .

.  .  .

.  .  .

Cj1

Cj2

⋮
Cjn

.  .  .

.  .  .

.  .  .

Cn1

Cn2

⋮
Cnn

].

The entry in the ith row and jth column of this product is

ai1Cj1 + ai2Cj2 + .  .  . + ainCjn.

If i = j, then this sum is simply the cofactor expansion of A in its ith row, which means 
that the sum is the determinant of A. On the other hand, if i ≠ j, then the sum is zero. 
(Verify this.)

A[adj(A)] = [
det(A)

0

⋮
0

0
det(A)

⋮
0

.  .  .

.  .  .

.  .  .

0
0

⋮
det(A)

] = det(A)I

The matrix A is invertible, so det(A) ≠ 0 and you can write

1
det(A)A[adj(A)] = I or A[ 1

det(A)adj(A)] = I.

By Theorem 2.7 and the definition of the inverse of a matrix, it follows that

1
det(A)adj(A) = A−1. 

  using the Adjoint of a Matrix  
to find its inverse

Use the adjoint of A to find A−1, where A = [
−1

0
1

3
−2

0

2
1

−2].

SoluTion

 The determinant of this matrix is 3. Using the adjoint of A (found in Example 1), the 
inverse of A is

A−1 =
1

∣A∣adj(A) = 1
3[

4
1
2

6
0
3

7
1
2] = [

4
3
1
3
2
3

2

0

1

7
3
1
3
2
3

].

Check that this matrix is the inverse of A by showing that AA−1 = I = A−1A. 

reMArK
Theorem 3.10 is not particularly 
efficient for finding the inverse 
of a matrix. The Gauss-Jordan 
elimination method discussed 
in Section 2.3 is much more  
efficient. Theorem 3.10 is 
theoretically useful, however, 
because it provides a concise 
formula for the inverse of  
a matrix.

reMArK
If A is a 2 × 2 matrix 

A = [a
c

b
d], then the adjoint 

of A is simply

adj(A) = [ d
−c

−b
a].

Moreover, if A is invertible, 
then from Theorem 3.10 you 
have

 A−1 =
1

∣A∣adj(A)

 =
1

ad − bc[
d

−c
−b

a]
which agrees with the formula 
given in Section 2.3.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



136 Chapter 3 Determinants

CrAMer’S rule

Cramer’s Rule, named after Gabriel Cramer (1704–1752), uses determinants to solve 
a system of n linear equations in n variables. This rule applies only to systems with 
unique solutions. To see how Cramer’s Rule works, take another look at the solution 
described at the beginning of Section 3.1. There, it was pointed out that the system

a11x1

a21x1

+
+

a12x2

a22x2

=
=

b1

b2

has the solution

x1 =
b1a22 − b2a12

a11a22 − a21a12
 and x2 =

b2a11 − b1a21

a11a22 − a21a12

when a11a22 − a21a12 ≠ 0. A determinant can represent each numerator and denominator 
in this solution, as shown below.

x1 =
∣b1

b2

a12

a22∣
∣a11

a21

a12

a22∣, x2 =
∣a11

a21

b1

b2∣
∣a11

a21

a12

a22∣, a11a22 − a21a12 ≠ 0

The denominator for x1 and x2 is simply the determinant of the coefficient matrix A 
of the original system. The numerators for x1 and x2 are formed by using the column  
of constants as replacements for the coefficients of x1 and x2 in ∣A∣. These two  
determinants are denoted by ∣A1∣ and ∣A2∣, as shown below.

∣A1∣ = ∣b1

b2

a12

a22∣ and ∣A2∣ = ∣a11

a21

b1

b2∣
You have x1 = ∣A1∣

∣A∣  and x2 = ∣A2∣
∣A∣ . This determinant form of the solution is called

Cramer’s Rule.

  using Cramer’s rule

Use Cramer’s Rule to solve the system of linear equations.

4x1

3x1

−
−

2x2

5x2

=
=

10
11

SoluTion

First find the determinant of the coefficient matrix.

∣A∣ = ∣43 −2
−5∣ = −14

The determinant is nonzero, so you know the system has a unique solution, and  
applying Cramer’s Rule produces

x1 = ∣A1∣
∣A∣ = ∣10

11
−2
−5∣

−14
=

−28
−14

= 2

and

x2 = ∣A2∣
∣A∣ = ∣43 10

11∣
−14

=
14

−14
= −1.

The solution is x1 = 2 and x2 = −1. 
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Cramer’s Rule generalizes to systems of n linear equations in n variables. The value 
of each variable is the quotient of two determinants. The denominator is the determinant 
of the coefficient matrix, and the numerator is the determinant of the matrix formed by 
replacing the column corresponding to the variable being solved for with the column 
representing the constants. For example, x3 in the system

a11x1

a21x1

a31x1

+
+
+

a12x2

a22x2

a32x2

+
+
+

a13x3

a23x3

a33x3

=
=
=

b1

b2

b3

 is x3 = ∣A3∣
∣A∣ = ∣a11

a21

a31

a12

a22

a32

b1

b2

b3∣
∣a11

a21

a31

a12

a22

a32

a13

a23

a33∣.
TheoreM 3.11 Cramer’s rule

If a system of n linear equations in n variables has a coefficient matrix A with a 
nonzero determinant ∣A∣, then the solution of the system is 

x1 =
det(A1)
det(A) , x2 =

det(A2)
det(A) , .  .  . , xn =

det(An)
det(A)

where the ith column of Ai is the column of constants in the system of equations.

proof

Let the system be represented by AX = B. The determinant of A is nonzero, so you 
can write 

X = A−1B =
1

∣A∣adj(A)B = [x1  x2  .  .  .  xn]T.

If the entries of B are b1, b2, .  .  . , bn, then x1 =
1

∣A∣(b1C1i + b2C2i + .  .  . + bnCni),

but the sum (in parentheses) is precisely the cofactor expansion of Ai, which means that  
xi = ∣Ai∣�∣A∣, and the proof is complete. 

 
using Cramer’s rule

See LarsonLinearAlgebra.com for an interactive version of this type of example.

Use Cramer’s Rule to solve the system of linear equations for x.

−x
2x
3x

+

−

2y

4y

−
+
+

3z
z

4z

=
=
=

1
0
2

SoluTion

The determinant of the coefficient matrix is ∣A∣ = ∣−1
2
3

2
0

−4

−3
1
4∣ = 10.

The determinant is nonzero, so you know that the solution is unique. Apply Cramer’s 
Rule to solve for x, as shown below.

x = ∣102 2
0

−4

−3
1
4∣

10
=

(1)(−1)5∣12 2
−4∣

10
=

(1)(−1)(−8)
10

= 4
5

 

reMArK
Apply Cramer’s Rule to solve 
for y  and z. You will see that 
the solution is y = −3

2 and 
z = −8

5.
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138 Chapter 3 Determinants

AreA, VoluMe, And equATionS of lineS And plAneS

Determinants have many applications in analytic geometry. One application is in  
finding the area of a triangle in the xy-plane.

Area of a Triangle in the xy-plane

The area of a triangle with vertices

(x1, y1), (x2, y2), and (x3, y3)

is 

Area = ±1
2 det[

x1

x2

x3

y1

y2

y3

1
1
1]

where the sign (±) is chosen to give a positive area.

proof

Prove the case for yi > 0. Assume that x1 ≤ x3 ≤ x2 and that (x3, y3) lies above the 
line segment connecting (x1, y1) and (x2, y2), as shown in Figure 3.1. Consider the three 
trapezoids whose vertices are

Trapezoid 1: (x1, 0), (x1, y1), (x3, y3), (x3, 0)
Trapezoid 2: (x3, 0), (x3, y3), (x2, y2), (x2, 0)
Trapezoid 3: (x1, 0), (x1, y1), (x2, y2), (x2, 0).

The area of the triangle is equal to the sum of the areas of the first two trapezoids minus 
the area of the third trapezoid. So,

 Area = 1
2( y1 + y3)(x3 − x1) + 1

2( y3 + y2)(x2 − x3) − 1
2( y1 + y2)(x2 − x1)

 = 1
2(x1y2 + x2y3 + x3y1 − x1y3 − x2y1 − x3y2)

 = 1
2∣x1

x2

x3

y1

y2

y3

1
1
1∣.

If the vertices do not occur in the order x1 ≤ x3 ≤ x2 or if the vertex (x3, y3) is not 
above the line segment connecting the other two vertices, then the formula above  
may yield the negative of the area. So, use ±  and choose the correct sign to give a  
positive area. 

  finding the Area of a Triangle

Find the area of the triangle whose vertices are 

(1, 1), (2, 2), and (4, 3). 

SoluTion

 It is not necessary to know the relative positions of the three vertices. Simply evaluate 
the determinant

1
2∣124 1

2
3

1
1
1∣ = −1

2

and conclude that the area of the triangle is 12 square unit. 

figure 3.1

x

(x3, y3)

(x1, y1)

(x1, 0) (x3, 0) (x2, 0)

(x2, y2)

y
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If the three points in Example 5 had been on the same line, what would have  
happened when you applied the area formula? The answer is that the determinant would 
have been zero. Consider, for example, the three collinear points (0, 1), (2, 2), and 
(4, 3), as shown in Figure 3.2. The determinant that yields the area of the “triangle” that 
has these three points as vertices is

1
2∣024 1

2
3

1
1
1∣ = 0.

If three points in the xy-plane lie on the same line, then the determinant in the formula 
for the area of a triangle is zero, as generalized below.

Test for Collinear points in the xy-plane

Three points (x1, y1), (x2, y2), and (x3, y3) are collinear if and only if

det[
x1

x2

x3

y1

y2

y3

1
1
1] = 0.

The test for collinear points can be adapted to another use. That is, when you are 
given two points in the xy-plane, you can find an equation of the line passing through 
the two points, as shown below.

Two-point form of an equation of a line

An equation of the line passing through the distinct points (x1, y1) and (x2, y2) is

det[
x
x1

x2

    y
    y1

    y2

   1
   1
   1] = 0.

  finding an equation of the line  
passing Through Two points

Find an equation of the line passing through the points 

(2, 4) and (−1, 3).

SoluTion

Let (x1, y1) = (2, 4) and (x2, y2) = (−1, 3). Applying the determinant formula for an 
equation of a line produces

∣ x
2

−1

y
4
3

1
1
1∣ = 0.

To evaluate this determinant, expand by cofactors in the first row.

 x∣43 1
1∣ − y∣ 2

−1
1
1∣ + 1∣ 2

−1
4
3∣ = 0

 x(1) − y(3) + 1(10) = 0

 x − 3y + 10 = 0

So, an equation of the line is x − 3y = −10. 

figure 3.2

x
1 2 3 4

2

3

(2, 2)

(4, 3)

(0, 1)

y
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140 Chapter 3 Determinants

The formula for the area of a triangle in the plane has a straightforward  
generalization to three-dimensional space, which is presented below without proof.

Volume of a Tetrahedron

The volume of a tetrahedron with vertices (x1, y1, z1), (x2, y2, z2), (x3, y3, z3), and 
(x4, y4, z4) is 

Volume = ±1
6det[

x1

x2

x3

x4

y1

y2

y3

y4

z1

z2

z3

z4

1
1
1
1
]

where the sign (±) is chosen to give a positive volume.

 finding the Volume of a Tetrahedron

Find the volume of the tetrahedron shown in Figure 3.3.

SoluTion

Using the determinant formula for the volume of a tetrahedron produces

1
6∣0432 4

0
5
2

1
0
2
5

1
1
1
1∣ = 1

6(−72) = −12.

So, the volume of the tetrahedron is 12 cubic units. 

If four points in three-dimensional space lie in the same plane, then the determinant 
in the formula for the volume of a tetrahedron is zero. So, you have the test shown below.

Test for Coplanar points in Space

Four points (x1, y1, z1), (x2, y2, z2), (x3, y3, z3), and (x4, y4, z4) are coplanar if and 
only if

det[
x1

x2

x3

x4

y1

y2

y3

y4

z1

z2

z3

z4

1
1
1
1
] = 0.

An adaptation of this test is the determinant form of an equation of a plane passing 
through three points in space, as shown below.

Three-point form of an equation of a plane

An equation of the plane passing through the distinct points (x1, y1, z1), (x2, y2, z2), 
and (x3, y3, z3) is

det[
x

x1

x2

x3

y
y1

y2

y3

z
z1

z2

z3

1
1
1
1
] = 0.

figure 3.3

yx

(4, 0, 0)

(2, 2, 5)

(3, 5, 2)

(0, 4, 1)

5

55

z
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3.4 Applications of Determinants 141

  finding an equation of the plane 
passing Through Three points

Find an equation of the plane passing through the points (0, 1, 0), (−1, 3, 2), and
(−2, 0, 1).

SoluTion

 Using the determinant form of an equation of a plane produces

∣ x
0

−1
−2

y
1
3
0

z
0
2
1

1
1
1
1∣ = 0.

To evaluate this determinant, subtract the fourth column from the second column to obtain

∣ x
0

−1
−2

y − 1
0
2

−1

z
0
2
1

1
1
1
1∣ = 0.

Expand by cofactors in the second row.

 x∣ 2
−1

2
1∣ − ( y − 1)∣−1

−2
2
1∣ + z∣−1

−2
2

−1∣ = 0

 x(4) − ( y − 1)(3) + z(5) = 0

This produces the equation 4x − 3y + 5z = −3. 

lineAr
AlGeBrA
Applied

On November 12, 2014, European Space Agency’s Rosetta 
orbiting spacecraft landed the probe Philae on the surface 
of the comet 67P/Churyumov-Gerasimenko. Comets that 
orbit the Sun, such as 67P, follow Kepler’s First Law of 
Planetary Motion. This law states that the orbit is an ellipse, 
with the sun at one focus of the ellipse. The general 
equation of a conic section, such as an ellipse, is

ax2 + bxy + cy2 + dx + ey + f = 0.

To determine the equation of the comet’s orbit, astronomers 
can find the coordinates of the comet at five different 
points (xi, yi), where i = 1, 2, 3, 4, and 5, substitute these 
coordinates into the equation

∣ x2

x2
1

x2
2

x3
2

x4
2

x5
2

xy
  x1y1

x2y2

x3y3

x4y4

x5x5

y2 
y2

1  
y2

2 
y3

2 

y4
2 

y5
2 

x
x1

x2

x3

x4

x5

y
y1

y2

y3

y4

y5

1
1
1
1
1
1∣ = 0

and then expand by cofactors in the first row to find a, b, c, 
d, e, and f. For example, the coefficient of x2 is

a = ∣x1y1

x2y2

x3y3

x4y4

x5y5

y1
2

y2
2

y2
3

y4
2

y5
2

x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

1
1
1
1
1∣.

Knowing the equation of 67P’s orbit helped astronomers 
determine the ideal time to release the probe.

Jet Propulsion Laboratory/NASA 
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3.4 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

finding the Adjoint and inverse of a Matrix In 
Exercises 1–8, find the adjoint of the matrix A. Then use 
the adjoint to find the inverse of A (if possible).

 1. A = [1
3

2
4]  2. A = [−1

0
0
4]

 3. A = [
1
0
0

0
2

−4

0
6

−12]  4. A = [
1
0
2

2
1
2

3
−1

2]
 5. A = [

−3
2
0

−5
4
1

−7
3

−1]  6. A = [
0
1

−1

1
2

−1

1
3

−2]
 7. A = [

−1
3
0

−1

2
−1

0
1

0
4
1
1

1
1
2
2
]

 8. A = [
1
1
1
0

1
1
0
1

1
0
1
1

0
1
1
1
]

using Cramer’s rule In Exercises 9–22, use Cramer’s 
Rule to solve (if possible) the system of linear equations.

 
9.

 
x1

−x1

+
+

2x2

x2

=
=

5
1
 

10.
 
2x
3x

−
+

y
2y

=
=

−10
−1

11.
 
3x
5x

+
+

4y
3y

=
=

−2
4
 

12.
 

18x1

30x1

+
+

12x2

24x2

=
=

13
23

13.
 
20x
12x

+
−

8y
24y

=
=

11
21

 
14.

 
13x
26x

−
−

6y
12y

=
=

17
8

15.
 
−0.4x1

2x1

+
−

0.8x2

4x2

=
=

1.6
5.0

 
16.

 
−0.4x1

0.2x1

+
+

0.8x2

0.3x2

=
=

1.6
0.6

17.
 
4x
2x
5x

−
+
−

y
2y
2y

−
+
−

z
3z
2z

=
=
=

1
10

−1
 

18.
 
4x
2x
8x

−
+
−

2y
2y
5y

+
+
−

3z
5z
2z

=
=
=

−2
16
4

19.
 
3x
4x
6x

+
−
−

4y
4y
6y

+
+

4z
6z

=
=
=

11
11
3

20.
 

14x1

−4x1

56x1

−
+
−

21x2

2x2

21x2

−
−
+

7x3

2x3

7x3

=
=
=

−21
2
7

21.
 
4x1

2x1

5x1

−
+
−

x2

2x2

2x2

+
+
+

x3

3x3

6x3

=
=
=

−5
10
1

22.
 
2x1

3x1

5x1

+
+
+

3x2

5x2

9x2

+
+
+

5x3

9x3

17x3

=
=
=

4
7

13

using Cramer’s rule In Exercises 23–26, use a  
software program or a graphing utility and Cramer’s 
Rule to solve (if possible) the system of linear equations.

23.
 

5
6x1

4
3x1

−

−

x2

7
2x2

=

=

−20

−51

24.
 
−8x1

12x1

15x1

+
+
−

7x2

3x2

9x2

−
−
+

10x3

5x3

2x3

=
=
=

−151
86

187

25.

 

3x1

−x1

2x1

−

+

2x2

2x2

+
−

9x3

9x3

3x3

+
−
+
+

4x4

6x4

x4

8x4

=
=
=
=

35
−17

5
−4

26.

 

−x1

3x1

−2x1

−
+

−

x2

5x2

3x2

+

−

5x3

2x3

3x3

+

+

x4

x4

=
=
=
=

−8
24

−6
−15

27.  Use Cramer’s Rule to solve the system of linear  
equations for x and y.

kx
(1 − k)x

+
+

(1 − k)y
ky

=
=

1
3

 For what value(s) of k will the system be inconsistent?

28.  Verify the system of linear equations in cos A, cos B, 
and cos C for the triangle shown.

c cos A
b cos A +

c cos B
 

a cos B

+
+

b cos C
a cos C

=
=
=

a
b
c

  Then use Cramer’s Rule to 

A

ab

c

C

B

solve for cos C, and use the 
result to verify the Law of 
Cosines,

c2 = a2 + b2 − 2ab cos C.

finding the Area of a Triangle In Exercises 29–32, 
find the area of the triangle with the given vertices.

29. (0, 0), (2, 0), (0, 3) 30. (1, 1), (2, 4), (4, 2)
31. (−1, 2), (2, 2), (−2, 4) 32. (1, 1), (−1, 1), (0, −2)

Testing for Collinear points In Exercises 33–36, 
determine whether the points are collinear.

33. (1, 2), (3, 4), (5, 6)
34. (−1, 0), (1, 1), (3, 3)
35. (−2, 5), (0, −1), (3, −9)
36. (−1, −3), (−4, 7), (2, −13)
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finding an equation of a line In Exercises 37–40, 
find an equation of the line passing through the points.

37. (0, 0), (3, 4) 38. (−4, 7), (2, 4)
39. (−2, 3), (−2, −4) 40. (1, 4), (3, 4)

finding the Volume of a Tetrahedron In Exercises 
41–46, find the volume of the tetrahedron with the given 
vertices.

41. (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)
42. (1, 1, 1), (0, 0, 0), (2, 1, −1), (−1, 1, 2)
43. (3, −1, 1), (4, −4, 4), (1, 1, 1), (0, 0, 1)
44. (0, 0, 0), (0, 2, 0), (3, 0, 0), (1, 1, 4)
45. (−3, −3, −3), (3, −1, −3), (−3, −1, −3), (−2, 3, 2)
46. (5, 4, −3), (4, −6, −4), (−6, −6, −5), (0, 0, 10)

Testing for Coplanar points In Exercises 47–52, 
determine whether the points are coplanar.

47. (−4, 1, 0), (0, 1, 2), (4, 3, −1), (0, 0, 1)
48. (1, 2, 3), (−1, 0, 1), (0, −2, −5), (2, 6, 11)
49. (0, 0, −1), (0, −1, 0), (1, 1, 0), (2, 1, 2)
50. (1, 2, 7), (−3, 6, 6), (4, 4, 2), (3, 3, 4)
51. (−3, −2, −1), (2, −1, −2), (−3, −1, −2), (3, 2, 1)
52. (1, −5, 9), (−1, −5, 9), (1, −5, −9), (−1, −5, −9)

finding an equation of a plane In Exercises 53–58, 
find an equation of the plane passing through the points.

53. (1, −2, 1), (−1, −1, 7), (2, −1, 3)
54. (0, −1, 0), (1, 1, 0), (2, 1, 2)
55. (0, 0, 0), (1, −1, 0), (0, 1, −1)
56. (1, 2, 7), (4, 4, 2), (3, 3, 4)
57. (−4, −4, −4), (4, −1, −4), (−4, −1, −4)
58. (3, 2, −2), (3, −2, 2), (−3, −2, −2)

using Cramer’s rule In Exercises 59 and 60, determine  
whether Cramer’s Rule is used correctly to solve for the 
variable. If not, identify the mistake.

59. 
x

−x
4x

+
+
+

2y
3y
y

+
−
−

z
2z
z

=
=
=

2
4
6
 y = ∣ 1

−1
4

2
3
1

1
−2
−1∣

∣ 1
−1

4

2
4
6

1
−2
−1∣

60. 
5x
3x
2x

−
−
−

2y
3y
y

+
−
−

z
z

7z

=
=
=

15
−7
−3

 x = ∣ 15
−7
−3

−2
−3
−1

1
−1
−7∣

∣532 −2
−3
−1

1
−1
−7∣

61.  Software publishing The table shows the estimated  
revenues (in billions of dollars) of software publishers  
in the United States from 2011 through 2013. 
(Source: U.S. Census Bureau)

 
Year Revenues, y

2011 156.8

2012 161.7

2013 177.2

 (a)  Create a system of linear equations for the data to fit 
the curve 

  y = at2 + bt + c

   where t = 1 corresponds to 2011, and y is the  
revenue.

 (b) Use Cramer’s Rule to solve the system.

 (c)  Use a graphing utility to plot the data and graph  
the polynomial function in the same viewing  
window.

 (d)  Briefly describe how well the polynomial function 
fits the data.

62.  CAPSTONE Consider the system of linear 
equations

 
a1x
a2x

+
+

b1y
b2y

=
=

c1

c2

  where a1, b1, c1, a2, b2, and c2 represent real  
numbers. What must be true about the lines  
represented by the equations when

 ∣a1

a2

b1

b2∣ = 0?

63.  proof Prove that if ∣A∣ = 1 and all entries of A are 
integers, then all entries of ∣A−1∣ must also be integers.

64.  proof Prove that if an n × n matrix A is not invertible, 
then A[adj(A)] is the zero matrix.

proof In Exercises 65 and 66, prove the formula for a 
nonsingular n × n matrix A. Assume n ≥ 2.

65. ∣adj(A)∣ = ∣A∣n−1 66. adj[adj(A)] = ∣A∣n−2A

67.  Illustrate the formula in Exercise 65 using a nonsingular 
2 × 2 matrix A.

68.  Illustrate the formula in Exercise 66 using a nonsingular 
2 × 2 matrix A.

69.  proof Prove that if A is an n × n invertible matrix, 
then adj(A−1) = [adj(A)]−1.

70.  Illustrate the formula in Exercise 69 using a nonsingular 
2 × 2 matrix A.
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3 Review Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

The Determinant of a Matrix In Exercises 1–18, find 
the determinant of the matrix.

 1. [4
2

−1
2]  2. [0

1
−3

2]
 3. [−3

6
1

−2]  4. [−2
0

0
3]

 5. [
−1

0
−1

3
−2
−1

−4
−1

1]  6. [
5
0
0

0
−1

0

2
3
1]

 7. [
−2

0
0

0
−3

0

0
0

−1]  8. [
−15

3
12

0
0
0

4
−5

6]
 9. [

−3
9
0

6
12
15

9
−3
−6] 10. [

−15
3

12

0
9

−3

3
−6

6]
11. [

2
−1

3
−2

0
2
0
0

−1
0
1
3

4
3
2
1
] 12. [

2
−3

4
5

0
1

−1
2

0
0
3
1

0
0
0

−1
]

13. [
−4

1
2
1

1
−2
−1

2

2
1
3
2

3
2
4

−1
] 14. [

3
−2
−1
−2

−1
0
2
1

2
1

−3
−2

1
−3

4
1
]

15. [
−1

0
1
0
0

1
1
0

−1
1

−1
−1

1
0
1

0
0

−1
1

−1

0
1
0

−1
1
]

16. [
1
2
1
1
0

2
3
2
0

−1

−1
−1

0
2
1

3
2
1

−1
0

4
−2
−1

0
2
]

17. [
−1

0
0
0
0

0
−1

0
0
0

0
0

−1
0
0

0
0
0

−1
0

0
0
0
0

−1
]

18. [
0
0
0
0
3

0
0
0
3
0

0
0
3
0
0

0
3
0
0
0

3
0
0
0
0
]

Properties of Determinants In Exercises 19–22,  
determine which property of determinants the equation 
illustrates.

19. ∣ 4
16

−1
−4∣ = 0

20. ∣124 2
0

−1

−1
3
1∣ = −∣124 −1

3
1

2
0

−1∣
21. ∣2016 −4

4
8

12

3
6
9

−6

2
1
0
1∣ = −12∣2016 1

−1
−2
−3

1
2
3

−2

2
1
0
1∣

22. ∣101 3
−1

2

1
2
1∣ = ∣121 3

5
2

1
4
1∣

The Determinant of a Matrix Product In Exercises 23 
and 24, find (a) ∣A∣, (b) ∣B∣, (c) AB, and (d) ∣AB∣. Then 
verify that ∣A∣∣B∣ = ∣AB∣.
23. A = [−1

0
2
1], B = [3

2
4
1]

24. A = [
0
5
7

1
4
6

2
3
8], B = [

2
1
0

1
−1

3

2
0

−2]
Finding Determinants In Exercises 25 and 26, find  
(a) ∣AT∣, (b) ∣A3∣, (c) ∣ATA∣, and (d) ∣5A∣.

25. A = [−3
4

8
1] 26. A = [

3
−1

2

0
0
1

1
0
2]

Finding Determinants In Exercises 27 and 28, find  
(a) ∣A∣ and (b) ∣A−1∣.

27. A = [
1
0

−2

0
3
7

−4
2
6] 28. A = [

−2
2

−1

1
0
5

3
4
0]

The Determinant of the Inverse of a Matrix In 
Exercises 29–32, find ∣A−1∣. Begin by finding A−1,  
and then evaluate its determinant. Verify your result  
by finding ∣A∣ and then applying the formula from 

Theorem 3.8, ∣A−1∣ =
1

∣A∣.

29. A = [−2
1

4
1] 30. A = [ 10

−2
2
7]

31. A = [
1
2
2

0
−1

6

1
4
0] 32. A = [

−1
2
1

1
4

−1

2
8
0]
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Solving a System of Linear Equations In Exercises 
33–36, solve the system of linear equations by each of the 
methods listed below.

(a) Gaussian elimination with back-substitution

(b) Gauss-Jordan elimination

(c) Cramer’s Rule

33.
 
3x1 +
3x1 +
5x1 +

3x2 +
5x2 +
9x2 +

5x3 = 1
9x3 = 2

17x3 = 4

34.
 

x1 +
−3x1 +

2x1 +

2x2 +
x2 −

3x2 −

x3 = 4
2x3 = 1
x3 = 9

35.
 

x1 +
2x1 −

−x1 +

2x2 −
2x2 −
3x2 +

x3 =
2x3 =
4x3 =

−7
−8

8

36.
 
2x1 +
3x1 +
5x1 +

3x2 +
5x2 +
9x2 +

5x3 =
9x3 =

13x3 =

4
7

17

System of Linear Equations In Exercises 37–42, use 
the determinant of the coefficient matrix to determine 
whether the system of linear equations has a unique 
solution.

37.
 

6x +
x −

5y =
y =

0
22

 
38.

 
2x − 5y = 2
3x − 7y = 1

39.
 
−x +
2x +
5x +

y +
3y +
4y +

2z =
z =

2z =

1
−2

4
 

40.
 
2x +
2x −
8x +

3y
3y
6y

+
−

z =
3z =

=

10
22

−2

41.
 

x1 +
2x1 +
3x1 +

2x2 +
5x2 +
x2 +

6x3 =
15x3 =
3x3 =

1
4

−6

42.

 

x1

4x1

2x1

2x1

+
+

+

5x2

2x2

4x2

+
+

−

3x3

5x3

3x3

x3

+ 8x4 +
−

=
=

6x5 =
2x5 =

=

14
3

16
0
0

43.  Let A and B be square matrices of order 4 such that 

∣A∣ = 4 and ∣B∣ = 2. Find (a) ∣BA∣, (b) ∣B2∣, (c) ∣2A∣, 
(d) ∣(AB)T∣, and (e) ∣B−1∣.

44.  Let A and B be square matrices of order 3 such that 

∣A∣ = −2 and ∣B∣ = 5. Find (a) ∣BA∣, (b) ∣B4∣, (c) ∣2A∣, 
(d) ∣(AB)T∣, and (e) ∣B−1∣.

45. Proof Prove the property below.

 ∣ a11

a21

a31 + c31

a12

a22

a32 + c32

a13

a23

a33 + c33∣ = ∣a11

a21

a31

a12

a22

a32

a13

a23

a33∣
 + ∣a11

a21

c31

a12

a22

c32

a13

a23

c33∣

46.  Illustrate the property in Exercise 45 with A, c31, c32, 
and c33 below.

A = [
1
1
2

0
−1

1

2
2

−1],  c31 = 3,  c32 = 0,  c33 = 1

47. Find the determinant of the n × n matrix.

 [
1 − n

1

⋮
1

1
1 − n

⋮
1

1   
1   

⋮   
1   

.  .  .    

.  .  .    

.  .  .    

1    
1    

⋮    
1 − n    

]
48. Show that

 ∣a111 1
a
1
1

1
1
a
1

1
1
1
a∣ = (a + 3)(a − 1)3.

Calculus In Exercises 49–54, find the Jacobians of the 
functions. If x, y, and z are continuous functions of u, v, 
and w with continuous first partial derivatives, then the 
Jacobians J(u, v) and J(u, v, w) are

J(u, v) = ∣�x
�u
�y
�u

�x
�v
�y
�v∣ and J(u, v, w) = ∣�x

�u
�y
�u
�z
�u

�x
�v
�y
�v
�z
�v

�x
�w
�y
�w
�z
�w∣.

49. x = 1
2(v − u),  y = 1

2(v + u)
50. x = au + bv,  y = cu + dv

51. x = u cos v,  y = u sin v

52. x = eu sin v,  y = eu cos v

53. x = 1
2(u + v),  y = 1

2(u − v),  z = 2uvw

54. x = u − v + w,  y = 2uv,  z = u + v + w

55.  Writing Compare the various methods for calculating 
the determinant of a matrix. Which method requires the 
least amount of computation? Which method do you 
prefer when the matrix has very few zeros?

56.  Writing Use the table on page 122 to compare the 
numbers of operations involved in calculating the  
determinant of a 10 × 10 matrix by cofactor expansion 
and then by row reduction. Which method would you 
prefer to use for calculating determinants?

57. Writing Solve the equation for x, if possible.

 ∣ cos x
sin x

sin x − cos x

0
0
1

sin x
cos x

sin x + cos x∣ = 0

58.  Proof Prove that if ∣A∣ = ∣B∣ ≠ 0, and A and B are of 
the same size, then there exists a matrix C such that

∣C∣ = 1  and  A = CB.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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Finding the Adjoint of a Matrix In Exercises 59 and 
60, find the adjoint of the matrix.

59. [ 0
−2

1
1] 60. [

1
0
0

−1
1
0

1
2

−1]
System of Linear Equations In Exercises 61–64, use 
the determinant of the coefficient matrix to determine 
whether the system of linear equations has a unique  
solution. If it does, use Cramer’s Rule to find the solution.

61.
 
0.2x − 0.1y =
0.4x − 0.5y =

0.07
−0.01

 
62.

 
2x + y =
3x − y =

0.3
−1.3

63.
 

2x1 +
6x1 +

12x1 +

3x2 +
6x2 +
9x2 −

3x3 =
12x3 =

x3 =

3
13
2

64.
 
4x1 +
4x1 −
8x1 +

4x2 +
2x2 −
2x2 −

4x3 = 5
8x3 = 1
4x3 = 6

Using Cramer’s Rule In Exercises 65 and 66, use a 
software program or a graphing utility and Cramer’s 
Rule to solve (if possible) the system of linear equations.

65.
 

0.2x1 −
−x1 +

0.6x2 =
1.4x2 =

2.4
−8.8

66.
 
4x1 −
2x1 +
5x1 −

x2 +
2x2 +
2x2 +

x3 =
3x3 =
6x3 =

−5
10
1

Finding the Area of a Triangle In Exercises 67 and 68, 
use a determinant to find the area of the triangle with 
the given vertices.

67. (1, 0), (5, 0), (5, 8) 68. (−4, 0), (4, 0), (0, 6)

Finding an Equation of a Line In Exercises 69 and 70, 
use a determinant to find an equation of the line passing 
through the points.

69. (−4, 0), (4, 4) 70. (2, 5), (6, −1)

Finding an Equation of a Plane In Exercises 71 and 
72, use a determinant to find an equation of the plane 
passing through the points.

71. (0, 0, 0), (1, 0, 3), (0, 3, 4)
72. (0, 0, 0), (2, −1, 1), (−3, 2, 5)

73.  Using Cramer’s Rule Determine whether Cramer’s 
Rule is used correctly to solve for the variable. If not, 
identify the mistake.

 
x −

2x −
x +

4y −
3y +
y −

z =
z =

4z =

−1
6
1
 z = ∣−1

6
1

−4
−3

1

−1
1

−4∣
∣121 −4

−3
1

−1
1

−4∣

74.  Health Care Expenditures The table shows annual 
personal health care expenditures (in billions of dollars) 
in the United States from 2011 through 2013. (Source: 
Bureau of Economic Analysis)

 
Year 2011 2012 2013

Amount, y 1765 1855 1920

 (a)  Create a system of linear equations for the data to fit 
the curve 

 y = at2 + bt + c

   where t = 1 corresponds to 2011, and y is the 
amount of the expenditure.

 (b) Use Cramer’s Rule to solve the system.

 (c)  Use a graphing utility to plot the data and graph the  
polynomial function in the same viewing window.

 (d)  Briefly describe how well the polynomial function 
fits the data.

True or False? In Exercises 75–78, determine whether 
each statement is true or false. If a statement is true, give 
a reason or cite an appropriate statement from the text. 
If a statement is false, provide an example that shows the 
statement is not true in all cases or cite an appropriate 
statement from the text.

75. (a)  The cofactor C22 of a matrix is always a positive 
number.

 (b)  If a square matrix B is obtained from A by  
interchanging two rows, then det(B) = det(A).

 (c)  If one column of a square matrix is a multiple of 
another column, then the determinant is 0.

 (d) If A is a square matrix of order n, then 

  det(A) = −det(AT).
76. (a)  If A and B are square matrices of order n such that 

det(AB) = −1, then both A and B are nonsingular.

 (b)  If A is a 3 × 3 matrix with det(A) = 5, then 
det(2A) = 10.

 (c)  If A and B are square matrices of order n, then 
det(A + B) = det(A) + det(B).

77. (a)  In Cramer’s Rule, the value of xi is the quotient  
of two determinants, where the numerator is the 
determinant of the coefficient matrix.

 (b)  Three points (x1, y1), (x2, y2), and (x3, y3) are  
collinear when the determinant of the matrix that has 
the coordinates as entries in the first two columns 
and 1’s as entries in the third column is nonzero.

78. (a)  The matrix of cofactors of a square matrix A is the 
adjoint of A.

 (b)  In Cramer’s Rule, the denominator is the determinant 
of the matrix formed by replacing the column  
corresponding to the variable being solved for with 
the column representing the constants.
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3 Projects

1 Stochastic Matrices
In Section 2.5, you studied a consumer preference model for competing satellite 
television companies. The matrix of transition probabilities was

P = [
0.70
0.20
0.10

0.15
0.80
0.05

0.15
0.15
0.70].

When you were given the initial state matrix X0, you observed that the portions of 
the total population in the three states (subscribing to Company A, subscribing to 
Company B, and not subscribing) after 1 year was X1 = PX0.

X0 = [
0.1500
0.2000
0.6500]

X1 = PX0 = [
0.70
0.20
0.10

0.15
0.80
0.05

0.15
0.15
0.70][

0.1500
0.2000
0.6500] = [

0.2325
0.2875
0.4800]

After 15 years, the state matrix had nearly reached a steady state.

X15 = P15X0 ≈ [
0.3333
0.4756
0.1911]

That is, for large values of n, the product PnX approached a limit X, PX = X.

PX = X = 1X, so 1 is an eigenvalue of P with corresponding eigenvector X. 
You will study eigenvalues and eigenvectors in more detail in Chapter 7.

1.  Use a software program or a graphing utility to verify the eigenvalues and 
eigenvectors of P listed below. That is, show that Pxi = λixi for i = 1, 2, and 3.

 Eigenvalues: λ1 = 1, λ2 = 0.65, λ3 = 0.55

 Eigenvectors: x1 = [
7

10
4], x2 =

0

[−1
1], x3 = [

−2
1
1]

2.  Let S be the matrix whose columns are the eigenvectors of P. Show that S−1PS is 
a diagonal matrix D. What are the entries along the diagonal of D?

3.  Show that Pn = (SDS−1)n = SDnS−1. Use this result to calculate X15 and verify 
the result above.

2 The Cayley-Hamilton Theorem
The characteristic polynomial of a square matrix A is the determinant ∣λI − A∣. 
If the order of A is n, then the characteristic polynomial p(λ) is an nth-degree 
polynomial in the variable λ.

p(λ) = det(λI − A) = λn + cn−1λn−1 + .  .  . + c2λ2 + c1λ + c0

The Cayley-Hamilton Theorem asserts that every square matrix satisfies its 
characteristic polynomial. That is, for the n × n matrix A, p(A) = O, or

An + cn−1A
n−1 + .  .  . + c2A2 + c1A + c0I = O.

Kurhan/Shutterstock.com
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Note that this is a matrix equation. The n × n zero matrix is on the right, and the 
coefficient c0 is multiplied by the n × n identity matrix I.

1. Verify the Cayley-Hamilton Theorem for the matrix

 [ 2
−2

−2
−1].

2. Verify the Cayley-Hamilton Theorem for the matrix

 [
6

−2
2

0
1
0

4
3
4].

3. Verify the Cayley-Hamilton Theorem for a general 2 × 2 matrix A,

 A = [a
c

b
d].

4. For a nonsingular n × n matrix A, show that

 A−1 =
1
c0

(−An−1 − cn−1A
n−2 − .  .  . − c2A − c1I).

 Use this result to find the inverse of the matrix

 A = [1
3

2
5].

5.  The Cayley-Hamilton Theorem is useful for calculating powers An of the square 
matrix A. For example, the characteristic polynomial of the matrix

 A = [3
2

−1
−1]

 is p(λ) = λ2 − 2λ − 1.

 Using the Cayley-Hamilton Theorem,

 A2 − 2A − I = O  or  A2 = 2A + I.

 So, A2 is written in terms of A and I.

 A2 = 2A + I = 2[3
2

−1
−1] + [1

0
0
1] = [7

4
−2
−1]

  Similarly, multiplying both sides of the equation A2 = 2A + I by A gives A3  
in terms of A2, A, and I. Moreover, you can write A3 in terms of A and I by  
replacing A2 with 2A + I, as shown below.

 A3 = 2A2 + A = 2(2A + I) + A = 5A + 2I

 (a) Write A4 in terms of A and I.

 (b) Find A5 for the matrix

 A = [
0
2
1

0
2
0

1
−1

2].

   (Hint: Find the characteristic polynomial of A, then use the Cayley-Hamilton 
Theorem to write A3 in terms of A2, A, and I. Inductively write A5 in terms of 
A2, A, and I.)
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1–3 Cumulative Test See CalcChat.com for worked-out solutions  
to odd-numbered exercises.

Take this test to review the material in Chapters 1–3. After you are finished, check 
your work against the answers in the back of the book.

In Exercises 1 and 2, determine whether the equation is linear in the variables x 
and y.

 1. 
4
y

− x = 10 2. 
3
5

x +
7
10

y = 2

In Exercises 3 and 4, use Gaussian elimination to solve the system of linear  
equations.

 3.
 

x −
3x +

2y = 5
y = 1

 
4.

 
4x1 +
2x1 −
x1 +

x2 −
3x2 +
x2 +

3x3 =
2x3 =
x3 =

11
9

−3

 5. Use a software program or a graphing utility to solve the system of linear equations.

 

0.2x −
3.4x +
0.5x −
0.6x +

2.3y +
1.3y −
4.9y +
2.8y −

1.4z −
1.7z +
1.1z −
3.4z +

0.55w =
0.45w =
1.6w =
0.3w =

−110.6
65.4

−166.2
189.6

 6.  Find the solution set of the system of linear equations represented by the  
augmented matrix.

 [
0
1
1

1
0
2

−1
2
0

0
−1
−1

2
0
4]

 7. Solve the homogeneous linear system corresponding to the coefficient matrix.

 [
1
0

−2

2
0

−4

1
2
1

−2
−4
−2]

 8. Determine the value(s) of k such that the system is consistent.

 
x +

−x −
−x +

2y −
y +
y +

z = 3
z = 2
z = k

 9. Solve for x and y in the matrix equation 2A − B = I, given

 A = [−1
2

1
3]  and  B = [x

y
2
5].

10. Find ATA for the matrix A = [5
2

3
4

1
6]. Show that this product is symmetric.

In Exercises 11–14, find the inverse of the matrix (if it exists).

11. [−2
4

3
6] 12. [−2

3
3
6] 13. [

−1
0
0

0
1
2

0

0
0
3] 14. [

1
−3

0

1
6
1

0
5
0]

In Exercises 15 and 16, use an inverse matrix to solve the system of linear equations.

15.
 

x +
3x −

2y = 0
6y = 8

 
16.

 
2x − y =
2x + y =

6
10
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17.  Find a sequence of elementary matrices whose product is the nonsingular matrix 
below.

[2
1

−4
0]

18. Find the determinant of the matrix

[
4
0
0
1

0
1
1
1

3
−3

5
0

2
−5

1
−3

].

19. Find (a) ∣A∣, (b) ∣B∣, (c) AB, and (d) ∣AB∣. Then verify that ∣A∣∣B∣ = ∣AB∣.
A = [1

4
−3

2],  B = [−2
0

1
5]

20. Find (a) ∣A∣ and (b) ∣A−1∣.

A = [
5

−1
6

−2
0

−8

−3
4
2]

21. If ∣A∣ = 7 and A is of order 4, then find each determinant.

 (a) ∣3A∣    (b) ∣AT∣    (c) ∣A−1∣    (d) ∣A3∣
22. Use the adjoint of 

A = [
1
0
1

−5
−2

0

−1
1
2]

 to find A−1.

23. Let x1, x2, x3, and b be the column matrices below.

x1 = [
1
0
1]    x2 = [

1
1
0]    x3 = [

0
1
1]    b = [

1
2
3]

 Find constants a, b, and c such that ax1 + bx2 + cx3 = b.

24.  Use a system of linear equations to find the parabola y = ax2 + bx + c that  
passes through the points (−1, 2), (0, 1), and (2, 6).

25.  Use a determinant to find an equation of the line passing through the points (1, 4) 
and (5, −2).

26.  Use a determinant to find the area of the triangle with vertices (−2, 2), (8, 2),  
and (6, −5).

27.  Determine the currents I1, I2, and I3 for the electrical network shown in the figure 
at the left.

28.  A manufacturer produces three different models of a product and ships them to  
two warehouses. In the matrix

A = [
200
600
250

300
350
400]

  aij represents the number of units of model i that the manufacturer ships to  
warehouse j. The matrix

B = [12.50 9.00 21.50]
  represents the prices of the three models in dollars per unit. Find the product BA 

and state what each entry of the matrix represents.

29.  Let A, B, and C be three nonzero n × n matrices such that AC = BC. Does it  
follow that A = B? If so, provide a proof. If not, provide a counterexample.

Figure for 27

I1

I2

I3

R1 = 4

R2 = 1

R3 = 4
8 V

16 V

Ω

Ω

Ω
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152 Chapter 4 Vector Spaces

4.1 Vectors in Rn

 Represent a vector as a directed line segment.

  Perform basic vector operations in R2 and represent them  
graphically.

 Perform basic vector operations in Rn.

 Write a vector as a linear combination of other vectors.

Vectors in the Plane

In physics and engineering, a vector is characterized by two quantities (length and 
direction) and is represented by a directed line segment. In this chapter you will see 
that the geometric representation can help you understand the more general definition 
of a vector. 

Geometrically, a vector in the plane is represented by a directed line segment 
with its initial point at the origin and its terminal point at (x1, x2), as shown below. 

x

x

Terminal
point

Initial point

y

(x1, x2)

The same ordered pair used to represent its terminal point also represents the vector. 
That is, x = (x1, x2). The coordinates x1 and x2 are the components of the vector x. 
Two vectors in the plane u = (u1, u2) and v = (v1, v2) are equal if and only if 

u1 = v1 and u2 = v2.

 Vectors in the Plane

a.  To represent u = (2, 3), draw a directed line segment from the origin to the point 
(2, 3), as shown in Figure 4.1(a).

b.  To represent v = (−1, 2), draw a directed line segment from the origin to the point 
(−1, 2), as shown in Figure 4.1(b).

a. 

x

1

1 2 3

2

3

u = (2, 3)

y  b. 

x

1

1−1−2

2

3

v = (−1, 2)

y

Figure 4.1 

reMarK
The term vector derives  
from the Latin word vectus, 
meaning “to carry.” The idea  
is that if you were to carry 
something from the origin to 
the point (x1, x2), then the trip 
could be represented by the 
directed line segment from 
(0, 0) to (x1, x2). Vectors are 
represented by lowercase  
letters set in boldface type  
(such as u, v, w, and x).
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Vector oPerations

One basic vector operation is vector addition. To add two vectors in the plane, add 
their corresponding components. That is, the sum of u and v is the vector

u + v = (u1, u2) + (v1, v2) = (u1 + v1, u2 + v2).

Geometrically, the sum of two vectors in the plane can be represented by the diagonal 
of a parallelogram having u and v as its adjacent sides, as shown in Figure 4.2.

In the next example, one of the vectors you will add is the vector (0, 0), the zero 
vector. The zero vector is denoted by 0.

  adding two Vectors in the Plane

Find each vector sum u + v.

a. u = (1, 4), v = (2, −2)
b. u = (3, −2), v = (−3, 2)
c. u = (2, 1), v = (0, 0)

solution

a. u + v = (1, 4) + (2, −2) = (3, 2)
b. u + v = (3, −2) + (−3, 2) = (0, 0) = 0

c. u + v = (2, 1) + (0, 0) = (2, 1)

Figure 4.3 shows a graphical representation of each sum.

a. b. c.

−1−2−3 2 3 4

−2

−3
−4

1

2

3

4

x

y

u

u + v

v

(1, 4)

(3, 2)

(2, −2)

 

−1−2−3 2 3 4

−2

−3

−4

1

2

3

4

x

y

u

u + v = (0, 0)v
(−3, 2)

(3, −2)

 

−1−2−3 2 3 4

−2

−3

−4

1

2

3

4

x

y

u + v = u

v = (0, 0)

(2, 1)

Figure 4.3 

Another basic vector operation is scalar multiplication. To multiply a vector v by 
a scalar c, multiply each of the components of v by c. That is,

cv = c(v1, v2) = (cv1, cv2).

Recall from Chapter 2 that the word scalar is used to mean a real number. Historically, 
this usage arose from the fact that multiplying a vector by a real number changes the 
“scale” of the vector. For instance, when a vector v is multiplied by 2, the resulting 
vector 2v is a vector having the same direction as v and twice the length. In general, 
for a scalar c, the vector cv will be ∣c∣ times as long as v. If c is positive, then cv and 
v have the same direction, and if c is negative, then cv and v have opposite directions. 
Figure 4.4 shows this.

The product of a vector v and the scalar −1 is denoted by

−v = (−1)v.

The vector −v is the negative of v. The difference of u and v is

u − v = u + (−v).

The vector v is subtracted from u by adding the negative of v.

Figure 4.2

Vector Addition

x

u2

u1v1

v2

u
u + v

v

y

(u1 + v1, u2 + v2)

(u1, u2)

(v1, v2)

Figure 4.4

x

v

cv

c < 0

y

x

v

cv

c > 0

y
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154 Chapter 4 Vector Spaces

 
operations with Vectors in the Plane

Let v = (−2, 5) and u = (3, 4). Perform each vector operation.

a. 1
2v b. u − v c. 1

2v + u

solution

a. v = (−2, 5), so 12v = (1
2(−2), 12(5)) = (−1, 52).

b. By the definition of vector subtraction, u − v = (3 − (−2), 4 − 5) = (5, −1).
c. Using the result of part (a), 12v + u = (−1, 52) + (3, 4) = (2, 13

2 ).
Figure 4.5 shows a graphical representation of these vector operations. 

Vector addition and scalar multiplication share many properties with matrix  
addition and scalar multiplication. The ten properties listed in the next theorem play 
a fundamental role in linear algebra. In fact, in the next section you will see that it is 
precisely these ten properties that help define a vector space.

theoreM 4.1  Properties of Vector addition and  
scalar Multiplication in the Plane

Let u, v, and w be vectors in the plane, and let c and d be scalars.

 1. u + v is a vector in the plane. Closure under addition
 2. u + v = v + u Commutative property of addition
 3. (u + v) + w = u + (v + w) Associative property of addition
 4. u + 0 = u Additive identity property
 5. u + (−u) = 0 Additive inverse property
 6. cu is a vector in the plane. Closure under scalar multiplication
 7. c(u + v) = cu + cv Distributive property
 8. (c + d)u = cu + du Distributive property
 9. c(du) = (cd)u Associative property of multiplication
10. 1(u) = u Multiplicative identity property

ProoF

 The proof of each property is straightforward. For example, to prove the associative 
property of vector addition, write

 (u + v) + w = [(u1, u2) + (v1, v2)] + (w1, w2)
 = (u1 + v1, u2 + v2) + (w1, w2)
 = ((u1 + v1) + w1, (u2 + v2) + w2)
 = (u1 + (v1 + w1), u2 + (v2 + w2))
 = (u1, u2) + (v1 + w1, v2 + w2)
 = u + (v + w).

Similarly, to prove the right distributive property of scalar multiplication over addition, 
write

 (c + d)u = (c + d)(u1, u2)
 = ((c + d)u1, (c + d)u2)
 = (cu1 + du1, cu2 + du2)
 = (cu1, cu2) + (du1, du2)
 = cu + du.

The proofs of the other eight properties are left as an exercise. (See Exercise 63.) 

Figure 4.5

v
(−2, 5)

−2−3 1 6

−2

−1

4

5

6

7

(5, −1)

u

v (3, 4)

2, 13
2( (

−1, )) 5
2

v1
2

u v

u+
1
2

x

y

−

reMarK
Note that the associative  
property of vector addition 
allows you to write such 
expressions as u + v + w  
without ambiguity, because 
you obtain the same vector 
sum regardless of which  
addition is performed first.
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Vectors in Rn

The discussion of vectors in the plane can be extended to a discussion of vectors in 
n-space. An ordered n-tuple represents a vector in n-space. For instance, an ordered 
triple has the form (x1, x2, x3), an ordered quadruple has the form (x1, x2, x3, x4), and 
a general ordered n-tuple has the form (x1, x2, x3, .  .  . , xn). The set of all n-tuples is 
n-space and is denoted by Rn.

R1 = 1-space = set of all real numbers

R2 = 2-space = set of all ordered pairs of real numbers

R3 = 3-space = set of all ordered triples of real numbers

⋮
Rn = n-space = set of all ordered n-tuples of real numbers

An n-tuple (x1, x2, x3, .  .  . , xn) can be viewed as a point in Rn with the xi’s as its 
coordinates, or as a vector x = (x1, x2, x3, .  .  . , xn) with the xi’s as its components. As 
with vectors in the plane (or R2), two vectors in Rn are equal if and only if corresponding 
components are equal. [In the case of n = 2 or n = 3, the familiar (x, y) or (x, y, z) 
notation is used occasionally.]

The sum of two vectors in Rn and the scalar multiple of a vector in Rn are the 
standard operations in Rn and are defined below.

Definitions of Vector addition and scalar Multiplication in Rn

Let u = (u1, u2, u3, .  .  . , un) and v = (v1, v2, v3, .  .  . , vn) be vectors in Rn and 
let c be a real number. The sum of u and v is the vector

u + v = (u1 + v1, u2 + v2, u3 + v3, .  .  . , un + vn)

and the scalar multiple of u by c is the vector

cu = (cu1, cu2, cu3, .  .  . , cun).

As with 2-space, the negative of a vector in Rn is

−u = (−u1, −u2, −u3, .  .  . , −un)

and the difference of two vectors in Rn is

u − v = (u1 − v1, u2 − v2, u3 − v3, .  .  . , un − vn).

The zero vector in Rn is denoted by 0 = (0, 0, 0, .  .  . , 0).

 
Vector operations in R3

See LarsonLinearAlgebra.com for an interactive version of this type of example.

Let u = (−1, 0, 1) and v = (2, −1, 5) in R3. Perform each vector operation.

a. u + v b. 2u c. v − 2u

solution

a. To add two vectors, add their corresponding components.

 u + v = (−1, 0, 1) + (2, −1, 5) = (1, −1, 6)

b. To multiply a vector by a scalar, multiply each component by the scalar.

 2u = 2(−1, 0, 1) = (−2, 0, 2)

c. Using the result of part (b), v − 2u = (2, −1, 5) − (−2, 0, 2) = (4, −1, 3).

Figure 4.6 shows a graphical representation of these vector operations in R3. 

Figure 4.6

2 2

4 4

4

6
u + v

v
2u

(−2, 0, 2)

(1, −1, 6)

(2, −1, 5)

(4, −1, 3)
u

x y

z

v −2u
(−1, 0, 1)

technoloGY
Many graphing utilities and 
software programs can 
perform vector addition and 
scalar multiplication. If you 
use a graphing utility, then 
you may verify Example 4(b) 
as shown below. The 
technology Guide at 
CengageBrain.com can help 
you use technology to perform 
vector operations.

3

[-2 0 2]

VECTOR:U

2U

e1=-1
e2=0
e3=1
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156 Chapter 4 Vector Spaces

The properties of vector addition and scalar multiplication for vectors in Rn listed 
below are similar to those listed in Theorem 4.1 for vectors in R2. Their proofs, based 
on the definitions of vector addition and scalar multiplication in Rn, are left as an
exercise. (See Exercise 64.)

theoreM 4.2  Properties of Vector addition and 
scalar Multiplication in Rn

Let u, v, and w be vectors in Rn, and let c and d be scalars.

 1. u + v is a vector in Rn. Closure under addition
 2. u + v = v + u Commutative property of addition
 3. (u + v) + w = u + (v + w) Associative property of addition
 4. u + 0 = u Additive identity property
 5. u + (−u) = 0 Additive inverse property
 6. cu is a vector in Rn. Closure under scalar multiplication
 7. c(u + v) = cu + cv Distributive property
 8. (c + d)u = cu + du Distributive property
 9. c(du) = (cd)u Associative property of multiplication
10. 1(u) = u Multiplicative identity property

Using the ten properties from Theorem 4.2, you can perform algebraic 
manipulations with vectors in Rn in much the same way as you do with real numbers, 
as demonstrated in the next example.

 Vector operations in R4

Let u = (2, −1, 5, 0), v = (4, 3, 1, −1), and w = (−6, 2, 0, 3) be vectors in R4. Find 
x using each equation.

a. x = 2u − (v + 3w)
b. 3(x + w) = 2u − v + x

solution

a. Using the properties listed in Theorem 4.2, you have

 x = 2u − (v + 3w)
  = 2u − v − 3w

  = 2(2, −1, 5, 0) − (4, 3, 1, −1) − 3(−6, 2, 0, 3)
  = (4, −2, 10, 0) − (4, 3, 1, −1) − (−18, 6, 0, 9)
  = (4 − 4 + 18, −2 − 3 − 6, 10 − 1 − 0, 0 + 1 − 9)
  = (18, −11, 9, −8).

b. Begin by solving for x.

  3(x + w) = 2u − v + x

  3x + 3w = 2u − v + x

  3x − x = 2u − v − 3w

  2x = 2u − v − 3w

  x = 1
2(2u − v − 3w)

 Using the result of part (a),

  x = 1
2(18, −11, 9, −8)

  = (9, −11
2 , 92, −4).  

William rowan hamilton
(1805–1865)

Hamilton is considered to 
be Ireland’s most famous 
mathematician. In 1828, he 
published an impressive 
work on optics entitled A 
Theory of Systems of Rays. 
In it, Hamilton included 
some of his own methods 
for working with systems 
of linear equations. He also 
introduced the notion of 
the characteristic equation 
of a matrix (see Section 
7.1). Hamilton’s work led 
to the development of 
modern vector notation. 
We still use his i, j, and k 
notation for the
standard unit 
vectors in R3 
(see Section 5.1).

The Granger Collection, NYC
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The zero vector 0 in Rn is the additive identity in Rn. Similarly, the vector −v is 
the additive inverse of v. The next theorem summarizes several important properties 
of the additive identity and additive inverse in Rn.

theoreM 4.3  Properties of additive identity 
and additive inverse

Let v be a vector in Rn, and let c be a scalar. Then the properties below are true.

1. The additive identity is unique. That is, if v + u = v, then u = 0.
2. The additive inverse of v is unique. That is, if v + u = 0, then u = −v.
3. 0v = 0
4. c0 = 0
5. If cv = 0, then c = 0 or v = 0.
6. −(−v) = v

ProoF

To prove the first property, assume v + u = v. Then Theorem 4.2 justifies the steps below.

 v + u = v  Given

 (v + u) + (−v) = v + (−v) Add −v to both sides.

(v + u) + (−v) = 0  Additive inverse

(u + v) + (−v) = 0  Commutative property

u + [v + (−v)] = 0 Associative property

 u + 0 = 0  Additive inverse

 u = 0  Additive identity

To prove the second property, assume v + u = 0, and again use Theorem 4.2 to justify 
the steps below.

 v + u = 0  Given

 (−v) + (v + u) = (−v) + 0 Add −v to both sides.

(−v) + (v + u) = −v  Additive identity

[(−v) + v] + u = −v  Associative property

 0 + u = −v Additive inverse

 u + 0 = −v  Commutative property

 u = −v  Additive identity

As you gain experience in reading and writing proofs involving vector algebra, you will 
not need to list as many steps as shown above. For now, however, it is a good idea to 
list as many steps as possible. The proofs of the other four properties are left as 
exercises. (See Exercises 65–68.) 

Anne Kitzman/Shutterstock.com

linear
alGeBra
aPPlieD

Vectors have a wide variety of  

W

F

θ
applications in engineering and 
the physical sciences. For example, 
to determine the amount of force 
required to pull an object up a 
ramp that has an angle of elevation 
θ, use the figure at the right.

In the figure, the vector labeled W represents the weight of 
the object, and the vector labeled F represents the required 
force. Using similar triangles and some trigonometry, the 
required force is F = W sin θ. (Verify this.)

reMarK
Note that in Properties 3 and 
5, two different zeros are used, 
the scalar 0 and the vector 0.
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158 Chapter 4 Vector Spaces

linear coMBinations oF Vectors

An important type of problem in linear algebra involves writing one vector x as the 
sum of scalar multiples of other vectors v1, v2, .  .  . , and vn. That is, for scalars c1,
c2, .  .  . , cn,

x = c1v1 + c2v2 + .  .  . + cnvn.

The vector x is called a linear combination of the vectors v1, v2, .  .  . , and vn.

  Writing a Vector as a linear 
combination of other Vectors

Let x = (−1, −2, −2), u = (0, 1, 4), v = (−1, 1, 2), and w = (3, 1, 2) in R3. Find 
scalars a, b, and c such that

x = au + bv + cw.

solution

Write
 x u v w
    

 (−1, −2, −2) = a(0, 1, 4) + b(−1, 1, 2) + c(3, 1, 2)
 = (−b + 3c, a + b + c, 4a + 2b + 2c)

and equate corresponding components so that they form the system of three linear 
equations in a, b, and c shown below.

 −b + 3c = −1 Equation from first component

 a +   b +   c = −2 Equation from second component

 4a + 2b + 2c = −2 Equation from third component

Solve for a, b, and c to get a = 1, b = −2, and c = −1. As a linear combination of 
u, v, and w,

x = u − 2v − w.

Use vector addition and scalar multiplication to check this result. 

You will often find it useful to represent a vector u = (u1, u2, .  .  . , un) in 
Rn as either a 1 × n row matrix (row vector) or an n × 1 column matrix (column 
vector). This approach is valid because the matrix operations of addition and scalar 
multiplication give the same results as the corresponding vector operations. That is, 
the matrix sums

 u + v = [u1   u2   .  .  .   un] + [v1   v2   .  .  .   vn]
 = [u1 + v1   u2 + v2   .  .  .   un + vn]

and

u + v = [
u1

u2

⋮
un

] + [
v1

v2

⋮
vn

] = [
u1 + v1

u2 + v2

⋮
un + vn

]
yield the same results as the vector operation of addition,

 u + v = (u1, u2, .  .  . , un) + (v1, v2, .  .  . , vn)
 = (u1 + v1, u2 + v2, .  .  . , un + vn).

The same argument applies to scalar multiplication. The only difference in each set of 
notations is how the components (entries) are displayed.

DISCOVERY
1.  Is the vector (1, 1) a 

linear combination of 
the vectors (1, 2) and 
(−2, −4)? Graph 
these vectors and 
explain your answer 
geometrically. 

2.  Similarly, determine 
whether the vector 
(1, 1) is a linear 
combination of the 
vectors (1, 2) and (2, 1).

3.  What is the geometric 
significance of 
questions 1 and 2?

4.  Is every vector in R2 a 
linear combination of 
the vectors (1, −2) 
and (−2, 1)? Give a 
geometric explanation 
for your answer.

See LarsonLinearAlgebra.com 
for an interactive version 
of this type of exercise.
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4.1 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

x

v

y

2 4

2

4

x

v

y

−4 −2−6

2

4

Finding the component Form of a Vector In 
Exercises 1 and 2, find the component form of the vector.

 1.     2. 

representing a Vector In Exercises 3–6, use a directed 
line segment to represent the vector.

 3. u = (2, −4)  4. v = (−2, 3)
 5. u = (−3, −4)  6. v = (−2, −5)

Finding the sum of two Vectors In Exercises 7–10, 
find the sum of the vectors and illustrate the sum  
geometrically.

 7. u = (1, 3), v = (2, −2)  8. u = (−1, 4), v = (4, −3)
 9. u = (2, −3), v = (−3, −1)
10. u = (4, −2), v = (−2, −3)

Vector operations In Exercises 11–16, find the  
vector v and illustrate the specified vector operations 
geometrically, where u = (−2, 3) and w = (−3, −2).
11. v = 3

2u 12. v = u + w

13. v = u + 2w 14. v = −u + w

15. v = 1
2(3u + w) 16. v = u − 2w

17.  For the vector v = (2, 1), sketch (a) 2v, (b) −3v, and 
(c) 12v.

18.  For the vector v = (3, −2), sketch (a) 4v, (b) −1
2v, and 

(c) 0v.

Vector operations In Exercises 19–24, let u = (1, 2, 3), 
v = (2, 2, −1), and w = (4, 0, −4).
19. Find u − v and v − u. 20. Find u − v + 2w.

21. Find 2u + 4v − w. 22. Find 5u − 3v − 1
2w.

23. Find z, where 3u − 4z = w.

24. Find z, where 2u + v − w + 3z = 0.

25.  For the vector v = (1, 2, 2), sketch (a) 2v, (b) −v, and 
(c) 12v.

26.  For the vector v = (2, 0, 1), sketch (a) −v, (b) 2v, and 
(c) 12v.

27.  Determine whether each vector is a scalar multiple of
z = (3, 2, −5).

 (a) v = (9
2, 3, −15

2 )  (b) w = (9, −6, −15)

28.  Determine whether each vector is a scalar multiple of 
z = (1

2, −2
3, 34).

 (a) u = (6, −4, 9)
 (b) v = (−1, 43, −3

2)
Vector operations In Exercises 29–32, find (a) u − v, 
(b) 2(u + 3v), and (c) 2v − u.

29. u = (4, 0, −3, 5), v = (0, 2, 5, 4)
30. u = (0, 4, 3, 4, 4), v = (6, 8, −3, 3, −5)
31. u = (−7, 0, 0, 0, 9), v = (2, −3, −2, 3, 3)
32. u = (6, −5, 4, 3), v = (−2, 53, −4

3, −1)
Vector operations In Exercises 33 and 34, use a 
graphing utility to perform each operation 
where u = (1, 2, −3, 1), v = (0, 2, −1, −2), and 
w = (2, −2, 1, 3).
33. (a) u + 2v 34. (a) v + 3w

 (b) w − 3u  (b) 2w − 1
2u

 (c) 4v + 1
2u − w  (c) 1

2(4v − 3u + w)

solving a Vector equation In Exercises 35–38, solve 
for w, where u = (1, −1, 0, 1) and v = (0, 2, 3, −1).
35. 3w = u − 2v 36. w + u = −v

37. 1
2w = 2u + 3v 38. w + 3v = −2u

solving a Vector equation In Exercises 39 and 40, 
find w such that 2u + v − 3w = 0.

39. u = (0, 2, 7, 5), v = (−3, 1, 4, −8)
40. u = (−6, 0, 2, 0), v = (5, −3, 0, 1)

Writing a linear combination In Exercises 41–46, 
write v as a linear combination of u and w, if possible, 
where u = (1, 2) and w = (1, −1).
41. v = (2, 1) 42. v = (0, 3)
43. v = (3, 3) 44. v = (1, −1)
45. v = (−1, −2) 46. v = (1, −4)

Writing a linear combination In Exercises 47–50, 
write v as a linear combination of u1, u2, and u3, if  
possible.

47.  v = (10, 1, 4), u1 = (2, 3, 5), u2 = (1, 2, 4), 
u3 = (−2, 2, 3)

48.  v = (−1, 7, 2), u1 = (1, 3, 5), u2 = (2, −1, 3), 
u3 = (−3, 2, −4)

49.  v = (0, 5, 3, 0), u1 = (1, 1, 2, 2), u2 = (2, 3, 5, 6), 
u3 = (−3, 1, −4, 2)

50.  v = (7, 2, 5, −3), u1 = (2, 1, 1, 2), 
u2 = (−3, 3, 4, −5), u3 = (−6, 3, 1, 2)
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160 Chapter 4 Vector Spaces

Writing a linear combination In Exercises 51 and 
52, write the third column of the matrix as a linear  
combination of the first two columns, if possible.

51. [
1
7
4

2
8
5

3
9
6] 52. [

1
7
4

2
8
5

3
9
7]

Writing a linear combination In Exercises 53 and 
54, use a software program or a graphing utility to write 
v as a linear combination of u1, u2, u3, u4, and u5. Then 
verify your solution.

53.  v = (5, 3, −11, 11, 9) 54.  v = (5, 8, 7, −2, 4)
 u1 = (1, 2, −3, 4, −1)  u1 = (1, 1, −1, 2, 1)
 u2 = (1, 2, 0, 2, 1)  u2 = (2, 1, 2, −1, 1)
 u3 = (0, 1, 1, 1, −4)  u3 = (1, 2, 0, 1, 2)
 u4 = (2, 1, −1, 2, 1)  u4 = (0, 2, 0, 1, −4)
 u5 = (0, 2, 2, −1, −1)  u5 = (1, 1, 2, −1, 2)

Writing a linear combination In Exercises 55 and 
56, the zero vector 0 = (0, 0, 0) can be written as a 
linear combination of the vectors v1, v2, and v3 because 
0 = 0v1 + 0v2 + 0v3. This is the trivial solution. Find a 
nontrivial way of writing 0 as a linear combination of the 
three vectors, if possible.

55. v1 = (1, 0, 1), v2 = (−1, 1, 2), v3 = (0, 1, 4)
56. v1 = (1, 0, 1), v2 = (−1, 1, 2), v3 = (0, 1, 3)

true or False? In Exercises 57 and 58, determine 
whether each statement is true or false. If a statement 
is true, give a reason or cite an appropriate statement 
from the text. If a statement is false, provide an example 
that shows the statement is not true in all cases or cite an 
appropriate statement from the text.

57. (a)  Two vectors in Rn are equal if and only if their  
corresponding components are equal.

 (b) The vector −v is the additive identity of v.

58. (a)  To subtract two vectors in Rn, subtract their  
corresponding components.

 (b)  The zero vector 0 in Rn is the additive inverse of a 
vector.

59.  Writing Let Ax = b be a system of m linear equations  
in n variables. Designate the columns of A as a1, 
a2, .  .  . , an. When b is a linear combination of these 
n column vectors, explain why this implies that the  
linear system is consistent. What can you conclude about  
the linear system when b is not a linear combination of 
the columns of A?

60.  Writing How could you describe vector subtraction 
geometrically? What is the relationship between vector 
subtraction and the basic vector operations of addition 
and scalar multiplication?

61.  Illustrate properties 1–10 of Theorem 4.2 for 
u = (2, −1, 3, 6), v = (1, 4, 0, 1), w = (3, 0, 2, 0), 
c = 5, and d = −2.

62.  CAPSTONE Consider the vectors 
u = (3, −4) and v = (9, 1).

(a)  Use directed line segments to represent each  
vector graphically.

(b) Find u + v.

(c) Find 2v − u.

(d)  Write w = (39, 0) as a linear combination of u 
and v.

63. Proof Complete the proof of Theorem 4.1.

64.  Proof Prove each property of vector addition and  
scalar multiplication from Theorem 4.2.

Proof In Exercises 65–68, complete the proofs of the 
remaining properties of Theorem 4.3 by supplying the 
justification for each step. Use the properties of vector 
addition and scalar multiplication from Theorem 4.2.

65.  Property 3:  0v = 0

  0v = (0 + 0)v  a. 

  0v = 0v + 0v  b. 

  0v + (−0v) = (0v + 0v) + (−0v) c. 

  0 = 0v + (0v + (−0v)) d. 

  0 = 0v + 0  e. 

  0 = 0v f. 

66.  Property 4:  c0 = 0

  c0 = c(0 + 0)  a. 

  c0 = c0 + c0  b. 

  c0 + (−c0) = (c0 + c0) + (−c0) c. 

  0 = c0 + (c0 + (−c0)) d. 

  0 = c0 + 0  e. 

  0 = c0  f. 

67.  Property 5: If cv = 0, then c = 0 or v = 0. If c = 0, 
then you are done. If c ≠ 0, then c−1 exists, and you have

  c−1(cv) = c−10 a. 

  (c−1c)v = 0  b. 

  1v = 0  c. 

  v = 0. d. 

68. Property 6: −(−v) = v

 −(−v) + (−v) = 0 and v + (−v) = 0 a. 

  −(−v) + (−v) = v + (−v)  b. 

  −(−v) + (−v) + v = v + (−v) + v  c. 

  −(−v) + ((−v) + v) = v + ((−v) + v) d. 

  −(−v) + 0 = v + 0  e. 

  −(−v) = v  f. 
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4.2 Vector Spaces

  Define a vector space and recognize some important vector spaces.

 Show that a given set is not a vector space.

Definition of a Vector Space

Theorem 4.2 lists ten properties of vector addition and scalar multiplication in Rn.
Suitable definitions of addition and scalar multiplication reveal that many other  
mathematical quantities (such as matrices, polynomials, and functions) also share these 
ten properties. Any set that satisfies these properties (or axioms) is called a vector 
space, and the objects in the set are vectors.

It is important to realize that the definition of a vector space below is precisely 
that—a definition. You do not need to prove anything because you are simply listing 
the axioms required of vector spaces. This type of definition is an abstraction because 
you are abstracting a collection of properties from a particular setting, Rn, to form the 
axioms for a more general setting.

Definition of a Vector Space

Let V be a set on which two operations (vector addition and scalar  
multiplication) are defined. If the listed axioms are satisfied for every u, v, and 
w in V and every scalar (real number) c and d, then V is a vector space.

 Addition:

 1. u + v is in V. Closure under addition
 2. u + v = v + u Commutative property
 3. u + (v + w) = (u + v) + w Associative property
 4.  V has a zero vector 0 such that for Additive identity  

every u in V, u + 0 = u.
 5.  For every u in V, there is a vector Additive inverse  

in V denoted by −u such that  
u + (−u) = 0.

 Scalar Multiplication:

 6. cu is in V. Closure under scalar multiplication
 7. c(u + v) = cu + cv Distributive property
 8. (c + d)u = cu + du Distributive property
 9. c(du) = (cd)u Associative property
10. 1(u) = u Scalar identity

It is important to realize that a vector space consists of four entities: a set of  
vectors, a set of scalars, and two operations. When you refer to a vector space V, be sure 
that all four entities are clearly stated or understood. Unless stated otherwise, assume 
that the set of scalars is the set of real numbers.

The first two examples of vector spaces should not be surprising. They are, in fact, 
the models used to form the ten vector space axioms.

  R2 with the Standard operations  
is a Vector Space

The set of all ordered pairs of real numbers R2 with the standard operations is a vector 
space. To verify this, look back at Theorem 4.1. Vectors in this space have the form

v = (v1, v2). 
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  Rn with the Standard operations  
is a Vector Space

The set of all ordered n-tuples of real numbers Rn with the standard operations is a  
vector space. Theorem 4.2 verifies this. Vectors in this space are of the form

v = (v1, v2, v3, .  .  . , vn). 

The next three examples describe vector spaces in which the basic set V does 
not consist of ordered n-tuples. Each example describes the set V and defines the two  
vector operations. To show that the set is a vector space, you must verify all ten axioms.

  the Vector Space of all 2 × 3 Matrices

Show that the set of all 2 × 3 matrices with the operations of matrix addition and scalar 
multiplication is a vector space.

Solution

 If A and B are 2 × 3 matrices and c is a scalar, then A + B and cA are also 2 × 3 
matrices. The set is, therefore, closed under matrix addition and scalar multiplication. 
Moreover, the other eight vector space axioms follow directly from Theorems 2.1 and 
2.2 (see Section 2.2). So, the set is a vector space. Vectors in this space have the form

a = A = [a11

a21

a12

a22

a13

a23
]. 

   the Vector Space of all polynomials  
of Degree 2 or less

Let P2 be the set of all polynomials of the form p(x) = a0 + a1x + a2x
2, where a0,  

a1, and a2 are real numbers. The sum of two polynomials p(x) = a0 + a1x + a2x
2 and 

q(x) = b0 + b1x + b2x
2 is defined in the usual way,

p(x) + q(x) = (a0 + b0) + (a1 + b1)x + (a2 + b2)x2

and the scalar multiple of p(x) by the scalar c is defined by

cp(x) = ca0 + ca1x + ca2x2.

Show that P2 is a vector space.

Solution

Verification of each of the ten vector space axioms is a straightforward application of 
the properties of real numbers. For example, the set of real numbers is closed under 
addition, so it follows that a0 + b0, a1 + b1, and a2 + b2 are real numbers, and 

p(x) + q(x) = (a0 + b0) + (a1 + b1)x + (a2 + b2)x2

is in the set P2 because it is a polynomial of degree 2 or less. So, P2 is closed under  
addition. To verify the commutative property of addition, write

 p(x) + q(x) = (a0 + a1x + a2x2) + (b0 + b1x + b2x2)
 = (a0 + b0) + (a1 + b1)x + (a2 + b2)x2

 = (b0 + a0) + (b1 + a1)x + (b2 + a2)x2

 = (b0 + b1x + b2x2) + (a0 + a1x + a2x2)
 = q(x) + p(x).

Can you see where the commutative property of addition of real numbers was 
used? The zero vector in this space is the zero polynomial 0(x) = 0 + 0x + 0x2.   
Verify the other vector space axioms to show that P2 is a vector space. 

reMarK
From Example 2 you can  
conclude that R1, the set of  
real numbers (with the usual 
operations of addition and 
multiplication), is a vector 
space.

reMarK
In the same way you are able 
to show that the set of all 2 × 3 
matrices is a vector space, you 
can show that the set of all 
m × n matrices, denoted by 
Mm,n, is a vector space.

reMarK
Even though the zero  
polynomial 0(x) = 0 has no 
degree, P2 is often called the 
set of all polynomials of  
degree 2 or less.
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Pn is defined as the set of all polynomials of degree n or less (together with the zero 
polynomial). The procedure used to verify that P2 is a vector space can be extended to 
show that Pn, with the usual operations of polynomial addition and scalar multiplication, 
is a vector space.

 
 the Vector Space of continuous 
functions (calculus)

See LarsonLinearAlgebra.com for an interactive version of this type of example.

Let C(−∞, ∞) be the set of all real-valued continuous functions defined on the 
entire real line. This set consists of all polynomial functions and all other continuous 
functions on the entire real line. For example, f (x) = sin x and g(x) = ex are members 
of this set.

Addition is defined by

( f + g)(x) = f (x) + g(x)

as shown at the right. Scalar multiplication is 
defined by

(cf)(x) = c[ f (x)].

Show that C(−∞, ∞) is a vector space.

Solution

To verify that the set C(−∞, ∞) is closed under addition and scalar multiplication, use a 
result from calculus—the sum of two continuous functions is continuous and the product 
of a scalar and a continuous function is continuous. To verify that the set C(−∞, ∞)
has an additive identity, consider the function f0 that has a value of zero for all x, that is,

f0(x) = 0, x is any real number.

This function is continuous on the entire real line (its graph is simply the line y = 0),
which means that it is in the set C(−∞, ∞). Moreover, if f  is any other function that 
is continuous on the entire real line, then

( f + f0)(x) = f (x) + f0(x) = f (x) + 0 = f (x).

This shows that f0 is the additive identity in C(−∞, ∞). The verification of the other 
vector space axioms is left to you. 

The summary below lists some important vector spaces frequently referenced in 
the remainder of this text. The operations are the standard operations in each case.

x
x

f x g x( ) + ( )

f x( )

g x( )

f g+

g

f

y

Summary of important Vector Spaces

 R = set of all real numbers
 R2 = set of all ordered pairs
 R3 = set of all ordered triples
 Rn = set of all n-tuples

 C(−∞, ∞) = set of all continuous functions defined on the real number line
 C[a, b] =  set of all continuous functions defined on a closed interval [a, b], 

where a ≠ b
 P = set of all polynomials

 Pn =  set of all polynomials of degree ≤ n (together with the zero 
polynomial)

 Mm,n = set of all m × n matrices
 Mn,n = set of all n × n square matrices
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You have seen the versatility of the concept of a vector space. For instance, a vector 
can be a real number, an n-tuple, a matrix, a polynomial, a continuous function, and so 
on. But what is the purpose of this abstraction, and why bother to define it? There are 
several reasons, but the most important reason applies to efficiency. Once a theorem 
has been proved for an abstract vector space, you need not give separate proofs for 
n-tuples, matrices, polynomials, or other forms. Simply point out that the theorem 
is true for any vector space, regardless of the form the vectors have. Theorem 4.4 
illustrates this process.

theoreM 4.4 properties of Scalar Multiplication

Let v be any element of a vector space V, and let c be any scalar. Then the properties 
below are true.

1. 0v = 0 2. c0 = 0
3. If cv = 0, then c = 0 or v = 0. 4. (−1)v = −v

proof

To prove these properties, use the appropriate vector space axioms. For example, to 
prove the second property, note from axiom 4 that 0 = 0 + 0. This allows you to write 
the steps below.

 c0 = c(0 + 0)  Additive identity

 c0 = c0 + c0  Left distributive property

c0 + (−c0) = (c0 + c0) + (−c0) Add −c0 to both sides.

c0 + (−c0) = c0 + [c0 + (−c0)] Associative property

 0 = c0 + 0  Additive inverse

 0 = c0  Additive identity

To prove the third property, let cv = 0. To show that this implies either c = 0 or v = 0, 
assume that c ≠ 0. (When c = 0, you have nothing more to prove.) Now, c ≠ 0, so you 
can use the reciprocal 1�c to show that v = 0, as shown below.

v = 1v = (1
c)(c)v =

1
c
(cv) =

1
c
(0) = 0

Note that the last step uses Property 2 (the one you just proved). The proofs of the first 
and fourth properties are left as exercises. (See Exercises 51 and 52.) 

GIPhotoStock/Science Source/Getty Images
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In a mass-spring system, motion is assumed to occur in 
only the vertical direction. That is, the system has one 
degree of freedom. When the mass is pulled downward 
and then released, the system will oscillate. If there are no 
forces present to slow or stop the oscillation, then the 
system is undamped and will oscillate indefinitely. 
Applying Newton’s Second Law of Motion to the mass 
yields the second order differential equation

x ″ + ω2x = 0

where x  is the displacement at time t, and ω is a fixed 
constant called the natural frequency of the system. The 
general solution of this differential equation is 

x(t) = a1 sin ωt + a2 cos ωt

where a1 and a2 are arbitrary constants. (Verify this.) In 
Exercise 45, you are asked to show that the set of all 
functions x(t) is a vector space.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 4.2 Vector Spaces 165

SetS that are not Vector SpaceS

The remaining examples in this section describe some sets (with operations) that do not 
form vector spaces. To show that a set is not a vector space, you need only find one 
axiom that is not satisfied.

 the Set of integers is not a Vector Space

The set of all integers (with the standard operations) does not form a vector space 
because it is not closed under scalar multiplication. For example,

1
2(1) = 1

2.

 Scalar  Integer  Noninteger 

In Example 4, it was shown that the set of all polynomials of degree 2 or less  
forms a vector space. You will now see that the set of all polynomials whose degree is 
exactly 2 does not form a vector space.

  the Set of Second-Degree polynomials  
is not a Vector Space

The set of all second-degree polynomials is not a vector space because it is not closed 
under addition. To see this, consider the second-degree polynomials p(x) = x2 and 
q(x) = 1 + x − x2, whose sum is the first-degree polynomial p(x) + q(x) = 1 + x.

 

The sets in Examples 6 and 7 are not vector spaces because they fail one or both 
closure axioms. In the next example, you will look at a set that passes both tests for  
closure but still fails to be a vector space.

 a Set that is not a Vector Space

Let V = R2, the set of all ordered pairs of real numbers, with the standard operation of 
addition and the nonstandard definition of scalar multiplication listed below.

c(x1, x2) = (cx1, 0)

Show that V is not a vector space.

Solution

In this example, the operation of scalar multiplication is nonstandard. For instance, the 
product of the scalar 2 and the ordered pair (3, 4) does not equal (6, 8). Instead, the 
second component of the product is 0,

2(3, 4) = (2 ∙ 3, 0) = (6, 0).

This example is interesting because it satisfies the first nine axioms of the definition 
of a vector space (show this). In attempting to verify the tenth axiom, the nonstandard 
definition of scalar multiplication gives you

1(1, 1) = (1, 0) ≠ (1, 1).

The tenth axiom is not satisfied and the set (together with the two operations) is not a 
vector space. 

Do not be confused by the notation used for scalar multiplication in Example 8.  
In writing c(x1, x2) = (cx1, 0), the scalar multiple of (x1, x2) by c is defined to be (cx1, 0) 
in this example.

reMarK
The set of all second-degree 
polynomials is also not closed 
under scalar multiplication. 
(Verify this.)

reMarK
Notice that a single failure of 
one of the ten vector space  
axioms suffices to show that  
a set is not a vector space.
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4.2 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

Describing the additive identity In Exercises 1–6, 
describe the zero vector (the additive identity) of the  
vector space.

 1. R4   2. C[−1, 0]
 3. M4,3  4. M5,1

 5. P3   6. M2,2

Describing the additive inverse In Exercises 7–12, 
describe the additive inverse of a vector in the vector 
space.

 7. R3   8. C(−∞, ∞)
 9. M2,3 10. M1,4

11. P4  12. M5,5

testing for a Vector Space In Exercises 13–36,  
determine whether the set, together with the standard 
operations, is a vector space. If it is not, identify at least 
one of the ten vector space axioms that fails.

13. M4,6

14. M1,1

15. The set of all third-degree polynomials

16. The set of all fifth-degree polynomials

17.  The set of all first-degree polynomial functions ax, 
a ≠ 0, whose graphs pass through the origin

18.  The set of all first-degree polynomial functions ax + b 
a, b ≠ 0, whose graphs do not pass through the origin

19. The set of all polynomials of degree four or less

20.  The set of all quadratic functions whose graphs pass 
through the origin

21. The set 

{(x, y): x ≥ 0, y is a real number}

22. The set 

{(x, y): x ≥ 0, y ≥ 0} 

23. The set 

{(x, x): x is a real number}

24. The set 

{(x, 12x): x is a real number}
25. The set of all 2 × 2 matrices of the form

[a
c

b
0]

26. The set of all 2 × 2 matrices of the form

[a
c

b
1]

27. The set of all 3 × 3 matrices of the form

[
0
c
e

a
0
f

b
d
0]

28. The set of all 3 × 3 matrices of the form

[
1
c
e

a
1
f

b
d
1]

29. The set of all 4 × 4 matrices of the form

[
0
a
a
a

a
0
b
b

b
b
0
c

c
c
c
1
]

30. The set of all 4 × 4 matrices of the form

[
0
a
a
a

a
0
b
b

b
b
0
c

c
c
c
0
]

31. The set of all 2 × 2 singular matrices

32. The set of all 2 × 2 nonsingular matrices

33. The set of all 2 × 2 diagonal matrices

34. The set of all 3 × 3 upper triangular matrices

35.  C[0, 1], the set of all continuous functions defined on 
the interval [0, 1]

36.  C[−1, 1], the set of all continuous functions defined on 
the interval [−1, 1]

37.  Let V be the set of all positive real numbers. Determine 
whether V is a vector space with the operations shown 
below.

  x + y = xy Addition

  cx = xc  Scalar multiplication

  If it is, verify each vector space axiom; if it is not, state 
all vector space axioms that fail.

38. Determine whether the set R2 with the operations

(x1, y1) + (x2, y2) = (x1x2, y1y2)

 and

c(x1, y1) = (cx1, cy1)

  is a vector space. If it is, verify each vector space axiom; 
if it is not, state all vector space axioms that fail.

39.  proof Prove in full detail that the set {(x, 2x): x is a 
real number}, with the standard operations in R2, is a 
vector space.
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40.  proof Prove in full detail that M2,2, with the standard 
operations, is a vector space.

41.  Rather than use the standard definitions of addition  
and scalar multiplication in R2, let these two operations 
be defined as shown below.

 (a)  (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)
   c(x, y) = (cx, y)
 (b)  (x1, y1) + (x2, y2) = (x1, 0)
   c(x, y) = (cx, cy)
 (c)  (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)
   c(x, y) = (√cx, √cy)
  With each of these new definitions, is R2 a vector space? 

Justify your answers.

42.  Rather than use the standard definitions of addition and 
scalar multiplication in R3, let these two operations be 
defined as shown below.

 (a)  (x1, y1, z1) + (x2, y2, z2)
   = (x1 + x2, y1 + y2, z1 + z2)
   c(x, y, z) = (cx, cy, 0)
 (b)  (x1, y1, z1) + (x2, y2, z2) = (0, 0, 0)
   c(x, y, z) = (cx, cy, cz)
 (c)  (x1, y1, z1) + (x2, y2, z2)
   = (x1 + x2 + 1, y1 + y2 + 1, z1 + z2 + 1)
   c(x, y, z) = (cx, cy, cz)
 (d)  (x1, y1, z1) + (x2, y2, z2)
   = (x1 + x2 + 1, y1 + y2 + 1, z1 + z2 + 1)
   c(x, y, z) = (cx + c − 1, cy + c − 1, cz + c − 1)

  With each of these new definitions, is R3 a vector space? 
Justify your answers.

43.  Prove that in a given vector space V, the zero vector is 
unique.

44.  Prove that in a given vector space V, the additive 
inverse of a vector is unique.

45.  Mass-Spring System The mass in a mass-spring  
system (see figure) is pulled downward and then 
released, causing the system to oscillate according to 

x(t) = a1 sin ωt + a2 cos ωt

  where x is the displacement at time t, a1 and a2 are  
arbitrary constants, and ω is a fixed constant. Show that 
the set of all functions x(t) is a vector space.

 

x
Equilibrium

46. CAPSTONE
(a)  Describe the conditions under which a set may be 

classified as a vector space.

(b)  Give an example of a set that is a vector space and 
an example of a set that is not a vector space.

47.  proof Complete the proof of the cancellation property 
of vector addition by justifying each step.

  Prove that if u, v, and w are vectors in a vector space V 
such that u + w = v + w, then u = v.

  u + w = v + w

  (u + w) + (−w) = (v + w) + (−w) a. 

  u + (w + (−w)) = v + (w + (−w)) b. 

  u + 0 = v + 0  c. 

  u = v  d. 

48.  Let R∞ be the set of all infinite sequences of real  
numbers, with the operations 

  u + v = (u1, u2, u3, .  .  . ) + (v1, v2, v3, .  .  . )
  = (u1 + v1, u2 + v2, u3 + v3, .  .  . )
 and

  cu = c(u1, u2, u3, .  .  . )
  = (cu1, cu2, cu3, .  .  .).
  Determine whether R∞ is a vector space. If it is, verify 

each vector space axiom; if it is not, state all vector 
space axioms that fail.

true or false? In Exercises 49 and 50, determine 
whether each statement is true or false. If a statement 
is true, give a reason or cite an appropriate statement 
from the text. If a statement is false, provide an example 
that shows the statement is not true in all cases or cite an 
appropriate statement from the text.

49. (a)  A vector space consists of four entities: a set of  
vectors, a set of scalars, and two operations.

 (b)  The set of all integers with the standard operations 
is a vector space.

 (c)  The set of all ordered triples (x, y, z) of real  
numbers, where y ≥ 0, with the standard operations 
on R3 is a vector space.

50. (a)  To show that a set is not a vector space, it is 
sufficient to show that just one axiom is not  
satisfied.

 (b)  The set of all first-degree polynomials with the  
standard operations is a vector space.

 (c)  The set of all pairs of real numbers of the form 
(0, y), with the standard operations on R2, is a  
vector space.

51. proof Prove Property 1 of Theorem 4.4.

52. proof Prove Property 4 of Theorem 4.4.
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4.3 Subspaces of Vector Spaces

REMARK
Note that if W  is a subspace of 
V, then it must be closed under 
the operations inherited from V.

x y

z

(x1, 0, x3)

Figure 4.7

  Determine whether a subset W  of a vector space V  is a subspace  
of V.

 Determine subspaces of Rn.

SubSpAcES

In many applications in linear algebra, vector spaces occur as subspaces of larger 
spaces. For instance, you will see that the solution set of a homogeneous system of 
linear equations in n variables is a subspace of Rn. (See Theorem 4.16.)

A nonempty subset of a vector space is a subspace when it is a vector space with 
the same operations defined in the original vector space, as stated in the next definition.

Definition of a Subspace of a Vector Space

A nonempty subset W  of a vector space V is a subspace of V when W  is a vector 
space under the operations of addition and scalar multiplication defined in V.

 A Subspace of R3

Show that the set W = {(x1, 0, x3): x1 and x3 are real numbers} is a subspace of R3 with 
the standard operations.

Solution

The set W  is nonempty because it contains the zero vector (0, 0, 0).
Graphically, the set W  can be interpreted as the xz-plane, as shown in Figure 4.7. 

The set W  is closed under addition because the sum of any two vectors in the xz-plane 
must also lie in the xz-plane. That is, if (x1, 0, x3) and ( y1, 0, y3) are in W, then their sum 
(x1 + y1, 0, x3 + y3) is also in W. Similarly, to see that W  is closed under scalar  
multiplication, let (x1, 0, x3) be in W  and let c be a scalar. Then c(x1, 0, x3) = (cx1, 0, cx3) 
has zero as its second component and must be in W. The verifications of the other eight 
vector space axioms are left to you. 

To establish that a set W  is a vector space, you must verify all ten vector space 
axioms. If W is a nonempty subset of a larger vector space V (and the operations defined 
on W are the same as those defined on V), however, then most of the ten properties are 
inherited from the larger space and need no verification. The next theorem states that it 
is sufficient to test for closure in order to establish that a nonempty subset of a vector 
space is a subspace.

tHEoREM 4.5 test for a Subspace

If W  is a nonempty subset of a vector space V, then W  is a subspace of V if and 
only if the two closure conditions listed below hold.

1. If u and v are in W, then u + v is in W.
2. If u is in W  and c is any scalar, then cu is in W.

pRooF

The proof of this theorem in one direction is straightforward. That is, if W is a subspace  
of V, then W is a vector space and must be closed under addition and scalar multiplication.
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To prove the theorem in the other direction, assume that W is closed under addition 
and scalar multiplication. Note that if u, v, and w are in W, then they are also in V. 
Consequently, vector space axioms 2, 3, 7, 8, 9, and 10 are satisfied automatically.  W is 
closed under addition and scalar multiplication, so it follows that for any v in W and scalar 
c = 0, cv = 0, and (−1)v = −v both lie in W, which satisfies axioms 4 and 5. 

A subspace of a vector space is also a vector space, so it must contain the zero 
vector. In fact, the simplest subspace of a vector space V is the one consisting of only 
the zero vector, W = {0}. This subspace is the zero subspace. Another subspace of V 
is V itself. Every vector space contains these two trivial subspaces, and subspaces other 
than these are called proper (or nontrivial) subspaces.

 A Subspace of M2,2

Let W  be the set of all 2 × 2 symmetric matrices. Show that W  is a subspace of 
the vector space M2,2, with the standard operations of matrix addition and scalar  
multiplication.

Solution

Recall that a square matrix is symmetric when it is equal to its own transpose. The set 
M2,2 is a vector space, so you only need to show that W  (a subset of M2,2) satisfies 
the conditions of Theorem 4.5. Begin by observing that W  is nonempty. W  is closed 
under addition because for matrices A1 and A2 in W, A1 = A1

T and A2 = A2
T, which  

implies that

(A1 + A2)T = A1
T + A2

T = A1 + A2.

So, if A1 and A2 are symmetric matrices of order 2, then so is A1 + A2. Similarly, W  is 
closed under scalar multiplication because A = AT implies that (cA)T = cAT = cA. If 
A is a symmetric matrix of order 2, then so is cA. 

The result of Example 2 can be generalized. That is, for any positive integer n, the 
set of symmetric matrices of order n is a subspace of the vector space Mn,n with the 
standard operations. The next example describes a subset of Mn,n that is not a subspace.

  the Set of Singular Matrices  
is not a Subspace of Mn,n

Let W  be the set of singular matrices of order 2. Show that W  is not a subspace of M2,2 
with the standard operations.

Solution

By Theorem 4.5, to show that a subset W  is not a subspace, show that W  is empty, 
W  is not closed under addition, or W  is not closed under scalar multiplication. In this 
example, W  is nonempty and closed under scalar multiplication, but it is not closed 
under addition. To see this, let A and B be

A = [1
0

0
0] and B = [0

0
0
1].

Then A and B are both singular (noninvertible), but their sum

A + B = [1
0

0
1]

is nonsingular (invertible). So W  is not closed under addition, and by Theorem 4.5, W  
is not a subspace of M2,2. 

REMARK
Note that if W  is a subspace 
of a vector space V, then both 
W  and V  must have the same 
zero vector 0. (In Exercise 55, 
you are asked to prove this.)
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A Subset of R2 that is not a Subspace

Show that W = {(x1, x2): x1 ≥ 0 and x2 ≥ 0}, with the standard operations, is not a 
subspace of R2.

Solution

 This set is nonempty and closed under addition. It is not, however, closed under  
scalar multiplication. To see this, note that (1, 1) is in W, but the scalar multiple
(−1)(1, 1) = (−1, −1) is not in W. So W  is not a subspace of R2. 

You will often encounter sequences of nested subspaces. For example, consider 
the vector spaces P0, P1, P2, P3, .  .  . , Pn, where Pk is the set of all polynomials of  
degree less than or equal to k, with the standard operations. You can write 
P0 ⊂ P1 ⊂ P2 ⊂ P3 ⊂ .  .  . ⊂ Pn. If j ≤ k, then Pj is a subspace of Pk. (In Exercise 
45, you are asked to show this.) Example 5 describes another nesting of subspaces.

 Subspaces of Functions (calculus)

Let W5 be the vector space of all functions defined on [0, 1], and let W1, W2, W3, and 
W4 be defined as shown below.

W1 = set of all polynomial functions that are defined on [0, 1]
W2 = set of all functions that are differentiable on [0, 1]
W3 = set of all functions that are continuous on [0, 1]
W4 = set of all functions that are integrable on [0, 1]

Show that W1 ⊂ W2 ⊂ W3 ⊂ W4 ⊂ W5 and that Wi is a subspace of Wj for i ≤ j.

Solution

From calculus you know that every polynomial function is differentiable on [0, 1]. So, 
W1 ⊂ W2. Moreover, every differentiable function is continuous, every continuous 
function is integrable, and every integrable function is a function, which means that 
W2 ⊂ W3 ⊂ W4 ⊂ W5. So, you have W1 ⊂ W2 ⊂ W3 ⊂ W4 ⊂ W5, as shown in  
Figure 4.8. It is left to you to show that Wi is a subspace of Wj for i ≤ j. (See  
Exercise 46.) 

As implied in Example 5, if U, V, and W  are vector spaces such that W  is a  
subspace of V and V is a subspace of U, then W  is also a subspace of U. The next  
theorem states that the intersection of two subspaces is also a subspace, as shown in 
Figure 4.9.

tHEoREM 4.6  the intersection of two Subspaces  
is a Subspace

If V and W  are both subspaces of a vector space U, then the intersection of V and 
W  (denoted by V ∩ W) is also a subspace of U.

pRooF

V and W  are both subspaces of U, so both contain 0, and V ∩ W  is nonempty. To show 
that V ∩ W  is closed under addition, let v1 and v2 be any two vectors in V ∩ W. V and 
W  are both subspaces of U, which means that both are closed under addition. Both v1 
and v2 are in V, so their sum v1 + v2 must be in V. Similarly, v1 + v2 is in W  because 
both v1 and v2 are also in W. But this implies that v1 + v2 is in V ∩ W, and it follows 
that V ∩ W  is closed under addition. It is left to you to show (by a similar argument) 
that V ∩ W  is closed under scalar multiplication. (See Exercise 59.) 

Figure 4.9 The intersection of two 
subspaces is a subspace.

U

V V ∩ W W

Figure 4.8

Polynomial
functions

Differentiable
functions

Continuous
functions

Integrable
functions

Functions

W1

W2

W3

W4

W5

REMARK
Theorem 4.6 states that the 
intersection of two subspaces 
is a subspace. In Exercise 56 
you are asked to show that the 
union of two subspaces is not 
necessarily a subspace.
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SubSpAcES oF Rn

Rn is a convenient source for examples of vector spaces, so the remainder of this section 
is devoted to looking at subspaces of Rn.

 Determining Subspaces of R2

Determine whether each subset is a subspace of R2.

a. The set of points on the line x + 2y = 0

b. The set of points on the line x + 2y = 1

Solution

a.  Solving for x, a point in R2 is on the line x + 2y = 0 if and only if it has the form 
(−2t, t), where t is any real number. (See Figure 4.10.)

To show that this set is closed under addition, let v1 = (−2t1, t1) and v2 = (−2t2, t2) 
be any two points on the line. Then you have

v1 + v2 = (−2t1, t1) + (−2t2, t2) = (−2(t1 + t2), t1 + t2) = (−2t3, t3)

where t3 = t1 + t2. v1 + v2 lies on the line, and the set is closed under addition.  
In a similar way, you can show that the set is closed under scalar multiplication. So, 
this set is a subspace of R2.

b.  This subset of R2 is not a subspace of R2 because every subspace must contain 
the zero vector (0, 0), which is not on the line x + 2y = 1. (See Figure 4.10.) 

Of the two lines in Example 6, the one that is a subspace of R2 is the one that passes 
through the origin. This is characteristic of subspaces of R2. That is, if W  is a subset of 
R2, then it is a subspace if and only if it has one of the forms listed below.

1. W  consists of the single point (0, 0).

2. W  consists of all points on a line that passes through the origin.

3. W  consists of all of R2.

Figure 4.11 shows these three possibilities graphically.

W = {(0, 0)}
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W = all points on a line
passing through the origin

  

−2 −1 2

−2
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W = R2

Figure 4.11

 A Subset of R2 that is not a Subspace

Show that the subset of R2 consisting of all points on x2 + y2 = 1 is not a subspace.

Solution

 This subset of R2 is not a subspace because the points (1, 0) and (0, 1) are in the  
subset, but their sum (1, 1) is not. (See Figure 4.12.) So, this subset is not closed  
under addition. 

Figure 4.10

x

y

−1−2 2

−1

−2

1

2

x + 2y = 1

x + 2y = 0

Figure 4.12

x

(1, 1)

(1, 0)

(0, 1)

(−1, 0)

(0, −1)

y

The unit circle is
not a subspace 

of R2.

REMARK
Another way to tell that the 
subset shown in Figure 4.12  
is not a subspace of R2 is by 
noting that it does not contain 
the zero vector (the origin).
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Determining Subspaces of R3

See LarsonLinearAlgebra.com for an interactive version of this type of example.

Determine whether each subset is a subspace of R3.

a. W = {(x1, x2, 1): x1 and x2 are real numbers}
b. W = {(x1, x1 + x3, x3): x1 and x3 are real numbers}

Solution

a. The zero vector 0 = (0, 0, 0) is not in W, so W  is not a subspace of R3.

b. This set is nonempty because it contains the zero vector (0, 0, 0). Let 

 v = (v1, v1 + v3, v3) and u = (u1, u1 + u3, u3)

be two vectors in W, and let c be any real number. W  is closed under addition 
because

  v + u = (v1 + u1, v1 + v3 + u1 + u3, v3 + u3)
  = (v1 + u1, (v1 + u1) + (v3 + u3), v3 + u3)
  = (x1, x1 + x3, x3)

where x1 = v1 + u1 and x3 = v3 + u3, which means that v + u is in W. Similarly, 
W  is closed under scalar multiplication because

  cv = (cv1, c(v1 + v3), cv3)
  = (cv1, cv1 + cv3, cv3)
  = (x1, x1 + x3, x3)

where x1 = cv1 and x3 = cv3, which means that cv is in W. So, W  is a subspace 
of R3. 

In Example 8, note that the graph of each subset is a plane in R3, but the only subset 
that is a subspace is the one represented by a plane that passes through the origin. (See 
Figure 4.13.) You can show that a subset W  of R3 is a subspace of R3 if and only if it 
has one of the forms listed below.

1. W  consists of the single point (0, 0, 0).

2. W  consists of all points on a line that passes through the origin.

3. W  consists of all points in a plane that passes through the origin.

4. W  consists of all of R3.
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Digital signal processing depends on sampling, which 
converts continuous signals into discrete sequences that 
can be used by digital devices. Traditionally, sampling is 
uniform and pointwise, and is obtained from a single 
vector space. Then, the resulting sequence is reconstructed 
into a continuous-domain signal. Such a process, however, 
can involve a significant reduction in information, which 
could result in a low-quality reconstructed signal. In 
applications such as radar, geophysics, and wireless 
communications, researchers have determined situations 
in which sampling from a union of vector subspaces 
can be more appropriate. (Source: Sampling Signals from 
a Union of Subspaces—A New Perspective for the Extension of This 
Theory, Lu, Y.M. and Do, M.N., IEEE Signal Processing Magazine) 

Figure 4.13
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4.3 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

Verifying Subspaces In Exercises 1–6, verify that W 
is a subspace of V. In each case, assume that V has the 
standard operations.

 1. W = {(x1, x2, x3, 0): x1, x2, and x3 are real numbers}
 V = R4

 2. {(x, y, 4x − 5y): x and y are real numbers}
 V = R3

 3. W  is the set of all 2 × 2 matrices of the form

 [0
b

a
0].

 V = M2,2

 4. W  is the set of all 3 × 2 matrices of the form

 [
a

a − 2b
0
     

b
0
c].

 V = M3,2

 5.  calculus W  is the set of all functions that are  
continuous on [−1, 1]. V is the set of all functions that 
are integrable on [−1, 1].

 6.  calculus W  is the set of all functions that are  
differentiable on [−1, 1]. V is the set of all functions 
that are continuous on [−1, 1].

Subsets that Are not Subspaces In Exercises 7–20, 
W is not a subspace of the vector space. Verify this by 
giving a specific example that violates the test for a  
vector subspace (Theorem 4.5).

 7.  W  is the set of all vectors in R3 whose third component 
is −1.

 8.  W  is the set of all vectors in R2 whose first component 
is 2.

 9.  W  is the set of all vectors in R2 whose components are 
rational numbers.

10.  W  is the set of all vectors in R2 whose components are 
integers.

11. W  is the set of all nonnegative functions in C(−∞, ∞).
12.  W  is the set of all linear functions ax + b, a ≠ 0, in 

C(−∞, ∞).
13.  W  is the set of all vectors in R3 whose components are 

nonnegative.

14.  W  is the set of all vectors in R3 whose components are 
Pythagorean triples.

15. W  is the set of all matrices in M3,3 of the form

 [
1
c
e

a
1
f

b
d
0].

16. W  is the set of all matrices in M3,1 of the form

 [√a 0 3a]T.

17.  W  is the set of all matrices in Mn,n with determinants 
equal to 1.

18. W  is the set of all matrices in Mn,n such that A2 = A.

19.  W  is the set of all vectors in R2 whose second component  
is the cube of the first.

20.  W  is the set of all vectors in R2 whose second component  
is the square of the first.

Determining Subspaces of C (−∞, ∞) In Exercises 
21–28, determine whether the subset of C(−∞, ∞) is 
a subspace of C(−∞, ∞) with the standard operations. 
Justify your answer.

21. The set of all positive functions:  f(x) > 0

22. The set of all negative functions:  f(x) < 0

23. The set of all even functions:  f(−x) = f(x)
24. The set of all odd functions:  f(−x) = −f(x)
25. The set of all constant functions:  f(x) = c

26.  The set of all exponential functions  f(x) = ax, where 
a > 0

27. The set of all functions such that  f(0) = 0

28. The set of all functions such that  f(0) = 1

Determining Subspaces of Mn,n In Exercises 29–36, 
determine whether the subset of Mn,n is a subspace of 
Mn,n with the standard operations. Justify your answer.

29. The set of all n × n upper triangular matrices

30. The set of all n × n diagonal matrices

31. The set of all n × n matrices with integer entries

32.  The set of all n × n matrices A that commute with a 
given matrix B; that is, AB = BA

33. The set of all n × n singular matrices

34. The set of all n × n invertible matrices

35. The set of all n × n matrices whose entries sum to zero

36. The set of all n × n matrices whose trace is nonzero

  (Recall that the trace of a matrix is the sum of the main 
diagonal entries of the matrix.)

Determining Subspaces of R 3 In Exercises 37–42, 
determine whether the set W is a subspace of R3 with the 
standard operations. Justify your answer.

37. W = {(0, x2, x3): x2 and x3 are real numbers}
38. W = {(x1, x2, 4): x1 and x2 are real numbers}
39. W = {(a, a − 3b, b): a and b are real numbers}
40. W = {(s, t, s + t): s and t are real numbers}
41. W = {(x1, x2, x1x2): x1 and x2 are real numbers}
42. W = {(x1, 1�x1, x3): x1 and x3 are real numbers, x1 ≠ 0}
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true or False? In Exercises 43 and 44, determine 
whether each statement is true or false. If a statement 
is true, give a reason or cite an appropriate statement 
from the text. If a statement is false, provide an example 
that shows the statement is not true in all cases or cite an 
appropriate statement from the text.

43. (a)  If W  is a subspace of a vector space V, then it has 
closure under scalar multiplication as defined in V.

 (b)  If V and W  are both subspaces of a vector space U, 
then the intersection of V and W  is also a subspace.

 (c)  If U, V, and W are vector spaces such that W is a 
subspace of V and U is a subspace of V, then W = U.

44. (a)  Every vector space V contains two proper subspaces  
that are the zero subspace and itself.

 (b)  If W  is a subspace of R2, then W  must contain the 
vector (0, 0).

 (c)  If W  is a subspace of a vector space V, then it has 
closure under addition as defined in V.

 (d)  If W  is a subspace of a vector space V, then W  is 
also a vector space.

45. Consider the vector spaces

P0, P1, P2, .  .  . , Pn

  where Pk is the set of all polynomials of degree less than 
or equal to k, with the standard operations. Show that if 
j ≤ k, then Pj is a subspace of Pk.

46.  calculus Let W1, W2, W3, W4, and W5 be defined as in 
Example 5. Show that Wi is a subspace of Wj for i ≤ j.

47.  calculus Let F(−∞, ∞) be the vector space of 
real-valued functions defined on the entire real line. 
Show that each set is a subspace of F(−∞, ∞).

 (a) C(−∞, ∞)
 (b)  The set of all differentiable functions f  defined on 

the real number line

 (c)  The set of all differentiable functions f  defined on the 
real number line that satisfy the differential equation

  f′ − 3f = 0

48. calculus Determine whether the set

 S = {f ∈ C[0, 1]:∫1

0
f(x) dx = 0}

 is a subspace of C[0, 1]. Prove your answer.

49.  Let W  be the subset of R3 consisting of all points on a 
line that passes through the origin. Such a line can be  
represented by the parametric equations

x = at, y = bt, and z = ct.

 Use these equations to show that W  is a subspace of R3.

50.  CAPSTONE Explain why it is sufficient to 
test for closure to establish that a nonempty subset 
of a vector space is a subspace.

51.  Guided proof Prove that a nonempty set W  is a  
subspace of a vector space V if and only if ax + by is 
an element of W  for all scalars a and b and all vectors 
x and y in W.

  Getting Started: In one direction, assume W  is a  
subspace, and show by using closure axioms that 
ax + by is an element of W. In the other direction, 
assume ax + by is an element of W  for all scalars a 
and b and all vectors x and y in W, and verify that W  is 
closed under addition and scalar multiplication.

 (i)  If W  is a subspace of V, then use scalar multiplication  
closure to show that ax and by are in W. Now use 
additive closure to get the desired result.

 (ii)  Conversely, assume ax + by is in W. By cleverly 
assigning specific values to a and b, show that W  is 
closed under addition and scalar multiplication.

52.  Let x, y, and z be vectors in a vector space V. Show that 
the set of all linear combinations of x, y, and z,

W = {ax + by + cz: a, b, and c are scalars}

 is a subspace of V. This subspace is the span of {x, y, z}.
53. proof Let A be a fixed 2 × 3 matrix. Prove that the set

W = {x ∈ R3: Ax = [1
2]}

 is not a subspace of R3.

54. proof Let A be a fixed m × n matrix. Prove that the set

W = {x ∈ Rn: Ax = 0}

 is a subspace of Rn.

55.  proof Let W be a subspace of the vector space V. Prove 
that the zero vector in V is also the zero vector in W.

56.  Give an example showing that the union of two  
subspaces of a vector space V is not necessarily a  
subspace of V.

57.  proof Let A and B be fixed 2 × 2 matrices. Prove that 
the set

W = {X: XAB = BAX}

 is a subspace of M2,2.

58.  proof Let V and W  be two subspaces of a vector 
space U.

 (a) Prove that the set

 V + W = {u: u = v + w, v ∈ V and w ∈ W}

  is a subspace of U.

 (b)  Describe V + W  when V and W  are the subspaces 
of U = R2:

   V = {(x, 0): x is a real number} and W = {(0, y): y 
is a real number}.

59.  proof Complete the proof of Theorem 4.6 by showing 
that the intersection of two subspaces of a vector space 
is closed under scalar multiplication.
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4.4 Spanning Sets and Linear Independence

 Write a linear combination of a set of vectors in a vector space V.

  Determine whether a set S of vectors in a vector space V  is a  
spanning set of V.

  Determine whether a set of vectors in a vector space V  is linearly 
independent.

Linear Combinations of VeCtors in a VeCtor spaCe

This section begins to develop procedures for representing each vector in a vector space 
as a linear combination of a select number of vectors in the space.

Often, one or more of the vectors in a set can be written as linear combinations of 
other vectors in the set. Examples 1 and 2 illustrate this possibility.

 examples of Linear Combinations

a. For the set of vectors in R3

 v1 v2 v3

 S = {(1, 3, 1), (0, 1, 2), (1, 0, −5)}

v1 is a linear combination of v2 and v3 because

 v1 = 3v2 + v3 = 3(0, 1, 2) + (1, 0, −5) = (1, 3, 1).

b. For the set of vectors in M2,2

 v1 v2 v3 v4

 S = {[0
2

8
1], [0

1
2
0], [−1

1
3
2], [−2

1
0
3]}

v1 is a linear combination of v2, v3, and v4 because

  v1 = v2 + 2v3 − v4

  = [0
1

2
0] + 2[−1

1
3
2] − [−2

1
0
3]

  = [0
2

8
1].  

In Example 1, it is relatively easy to verify that one of the vectors in the set S is  
a linear combination of the other vectors because the coefficients to form the linear  
combination are given. Example 2 demonstrates a procedure for finding the coefficients. 

Definition of a Linear Combination of Vectors

A vector v in a vector space V is a linear combination of the vectors u1, 
u2, .  .  . , uk in V when v can be written in the form

v = c1u1 + c2u2 + .  .  . + ckuk

where c1, c2, .  .  . , ck are scalars.
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finding a Linear Combination

Write the vector w = (1, 1, 1) as a linear combination of vectors in the set
 v1 v2 v3

S = {(1, 2, 3), (0, 1, 2), (−1, 0, 1)}.

soLution

Find scalars c1, c2, and c3 such that

 (1, 1, 1) = c1(1, 2, 3) + c2(0, 1, 2) + c3(−1, 0, 1)
 = (c1, 2c1, 3c1) + (0, c2, 2c2) + (−c3, 0, c3)
 = (c1 − c3, 2c1 + c2, 3c1 + 2c2 + c3).

Equating corresponding components yields the system of linear equations below.

c1

2c1

3c1

+
+

c2

2c2

− c3 =
=

+ c3 =

1
1
1

Using Gauss-Jordan elimination, the augmented matrix of this system row reduces to

[
1
0
0

0
1
0

−1
2
0

1
−1

0].

So, this system has infinitely many solutions, each of the form

c1 = 1 + t,  c2 = −1 − 2t,  c3 = t.

To obtain one solution, you could let t = 1. Then c3 = 1, c2 = −3, and c1 = 2, and  
you have

w = 2v1 − 3v2 + v3.

(Verify this.) Other choices for t would yield different ways to write w as a linear  
combination of v1, v2, and v3. 

 finding a Linear Combination

If possible, write the vector

w = (1, −2, 2)

as a linear combination of vectors in the set S in Example 2.

soLution

Following the procedure from Example 2 results in the system

c1

2c1

3c1

+
+

c2

2c2

− c3 =
=

+ c3 =

1
−2

2.

The augmented matrix of this system row reduces to

[
1
0
0

0
1
0

−1
2
0

0
0
1].

From the third row you can conclude that the system of equations is inconsistent,  
which means that there is no solution. Consequently, w cannot be written as a linear 
combination of v1, v2, and v3. 
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spanning sets

If every vector in a vector space can be written as a linear combination of vectors in a 
set S, then S is a spanning set of the vector space.

 examples of spanning sets

a.  The set S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} spans R3 because any vector u = (u1, u2, u3) 
in R3 can be written as

 u = u1(1, 0, 0) + u2(0, 1, 0) + u3(0, 0, 1) = (u1, u2, u3).

b.  The set S = {1, x, x2} spans P2 because any polynomial function p(x) = a + bx + cx2 
in P2 can be written as

  p(x) = a(1) + b(x) + c(x2)
  = a + bx + cx2.  

The spanning sets in Example 4 are called the standard spanning sets of R3 and 
P2, respectively. (You will learn more about standard spanning sets in the next section.)  
In the next example, you will look at a nonstandard spanning set of R3.

 a spanning set of R 3

Show that the set S = {(1, 2, 3), (0, 1, 2), (−2, 0, 1)} spans R3.

soLution

Let u = (u1, u2, u3) be any vector in R3. Find scalars c1, c2, and c3 such that

 (u1, u2, u3) = c1(1, 2, 3) + c2(0, 1, 2) + c3(−2, 0, 1)
 = (c1 − 2c3, 2c1 + c2, 3c1 + 2c2 + c3).

This vector equation produces the system

c1

2c1

3c1

+
+

c2

2c2

−

+

2c3 = u1

= u2

c3 = u3.

The coefficient matrix of this system has a nonzero determinant (verify that it is  
equal to −1), and it follows from the list of equivalent conditions in Section 3.3 that 
the system has a unique solution. So, any vector in R3 can be written as a linear  
combination of the vectors in S, and you can conclude that the set S spans R3. 

 a set that Does not span R 3

From Example 3 you know that the set

S = {(1, 2, 3), (0, 1, 2), (−1, 0, 1)}

does not span R3 because w = (1, −2, 2) is in R3 and cannot be expressed as a linear 
combination of the vectors in S. 

Definition of a spanning set of a Vector space

Let S = {v1, v2, .  .  . , vk} be a subset of a vector space V. The set S is a spanning 
set of V when every vector in V can be written as a linear combination of vectors 
in S. In such cases it is said that S spans V.

remarK
The coefficient matrix of the 
system in Example 3,

[
1
2
3

0
1
2

−1
0
1]

has a determinant of zero. 
(Verify this.)
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Comparing the sets of vectors in Examples 5 and 6, note that the sets are the same 
except for a seemingly insignificant difference in the third vector.

S1 = {(1, 2, 3), (0, 1, 2), (−2, 0, 1)} Example 5

S2 = {(1, 2, 3), (0, 1, 2), (−1, 0, 1)} Example 6

The difference, however, is significant, because the set S1 spans R3 whereas the set S2 
does not. The reason for this difference can be seen in Figure 4.14. The vectors in S2 lie 
in a common plane; the vectors in S1 do not.

Although the set S2 does not span all of R3, it does span a subspace of R3—
namely, the plane in which the three vectors of S2 lie. This subspace is the span of S2,  
as stated in the next definition.

The next theorem tells you that the span of any finite nonempty subset of a vector 
space V is a subspace of V.

proof

To show that span(S), the set of all linear combinations of v1, v2, .  .  . , vk, is a subspace 
of V, show that it is closed under addition and scalar multiplication. Consider any two 
vectors u and v in span(S),

u = c1v1 + c2v2 + .  .  . + ckvk

v = d1v1 + d2v2 + .  .  . + dkvk

where

c1, c2, .  .  . , ck  and  d1, d2, .  .  . , dk

are scalars. Then

u + v = (c1 + d1)v1 + (c2 + d2)v2 + .  .  . + (ck + dk)vk

and

cu = (cc1)v1 + (cc2)v2 + .  .  . + (cck)vk

which means that u + v and cu are also in span(S) because they can be written as  
linear combinations of vectors in S. So, span(S) is a subspace of V. It is left to you to 
prove that span(S) is the smallest subspace of V that contains S. (See Exercise 59.) 

figure 4.14
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S2 = {(1, 2, 3), (0, 1, 2), (−1, 0, 1)}
The vectors in S2 lie in a

common plane.
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−1−2

1

1

1
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2
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z

S1 = {(1, 2, 3), (0, 1, 2), (−2, 0, 1)}
The vectors in S1 do not lie

in a common plane.

Definition of the span of a set

If S = {v1, v2, .  .  . , vk} is a set of vectors in a vector space V, then the span of S 
is the set of all linear combinations of the vectors in S,

span(S) = {c1v1 + c2v2 + .  .  . + ckvk : c1, c2, .  .  . , ck are real numbers}.

The span of S is denoted by

span(S)  or  span{v1, v2, .  .  . , vk}.

When span(S) = V, it is said that V is spanned by {v1, v2, .  .  . , vk}, or that  
S spans V.

tHeorem 4.7  span(S) is a subspace of V

If S = {v1, v2, .  .  . , vk} is a set of vectors in a vector space V, then span(S) is a 
subspace of V. Moreover, span(S) is the smallest subspace of V that contains S, 
in the sense that every other subspace of V that contains S must contain span(S).
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Linear DepenDenCe anD Linear inDepenDenCe

For a set of vectors

S = {v1, v2, .  .  . , vk}

in a vector space V, the vector equation

c1v1 + c2v2 + .  .  . + ckvk = 0

always has the trivial solution

c1 = 0, c2 = 0, .  .  . , ck = 0.

Sometimes, however, there are also nontrivial solutions. For instance, in Example 1(a) 
you saw that in the set

 v1 v2 v3

S = {(1, 3, 1), (0, 1, 2), (1, 0, −5)}

the vector v1 can be written as a linear combination of the other two vectors, as shown 
below.

v1 = 3v2 + v3

So, the vector equation

c1v1 + c2v2 + c3v3 = 0

has a nontrivial solution in which the coefficients are not all zero:

c1 = 1,  c2 = −3,  c3 = −1.

When a nontrivial solution exists, the set S is linearly dependent. Had the only  
solution been the trivial one (c1 = c2 = c3 = 0), then the set S would have been  
linearly independent. This concept is essential to the study of linear algebra.

 examples of Linearly Dependent sets

a. The set S = {(1, 2), (2, 4)} in R2 is linearly dependent because

 −2(1, 2) + (2, 4) = (0, 0).

b. The set S = {(1, 0), (0, 1), (−2, 5)} in R2 is linearly dependent because

 2(1, 0) − 5(0, 1) + (−2, 5) = (0, 0).

c. The set S = {(0, 0), (1, 2)} in R2 is linearly dependent because

 1(0, 0) + 0(1, 2) = (0, 0). 

The next example demonstrates a test to determine whether a set of vectors is  
linearly independent or linearly dependent.

Definition of Linear Dependence and Linear independence

A set of vectors S = {v1, v2, .  .  . , vk} in a vector space V is linearly independent  
when the vector equation

c1v1 + c2v2 + .  .  . + ckvk = 0

has only the trivial solution

c1 = 0, c2 = 0, .  .  . , ck = 0.

If there are also nontrivial solutions, then S is linearly dependent.
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testing for Linear independence

See LarsonLinearAlgebra.com for an interactive version of this type of example.

Determine whether the set of vectors in R3 is linearly independent or linearly dependent.

S = {v1, v2, v3} = {(1, 2, 3), (0, 1, 2), (−2, 0, 1)}

soLution

To test for linear independence or linear dependence, form the vector equation

c1v1 + c2v2 + c3v3 = 0.

If the only solution of this equation is c1 = c2 = c3 = 0, then the set S is linearly 
independent. Otherwise, S is linearly dependent. Expanding this equation, you have

 c1(1, 2, 3) + c2(0, 1, 2) + c3(−2, 0, 1) = (0, 0, 0)
 (c1 − 2c3, 2c1 + c2, 3c1 + 2c2 + c3) = (0, 0, 0)

which yields the homogeneous system of linear equations in c1, c2, and c3 below.

c1

2c1

3c1

+
+

c2

2c2

−

+

2c3 = 0
= 0

c3 = 0

The augmented matrix of this system reduces by Gauss-Jordan elimination as shown.

[
1
2
3

0
1
2

−2
0
1

0
0
0]    [

1
0
0

0
1
0

0
0
1

0
0
0]

This implies that the only solution is the trivial solution c1 = c2 = c3 = 0. So, S is 
linearly independent. 

The steps in Example 8 are summarized below.

testing for Linear independence and Linear Dependence

Let S = {v1, v2, .  .  . , vk} be a set of vectors in a vector space V. To determine 
whether S is linearly independent or linearly dependent, use the steps below.

1.  From the vector equation c1v1 + c2v2 + .  .  . + ckvk = 0, write a system of 
linear equations in the variables c1, c2, .  .  . , and ck.

2. Determine whether the system has a unique solution.
3.  If the system has only the trivial solution, c1 = 0, c2 = 0, .  .  . , ck = 0, 

then the set S is linearly independent. If the system also has nontrivial 
solutions, then S is linearly dependent.

Linear
aLgebra
appLieD

Image morphing is the process of transforming one 
image into another by generating a sequence of synthetic 
intermediate images. Morphing has a wide variety of 
applications, such as movie special effects, age progression 
software, and simulating wound healing and cosmetic surgery 
results. Morphing an image uses a process called warping, 
in which a piece of an image is distorted. The mathematics 
behind warping and morphing can include forming a linear 
combination of the vectors that bound a triangular piece of 
an image, and performing an affine transformation to form 
new vectors and a distorted image piece.

dundanim/Shutterstock.com
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testing for Linear independence

Determine whether the set of vectors in P2 is linearly independent or linearly dependent.

 v1 v2 v3

S = {1 + x − 2x2, 2 + 5x − x2, x + x2}

soLution

Expanding the equation c1v1 + c2v2 + c3v3 = 0 produces

 c1(1 + x − 2x2) + c2(2 + 5x − x2) + c3(x + x2) = 0 + 0x + 0x2

 (c1 + 2c2) + (c1 + 5c2 + c3)x + (−2c1 − c2 + c3)x2 = 0 + 0x + 0x2.

Equating corresponding coefficients of powers of x yields the homogeneous system of 
linear equations in c1, c2, and c3 below.

c1 +
c1 +

−2c1 −

2c2

5c2

c2

= 0
+ c3 = 0
+ c3 = 0

The augmented matrix of this system reduces by Gaussian elimination as shown below.

[
1
1

−2

2
5

−1

0
1
1

0
0
0]    [

1
0
0

2
1
0

0
1
3

0

0
0
0]

This implies that the system has infinitely many solutions. So, the system must have 
nontrivial solutions, and you can conclude that the set S is linearly dependent.

One nontrivial solution is

c1 = 2,  c2 = −1,  and  c3 = 3

which yields the nontrivial linear combination

(2)(1 + x − 2x2) + (−1)(2 + 5x − x2) + (3)(x + x2) = 0. 

 testing for Linear independence

Determine whether the set of vectors in M2,2 is linearly independent or linearly dependent.

 v1 v2 v3

S = {[2
0

1
1], [3

2
0
1], [1

2
0
0]}

soLution

From the equation c1v1 + c2v2 + c3v3 = 0, you have

c1[2
0

1
1] + c2[3

2
0
1] + c3[1

2
0
0] = [0

0
0
0]

which produces the system of linear equations in c1, c2, and c3 below.

2c1

c1

c1

+

+

3c2

2c2

c2

+

+

c3 = 0
= 0

2c3 = 0
= 0

Use Gaussian elimination to show that the system has only the trivial solution, which 
means that the set S is linearly independent. 
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testing for Linear independence

Determine whether the set of vectors in M4,1 is linearly independent or linearly dependent.

S = {v1, v2, v3, v4} = {[ 1
0

−1
0
], [

1
1
0
2
], [

0
3
1

−2
], [

0
1

−1
2
]}

soLution

From the equation c1v1 + c2v2 + c3v3 + c4v4 = 0, you obtain

c1[
1
0

−1
0
] + c2[

1
1
0
2
] + c3[

0
3
1

−2
] + c4[

0
1

−1
2
] = [

0
0
0
0
].

This equation produces the system of linear equations in c1, c2, c3, and c4 below.

c1

−c1

+ c2

c2

2c2

+
+
−

3c3 +
c3 −

2c3 +

= 0
c4 = 0
c4 = 0

2c4 = 0

Use Gaussian elimination to show that the system has only the trivial solution, which  
means that the set S is linearly independent. 

If a set of vectors is linearly dependent, then by definition the equation 
c1v1 + c2v2 + .  .  . + ckvk = 0 has a nontrivial solution (a solution for which not all 
the ci’s are zero). For instance, if c1 ≠ 0, then you can solve this equation for v1 and 
write v1 as a linear combination of the other vectors v2, v3, .  .  . , and vk. In other words, 
the vector v1 depends on the other vectors in the set. This property is characteristic of 
a linearly dependent set.

proof

To prove the theorem in one direction, assume S is a linearly dependent set. Then there 
exist scalars c1, c2, c3, .  .  . , ck (not all zero) such that

c1v1 + c2v2 + c3v3 + .  .  . + ckvk = 0.

One of the coefficients must be nonzero, so no generality is lost by assuming c1 ≠ 0. 
Then solving for v1 as a linear combination of the other vectors produces

 c1v1 = −c2v2 − c3v3 − .  .  . − ckvk

 v1 = −
c2

c1
v2 −

c3

c1
v3 − .  .  . −

ck

c1
vk.

Conversely, assume the vector v1 in S is a linear combination of the other vectors. That is,

v1 = c2v2 + c3v3 + .  .  . + ckvk.

Then the equation −v1 + c2v2 + c3v3 + .  .  . + ckvk = 0 has at least one coefficient,  
−1, that is nonzero, and you can conclude that S is linearly dependent. 

tHeorem 4.8  a property of Linearly Dependent sets

A set S = {v1, v2, .  .  . , vk}, k ≥ 2, is linearly dependent if and only if at least one 
of the vectors vi can be written as a linear combination of the other vectors in S.
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  Writing a Vector as a Linear 
Combination of other Vectors

In Example 9, you determined that the set

 v1 v2 v3

S = {1 + x − 2x2, 2 + 5x − x2, x + x2}

is linearly dependent. Show that one of the vectors in this set can be written as a linear 
combination of the other two.

soLution

In Example 9, the equation c1v1 + c2v2 + c3v3 = 0 produced the system

c1 +
c1 +

−2c1 −

2c2

5c2

c2

= 0
+ c3 = 0
+ c3 = 0.

This system has infinitely many solutions represented by c3 = 3t, c2 = −t, and 
c1 = 2t. Letting t = 1 results in the equation 2v1 − v2 + 3v3 = 0. So, v2 can be  
written as a linear combination of v1 and v3, as shown below.

v2 = 2v1 + 3v3

A check yields

2 + 5x − x2 = 2(1 + x − 2x2) + 3(x + x2) = 2 + 5x − x2. 

Theorem 4.8 has a practical corollary that provides a simple test for determining 
whether two vectors are linearly dependent. In Exercise 77 you are asked to prove this 
corollary.

 testing for Linear Dependence of two Vectors

a.  The set S = {v1, v2} = {(1, 2, 0), (−2, 2, 1)} is linearly independent because v1 and 
v2 are not scalar multiples of each other, as shown in Figure 4.15(a).

b.  The set S = {v1, v2} = {(4, −4, −2), (−2, 2, 1)} is linearly dependent because 
v1 = −2v2, as shown in Figure 4.15(b).

a. 

yx

−2
−1

−12

2

3

v2

v1

z

S = {(1, 2, 0), (−2, 2, 1)}
The set S is linearly independent. 

2

 b. 

yx

−2

−2 44

4

2

6

−4

z

v2

v1

S = {(4, −4, −2), (−2, 2, 1)}
The set S is linearly dependent.

figure 4.15

tHeorem 4.8  Corollary

Two vectors u and v in a vector space V are linearly dependent if and only if one 
is a scalar multiple of the other.

remarK
The zero vector is always  
a scalar multiple of another 
vector in a vector space.
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4.4 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

Linear Combinations In Exercises 1–4, write each 
vector as a linear combination of the vectors in S (if  
possible).

 1. S = {(2, −1, 3), (5, 0, 4)}
 (a) z = (−1, −2, 2)  (b) v = (8, −1

4, 27
4 )

 (c) w = (1, −8, 12)  (d) u = (1, 1, −1)
 2. S = {(1, 2, −2), (2, −1, 1)}
 (a) z = (−4, −3, 3)  (b) v = (−2, −6, 6)
 (c) w = (−1, −22, 22)  (d) u = (1, −5, −5)
 3. S = {(2, 0, 7), (2, 4, 5), (2, −12, 13)}
 (a) u = (−1, 5, −6)  (b) v = (−3, 15, 18)
 (c) w = (1

3, 43, 12)  (d) z = (2, 20, −3)
 4. S = {(6, −7, 8, 6), (4, 6, −4, 1)}
 (a) u = (2, 19, −16, −4) (b) v = (49

2 , 99
4 , −14, 19

2 )
 (c) w = (−4, −14, 27

2 , 53
8 ) (d) z = (8, 4, −1, 17

4 )
Linear Combinations In Exercises 5–8, for the matrices

A = [2
4

−3
1]  and  B = [0

1
5

−2]
in M2,2, determine whether the given matrix is a linear 
combination of A and B.

 5. [ 6
10

−19
7]  6. [6

9
2

11]
 7. [−2

0
23

−9]  8. [0
0

0
0]

spanning sets In Exercises 9–18, determine whether 
the set S spans R2. If the set does not span R2, then give 
a geometric description of the subspace that it does span.

 9. S = {(2, 1), (−1, 2)} 10. S = {(−1, 1), (3, 1)}
11. S = {(5, 0), (5, −4)} 12. S = {(2, 0), (0, 1)}
13. S = {(−3, 5)} 14. S = {(1, 1)}
15. S = {(−1, 2), (2, −4)} 16. S = {(0, 2), (1, 4)}
17. S = {(1, 3), (−2, −6), (4, 12)}
18. S = {(−1, 2), (2, −1), (1, 1)}

spanning sets In Exercises 19–24, determine whether 
the set S spans R3. If the set does not span R3, then give 
a geometric description of the subspace that it does span.

19. S = {(4, 7, 3), (−1, 2, 6), (2, −3, 5)}
20. S = {(5, 6, 5), (2, 1, −5), (0, −4, 1)}
21. S = {(−2, 5, 0), (4, 6, 3)}
22. S = {(1, 0, 1), (1, 1, 0), (0, 1, 1)}
23. S = {(1, −2, 0), (0, 0, 1), (−1, 2, 0)}
24. S = {(1, 0, 3), (2, 0, −1), (4, 0, 5), (2, 0, 6)}

25. Determine whether the set S = {1, x2, 2 + x2} spans P2.

26. Determine whether the set 

 S = {−2x + x2, 8 + x3, −x2 + x3, −4 + x2}
 spans P3.

testing for Linear independence In Exercises 27–40, 
determine whether the set S is linearly independent or 
linearly dependent.

27. S = {(−2, 2), (3, 5)} 28. S = {(3, −6), (−1, 2)}
29. S = {(0, 0), (1, −1)}
30. S = {(1, 0), (1, 1), (2, −1)}
31. S = {(1, −4, 1), (6, 3, 2)}
32. S = {(6, 2, 1), (−1, 3, 2)}
33. S = {(−2, 1, 3), (2, 9, −3), (2, 3, −3)}
34. S = {(1, 1, 1), (2, 2, 2), (3, 3, 3)}
35. S = {(3

4, 52, 32), (3, 4, 72), (−3
2, 6, 2)}

36. S = {(−4, −3, 4), (1, −2, 3), (6, 0, 0)}
37. S = {(1, 0, 0), (0, 4, 0), (0, 0, −6), (1, 5, −3)}
38. S = {(4, −3, 6, 2), (1, 8, 3, 1), (3, −2, −1, 0)}
39. S = {(0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 1, 1), (1, 1, 1, 1)}
40. S = {(4, 1, 2, 3), (3, 2, 1, 4), (1, 5, 5, 9), (1, 3, 9, 7)}

testing for Linear independence In Exercises 41–48, 
determine whether the set of vectors in P2 is linearly 
independent or linearly dependent.

41. S = {2 − x, 2x − x2, 6 − 5x + x2}
42. S = {−1 + x2, 5 + 2x}
43. S = {1 + 3x + x2, −1 + x + 2x2, 4x}
44. S = {x2, 1 + x2}
45. S = {−x + x2, −5 + x, −5 + x2}
46. S = {−2 − x, 2 + 3x + x2, 6 + 5x + x2}
47. S = {7 − 3x + 4x2, 6 + 2x − x2, 1 − 8x + 5x2}
48. S = {7 − 4x + 4x2, 6 + 2x − 3x2, 20 − 6x + 5x2}

testing for Linear independence In Exercises 49–52, 
determine whether the set of vectors in M2,2 is linearly 
independent or linearly dependent.

49. A = [1
0

0
−2], B = [0

1
1
0], C = [−2

1
1
4]

50. A = [1
0

0
1], B = [0

0
1
0], C = [0

1
0
0]

51. A = [1
4

−1
5], B = [ 4

−2
3
3], C = [ 1

22
−8
23]

52. A = [ 2
−3

0
1], B = [−4

0
−1

5], C = [−8
−6

−3
17]
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showing Linear Dependence In Exercises 53–56, 
show that the set is linearly dependent by finding a  
nontrivial linear combination of vectors in the set whose 
sum is the zero vector. Then express one of the vectors 
in the set as a linear combination of the other vectors in 
the set.

53. S = {(3, 4), (−1, 1), (2, 0)}
54. S = {(2, 4), (−1, −2), (0, 6)}
55. S = {(1, 1, 1), (1, 1, 0), (0, 1, 1), (0, 0, 1)}
56. S = {(1, 2, 3, 4), (1, 0, 1, 2), (1, 4, 5, 6)}

57. For which values of t is each set linearly independent?

 (a) S = {(t, 1, 1), (1, t, 1), (1, 1, t)}
 (b) S = {(t, 1, 1), (1, 0, 1), (1, 1, 3t)}
58. For which values of t is each set linearly independent?

 (a) S = {(t, 0, 0), (0, 1, 0), (0, 0, 1)}
 (b) S = {(t, t, t), (t, 1, 0), (t, 0, 1)}
59. proof Complete the proof of Theorem 4.7.

60.  CAPSTONE By inspection, determine why 
each of the sets is linearly dependent.

(a) S = {(1, −2), (2, 3), (−2, 4)}
(b) S = {(1, −6, 2), (2, −12, 4)}
(c) S = {(0, 0), (1, 0)}

spanning the same subspace In Exercises 61 and 62, 
show that the sets S1 and S2 span the same subspace of R3.

61. S1 = {(1, 2, −1), (0, 1, 1), (2, 5, −1)}
 S2 = {(−2, −6, 0), (1, 1, −2)}
62. S1 = {(0, 0, 1), (0, 1, 1), (2, 1, 1)}
 S2 = {(1, 1, 1), (1, 1, 2), (2, 1, 1)}

true or false? In Exercises 63 and 64, determine 
whether each statement is true or false. If a statement 
is true, give a reason or cite an appropriate statement 
from the text. If a statement is false, provide an example 
that shows the statement is not true in all cases or cite an 
appropriate statement from the text.

63. (a)  A set of vectors S = {v1, v2, .  .  . , vk} in a vector 
space is linearly dependent when the vector equation 
c1v1 + c2v2 + .  .  . + ckvk = 0 has only the trivial 
solution.

 (b)  The set S = {(1, 0, 0, 0), (0, −1, 0, 0), (0, 0, 1, 0),
(0, 0, 0, 1)} spans R4.

64. (a)  A set S = {v1, v2, .  .  . , vk}, k ≥ 2, is linearly  
independent if and only if at least one of the  
vectors vi can be written as a linear combination of  
the other vectors in S.

 (b)  If a subset S spans a vector space V, then every  
vector in V can be written as a linear combination  
of the vectors in S.

proof In Exercises 65 and 66, prove that the set of  
vectors is linearly independent and spans R3.

65. B = {(1, 1, 1), (1, 1, 0), (1, 0, 0)}
66. B = {(1, 2, 3), (3, 2, 1), (0, 0, 1)}

67.  guided proof Prove that a nonempty subset of a 
finite set of linearly independent vectors is linearly 
independent.

  Getting Started: You need to show that a subset of a  
linearly independent set of vectors cannot be linearly 
dependent.

 (i)  Assume S is a set of linearly independent vectors. 
Let T  be a subset of S.

 (ii)  If T  is linearly dependent, then there exist constants  
not all zero satisfying the vector equation  
c1v1 + c2v2 + .  .  . + ckvk = 0.

 (iii)  Use this fact to derive a contradiction and conclude 
that T  is linearly independent.

68.  proof Prove that if S1 is a nonempty subset of the 
finite set S2, and S1 is linearly dependent, then so is S2.

69.  proof Prove that any set of vectors containing the 
zero vector is linearly dependent.

70.  proof When the set of vectors {u1, u2, .  .  . , un} is 
linearly independent and the set {u1, u2, .  .  . , un, v} is 
linearly dependent, prove that v is a linear combination 
of the ui’s.

71.  proof Let {v1, v2, .  .  . , vk} be a linearly independent 
set of vectors in a vector space V. Delete the vector vk 
from this set and prove that the set {v1, v2, .  .  . , vk−1} 
cannot span V.

72.  proof When V  is spanned by {v1, v2, .  .  . , vk}  
and one of these vectors can be written as a linear  
combination of the other k − 1 vectors, prove that the 
span of these k − 1 vectors is also V.

73.  proof Let S = {u, v} be a linearly independent set. 
Prove that the set {u + v, u − v} is linearly independent.

74.  Let u, v, and w be any three vectors from a vector  
space V. Determine whether the set of vectors 
{v − u, w − v, u − w} is linearly independent or  
linearly dependent.

75.  proof Let A be a nonsingular matrix of order 3. Prove 
that if {v1, v2, v3} is a linearly independent set in M3,1, 
then the set {Av1, Av2, Av3} is also linearly independent. 
Explain, by means of an example, why this is not true 
when A is singular.

76.  Let f1(x) = 3x and f2(x) = ∣x∣. Graph both functions 
on the interval −2 ≤ x ≤ 2. Show that these functions 
are linearly dependent in the vector space C[0, 1], but 
linearly independent in C[−1, 1].

77.  proof Prove the corollary to Theorem 4.8: Two  
vectors u and v are linearly dependent if and only if one 
is a scalar multiple of the other.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



186 Chapter 4 Vector Spaces

4.5 Basis and Dimension

 Recognize bases in the vector spaces Rn, Pn, and Mm,n.

 Find the dimension of a vector space.

Basis for a VEctor spacE

In this section, you will continue your study of spanning sets. In particular, you will 
look at spanning sets in a vector space that are both linearly independent and span the 
entire space. Such a set forms a basis for the vector space. (The plural of basis is bases.)

Definition of Basis

A set of vectors S = {v1, v2, .  .  . , vn} in a vector space V is a basis for V when 
the conditions below are true.

1. S spans V. 2. S is linearly independent.

This definition does not imply that every vector space has a basis consisting of  
a finite number of vectors. This text, however, restricts the discussion to such bases. 
Moreover, if a vector space V has a basis with a finite number of vectors, then V is 
finite dimensional. Otherwise, V is infinite dimensional. [The vector space P of all 
polynomials is infinite dimensional, as is the vector space C(−∞, ∞) of all continuous 
functions defined on the real line.] The vector space V = {0}, consisting of the zero 
vector alone, is finite dimensional.

  the standard Basis for R3

Show that the set below is a basis for R3.

S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

solution

Example 4(a) in Section 4.4 showed that S spans R3. Furthermore, S is linearly  
independent because the vector equation 

c1(1, 0, 0) + c2(0, 1, 0) + c3(0, 0, 1) = (0, 0, 0)

has only the trivial solution

c1 = c2 = c3 = 0.

(Verify this.) So, S is a basis for R3. (See Figure 4.16.) 

The basis 

S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

is the standard basis for R3. This can be generalized to n-space. That is, the vectors

 e1 = (1, 0, .  .  . , 0)
 e2 = (0, 1, .  .  . , 0)

 ⋮
 en = (0, 0, .  .  . , 1)

form the standard basis for Rn.

rEMarK
This definition tells you that  
a basis has two features.  
A basis S must have enough 
vectors to span V, but not so 
many vectors that one of them 
could be written as a linear 
combination of the other  
vectors in S.

figure 4.16

x y

z

(0, 1, 0)(1, 0, 0)

(0, 0, 1)
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The next two examples describe nonstandard bases for R2 and R3.

 a nonstandard Basis for R2

Show that the set

 v1 v2

S = {(1, 1), (1, −1)}

is a basis for R2.

solution

According to the definition of a basis for a vector space, you must show that S spans 
R2 and S is linearly independent.

To verify that S spans R2, let

x = (x1, x2)

represent an arbitrary vector in R2. To show that x can be written as a linear combination 
of v1 and v2, consider the equation

 c1v1 + c2v2 = x

 c1(1, 1) + c2(1, −1) = (x1, x2)
 (c1 + c2, c1 − c2) = (x1, x2).

Equating corresponding components yields the system of linear equations below.

c1 + c2 = x1

c1 − c2 = x2

The coefficient matrix of this system has a nonzero determinant, which means that the 
system has a unique solution. So, S spans R2.

One way to show that S is linearly independent is to let (x1, x2) = (0, 0) in the 
above system, yielding the homogeneous system

c1 + c2 = 0

c1 − c2 = 0.

This system has only the trivial solution

c1 = c2 = 0.

So, S is linearly independent. An alternative way to show that S is linearly independent 
is to note that

v1 = (1, 1) and v2 = (1, −1)

are not scalar multiples of each other. This means, by the corollary to Theorem 4.8, that 
S = {v1, v2} is linearly independent.

You can conclude that S is a basis for R2 because it is a spanning set for R2 and it 
is linearly independent. 

 
a nonstandard Basis for R 3

See LarsonLinearAlgebra.com for an interactive version of this type of example.

From Examples 5 and 8 in the preceding section, you know that

S = {(1, 2, 3), (0, 1, 2), (−2, 0, 1)}

spans R3 and is linearly independent. So, S is a basis for R3. 
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a Basis for polynomials

Show that the vector space P3 has the basis

S = {1, x, x2, x3}.

solution

It is clear that S spans P3 because the span of S consists of all polynomials of the form

a0 + a1x + a2x
2 + a3x

3, a0, a1, a2, and a3 are real numbers

which is precisely the form of all polynomials in P3.
To verify the linear independence of S, recall that the zero vector 0 in P3 is the 

polynomial 0(x) = 0 for all x. The test for linear independence yields the equation 

a0 + a1x + a2x
2 + a3x

3 = 0(x) = 0, for all x.

This third-degree polynomial is identically equal to zero. From algebra you know that 
for a polynomial to be identically equal to zero, all of its coefficients must be zero; 
that is,

a0 = a1 = a2 = a3 = 0.

So, S is linearly independent and is a basis for P3. 

 a Basis for M2,2

The set

S = {[1
0

0
0], [0

0
1
0], [0

1
0
0], [0

0
0
1]}.

is a basis for M2,2. This set is the standard basis for M2,2. In a similar manner, the 
standard basis for the vector space Mm,n consists of the mn distinct m × n matrices  
having a single entry equal to 1 and all the other entries equal to 0. 

tHEorEM 4.9 uniqueness of Basis representation

If S = {v1, v2, .  .  . , vn} is a basis for a vector space V, then every vector in V 
can be written in one and only one way as a linear combination of vectors in S.

proof

The existence portion of the proof is straightforward. That is, S spans V, so you know 
that an arbitrary vector u in V can be expressed as u = c1v1 + c2v2 + .  .  . + cnvn.

To prove uniqueness (that a vector can be represented in only one way), assume u 
has another representation 

u = b1v1 + b2v2 + .  .  . + bnvn.

Subtracting the second representation from the first produces

u − u = (c1 − b1)v1 + (c2 − b2)v2 + .  .  . + (cn − bn)vn = 0.

S is linearly independent, however, so the only solution to this equation is the trivial 
solution

c1 − b1 = 0, c2 − b2 = 0, .  .  . , cn − bn = 0

which means that ci = bi for all i = 1, 2, .  .  . , n, and u has only one representation for 
the basis S. 

rEMarK
The basis S = {1, x, x2, x3} 
is the standard basis for P3. 
Similarly, the standard basis 
for Pn is

S = {1, x, x2, .  .  . , xn}.
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uniqueness of Basis representation

Let u = {u1, u2, u3} be any vector in R3. Show that the equation u = c1v1 + c2v2 + c3v3 
has a unique solution for the basis S = {v1, v2, v3} = {(1, 2, 3), (0, 1, 2), (−2, 0, 1)}.

solution

From the equation

 (u1, u2, u3) = c1(1, 2, 3) + c2(0, 1, 2) + c3(−2, 0, 1)
 = (c1 − 2c3, 2c1 + c2, 3c1 + 2c2 + c3)

you obtain the system of linear equations below.

c1

2c1

3c1

+
+

c2

2c2

−

+

2c3

c3

=
=
=

u1

u2

u3

    [
1
2
3

0
1
2

−2
0
1][

c1

c2

c3
] = [

u1

u2

u3
]

 A c u

The matrix A is invertible, so you know this system has a unique solution, c = A−1u. 
Verify by finding A−1 that

c1

c2

c3

=
=
=

−u1

2u1

−u1

+
−
+

4u2

7u2

2u2

−
+
−

2u3

4u3

u3.

For example, u = (1, 0, 0) can be represented uniquely as −v1 + 2v2 − v3. 

You will now study two important theorems concerning bases.

tHEorEM 4.10 Bases and linear Dependence

If S = {v1, v2, .  .  . , vn} is a basis for a vector space V, then every set containing 
more than n vectors in V is linearly dependent.

proof

Let S1 = {u1, u2, .  .  . , um} be any set of m vectors in V, where m > n. To show that 
S1 is linearly dependent, you need to find scalars k1, k2, .  .  . , km (not all zero) such that

k1u1 + k2u2 + .  .  . + kmum = 0. Equation 1

S is a basis for V, so each ui can be represented as a linear combination of vectors in S:

 u1 = c11v1 + c21v2 + .  .  . + cn1vn

 u2 = c12v1 + c22v2 + .  .  . + cn2vn

 ⋮ ⋮ ⋮ ⋮
 um = c1mv1 + c2mv2 + .  .  . + cnmvn.

Substituting into Equation 1 and regrouping terms produces

d1v1 + d2v2 + .  .  . + dnvn = 0

where di = ci1k1 + ci2k2 + .  .  . + cimkm. The vi’s form a linearly independent set, so 
each di = 0, and you obtain the system of equations below.

c11k1

c21k1

⋮
cn1k1

+
+

+

c12k2

c22k2

⋮
cn2k2

+
+

+

.  .  .

.  .  .

.  .  .

+
+

+

c1mkm

c2mkm

⋮
cnmkm

=
=

=

0
0

⋮
0

But this homogeneous system has fewer equations than variables k1, k2, .  .  . , km, and 
from Theorem 1.1, it has nontrivial solutions. Consequently, S1 is linearly dependent. 
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linearly Dependent sets in R3 and P3

a. R3 has a basis consisting of three vectors, so the set

S = {(1, 2, −1), (1, 1, 0), (2, 3, 0), (5, 9, −1)}

must be linearly dependent.

b. P3 has a basis consisting of four vectors, so the set

S = {1, 1 + x, 1 − x, 1 + x + x2, 1 − x + x2}

must be linearly dependent. 

Rn has the standard basis consisting of n vectors, so it follows from Theorem 4.10 
that every set of vectors in Rn containing more than n vectors must be linearly dependent. 
The next theorem states another significant consequence of Theorem 4.10.

tHEorEM 4.11 number of Vectors in a Basis

If a vector space V has one basis with n vectors, then every basis for V has 
n vectors.

proof

Let S1 = {v1, v2, .  .  . , vn} be a basis for V, and let S2 = {u1, u2, .  .  . , um} be any other 
basis for V. Theorem 4.10 implies that m ≤ n, because S1 is a basis and S2 is linearly 
independent. Similarly, n ≤ m because S1 is linearly independent and S2 is a basis. 
Consequently, n = m.

 spanning sets and Bases

Use Theorem 4.11 to explain why each statement is true.

a. The set S1 = {(3, 2, 1), (7, −1, 4)} is not a basis for R3.

b. The set S2 = {2 + x, x2, −1 + x3, 1 + 3x, 3 − 2x + x2} is not a basis for P3.

solution

a.  The standard basis for R3, S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, has three vectors, and 
S1 has only two vectors. By Theorem 4.11, S1 cannot be a basis for R3.

b.  The standard basis for P3, S = {1, x, x2, x3}, has four vectors. By Theorem 4.11, the 
set S2 has too many vectors to be a basis for P3.

linEar
alGEBra
appliED

The RGB color model uses combinations of red (r), green 
(g), and blue (b), known as the primary additive colors, to 
create all other colors in a system. Using the standard basis 
for R3, where r = (1, 0, 0), g = (0, 1, 0), and b = (0, 0, 1), 
any visible color can be represented as a linear 
combination c1r + c2g + c3b of the primary additive colors. 
The coefficients ci are values between 0 and a specified 
maximum a, inclusive. When c1 = c2 = c3, the color is 
grayscale, with ci = 0 representing black and ci = a 
representing white. The RGB color model is commonly 
used in computers, smart phones, televisions, and other 
electronics with a color display.

Chernetskiy/Shutterstock.com 
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tHE DiMEnsion of a VEctor spacE

By Theorem 4.11, if a vector space V has a basis consisting of n vectors, then every 
other basis for the space also has n vectors. This number n is the dimension of V.

Definition of the Dimension of a Vector space

If a vector space V has a basis consisting of n vectors, then the number n is the 
dimension of V, denoted by dim(V) = n. When V consists of the zero vector 
alone, the dimension of V is defined as zero.

This definition allows you to state the dimensions of familiar vector spaces. In each 
example listed below, the dimension is simply the number of vectors in the standard 
basis.

1. The dimension of Rn with the standard operations is n.

2. The dimension of Pn with the standard operations is n + 1.

3. The dimension of Mm,n with the standard operations is mn.

If W is a subspace of a vector space V that has dimension n, then it can be shown 
that the dimension of W is less than or equal to n. (See Exercise 83.) The next three 
examples show a technique for finding the dimension of a subspace. Basically, you 
determine the dimension by finding a set of linearly independent vectors that spans the 
subspace. This set is a basis for the subspace, and the dimension of the subspace is the 
number of vectors in the basis.

  finding Dimensions of subspaces

Find the dimension of each subspace of R3.

a. W = {(d, c − d, c): c and d are real numbers}
b. W = {(2b, b, 0): b is a real number}

solution

a. By writing the representative vector (d, c − d, c) as

 (d, c − d, c) = (0, c, c) + (d, −d, 0) = c(0, 1, 1) + d(1, −1, 0)

you can see that W  is spanned by the set S = {(0, 1, 1), (1, −1, 0)}. Using the  
techniques described in the preceding section, you can show that this set is linearly 
independent. So, S is a basis for W, and W  is a two-dimensional subspace of R3.

b. By writing the representative vector (2b, b, 0) as b(2, 1, 0), you can see that W  is 
 spanned by the set S = {(2, 1, 0)}. So, W is a one-dimensional subspace of R3. 

 finding the Dimension of a subspace

Find the dimension of the subspace W  of R4 spanned by

S = {v1, v2, v3} = {(−1, 2, 5, 0), (3, 0, 1, −2), (−5, 4, 9, 2)}.

solution

Although W  is spanned by the set S, S is not a basis for W  because S is a linearly 
dependent set. Specifically, v3 can be written as v3 = 2v1 − v2. This means that W  is 
spanned by the set S1 = {v1, v2}. Moreover, S1 is linearly independent because neither 
vector is a scalar multiple of the other, and you can conclude that the dimension of W
is 2. 

rEMarK
In Example 9(a), the subspace 
W  is the plane in R3 determined 
by the vectors (0, 1, 1) and 
(1, −1, 0). In Example 9(b), the 
subspace is the line determined 
by the vector (2, 1, 0).
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finding the Dimension of a subspace

Let W  be the subspace of all symmetric matrices in M2,2. What is the dimension of W?

solution

Every 2 × 2 symmetric matrix has the form

A = [a
b

b
c] = a[1

0
0
0] + b[0

1
1
0] + c[0

0
0
1].

So, the set

S = {[1
0

0
0], [0

1
1
0], [0

0
0
1]}

spans W. Moreover, S can be shown to be linearly independent, and you can conclude 
that the dimension of W  is 3. 

Usually, to conclude that a set S = {v1, v2, .  .  . , vn} is a basis for a vector space 
V, you must show that S satisfies two conditions: S spans V and is linearly independent. 
If V is known to have a dimension of n, however, then the next theorem tells you that 
you do not need to check both conditions. Either one will suffice. The proof is left as 
an exercise. (See Exercise 82.)

tHEorEM 4.12 Basis tests in an n-Dimensional space

Let V be a vector space of dimension n.

1.  If S = {v1, v2, .  .  . , vn} is a linearly independent set of vectors in V, then S 
is a basis for V.

2. If S = {v1, v2, .  .  . , vn} spans V, then S is a basis for V.

 testing for a Basis in an n-Dimensional space

Show that the set of vectors is a basis for M5,1.

 v1 v2 v3 v4 v5

S = {[
1
2

−1
3
4
], [

0
1
3

−2
3
], [

0
0
2

−1
5
], [

0
0
0
2

−3
], [

0
0
0
0

−2
]}

solution

S has five vectors and the dimension of M5,1 is 5, so apply Theorem 4.12 to 
verify that S is a basis by showing either that S is linearly independent or that 
S spans M5,1. To show that S is linearly independent, form the vector equation 
c1v1 + c2v2 + c3v3 + c4v4 + c5v5 = 0, which yields the linear system below.

c1

2c1

−c1

3c1

4c1

+
+
−
+

c2

3c2

2c2

3c2

+
−
+

2c3

c3

5c3

+
−

2c4

3c4 − 2c5

=
=
=
=
=

0
0
0
0
0

This system has only the trivial solution, so S is linearly independent. By Theorem 4.12, 
S is a basis for M5,1. 
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4.5 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

Writing the standard Basis In Exercises 1–6, write 
the standard basis for the vector space.

 1. R6   2. R4

 3. M3,3  4. M4,1

 5. P4   6. P2

Explaining Why a set is not a Basis In Exercises 7–14,  
explain why S is not a basis for R2.

 7. S = {(−4, 5), (0, 0)}  8. S = {(2, 3), (6, 9)}
 9. S = {(−3, 2)} 10. S = {(5, −7)}
11. S = {(1, 2), (1, 0), (0, 1)}
12. S = {(−1, 2), (1, −2), (2, 4)}
13. S = {(6, −5), (12, −10)}
14. S = {(4, −3), (8, −6)}

Explaining Why a set is not a Basis In Exercises 
15–22, explain why S is not a basis for R3.

15. S = {(1, 3, 0), (4, 1, 2), (−2, 5, −2)}
16. S = {(2, 1, −2), (−2, −1, 2), (4, 2, −4)}
17. S = {(7, 0, 3), (8, −4, 1)}
18. S = {(1, 1, 2), (0, 2, 1)}
19. S = {(0, 0, 0), (1, 0, 0), (0, 1, 0)}
20. S = {(−1, 0, 0), (0, 0, 1), (1, 0, 0)}
21. S = {(1, 1, 1), (0, 1, 1), (1, 0, 1), (0, 0, 0)}
22. S = {(6, 4, 1), (3, −5, 1), (8, 13, 6), (0, 6, 9)}

Explaining Why a set is not a Basis In Exercises 
23–30, explain why S is not a basis for P2.

23. S = {1, 2x, −4 + x2, 5x} 24. S = {2, x, 3 + x, 3x2}
25. S = {−x, 4x2} 26. S = {−1, 11x}
27. S = {1 + x2, 1 − x2}
28. S = {1 − 2x + x2, 3 − 6x + 3x2, −2 + 4x − 2x2}
29. S = {1 − x, 1 − x2, −1 − 2x + 3x2}
30. S = {−3 + 6x, 3x2, 1 − 2x − x2}

Explaining Why a set is not a Basis In Exercises 
31–34, explain why S is not a basis for M2,2.

31. S = {[1
0

0
1], [0

1
1
0]}

32. S = {[1
0

1
0], [0

1
1
0], [−1

1
0
0], [0

0
0
1]}

33. S = {[1
0

0
0], [0

1
1
0], [1

0
0
1], [ 8

−4
−4

3]}
34. S = {[1

0
0
1], [0

1
1
0], [1

0
1
0]}

Determining Whether a set is a Basis In Exercises 
35–38, determine whether the set {v1, v2} is a basis for R2.

35. 

−1 1

−1

1

x

y

v1

v2

 36. 

−1 1

−1

1

x

y

v1

v2

37. 

1

2

x

y

1 2

v1

v2

 38. 

−1 1

−1

1

x

y

v1 v2

Determining Whether a set is a Basis In Exercises 
39–46, determine whether S is a basis for the given  
vector space.

39. S = {(4, −3), (5, 2)} for R2

40. S = {(1, 2), (1, −1)} for R2

41. S = {(1, 5, 3), (0, 1, 2), (0, 0, 6)} for R3

42. S = {(2, 1, 0), (0, −1, 1)} for R3

43. S = {(0, 3, −2), (4, 0, 3), (−8, 15, −16)} for R3

44. S = {(0, 0, 0), (1, 5, 6), (6, 2, 1)} for R3

45.  S = {(−1, 2, 0, 0), (2, 0, −1, 0), (3, 0, 0, 4), (0, 0, 5, 0)} 
for R4

46.  S = {(1, 0, 0, 1), (0, 2, 0, 2), (1, 0, 1, 0), (0, 2, 2, 0)}  
for R4

Determining Whether a set is a Basis In Exercises 
47–50, determine whether S is a basis for P3.

47. S = {1 − 2t2 + t3, −4 + t2, 2t + t3, 5t}
48. S = {4t − t2, 5 + t3, 5 + 3t, −3t2 + 2t3}
49. S = {4 − t, t3, 6t2, 3t + t3, −1 + 4t}
50. S = {−1 + t3, 2t2, 3 + t, 5 + 2t + 2t2 + t3}

Determining Whether a set is a Basis In Exercises 51 
and 52, determine whether S is a basis for M2,2.

51. S = {[2
0

0
3], [1

0
4
1], [0

3
1
2], [0

2
1
0]}

52. S = {[ 1
−5

2
4], [2

6
−7

2], [ 4
11

−9
12], [12

17
−16

42]}
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Determining Whether a set is a Basis In Exercises 
53–56, determine whether S is a basis for R3. If it is, write  
u = (8, 3, 8) as a linear combination of the vectors in S.

53. S = {(4, 3, 2), (0, 3, 2), (0, 0, 2)}
54. S = {(1, 0, 0), (1, 1, 0), (1, 1, 1)}
55. S = {(0, 0, 0), (1, 3, 4), (6, 1, −2)}
56. S = {(2

3, 52, 1), (1, 32, 0), (2, 12, 6)}
finding the Dimension of a Vector space In Exercises 
57–64, find the dimension of the vector space.

57. R6  58. R

59. P7  60. P4

61. M2,3 62. M3,2

63. R3m  64. P2m−1, m ≥ 1

65.  Find a basis for the vector space of all 3 × 3 diagonal 
matrices. What is the dimension of this vector space?

66.  Find a basis for the vector space of all 3 × 3 symmetric 
matrices. What is the dimension of this vector space?

67. Find all subsets of the set

S = {(1, 0), (0, 1), (1, 1)}

 that form a basis for R2.

68. Find all subsets of the set

S = {(1, 3, −2), (−4, 1, 1), (−2, 7, −3), (2, 1, 1)}

 that form a basis for R3.

69. Find a basis for R2 that includes the vector (2, 2).
70.  Find a basis for R3 that includes the vectors (1, 0, 2) and 

(0, 1, 1).

Geometric Description, Basis, and Dimension In 
Exercises 71 and 72, (a) give a geometric description 
of, (b) find a basis for, and (c) find the dimension of the 
subspace W of R2.

71. W = {(2t, t): t is a real number}
72. W = {(0, t): t is a real number}

Geometric Description, Basis, and Dimension In 
Exercises 73 and 74, (a) give a geometric description 
of, (b) find a basis for, and (c) find the dimension of the 
subspace W of R3.

73. W = {(2t, t, −t): t is a real number}
74. W = {(2s − t, s, t): s and t are real numbers}

Basis and Dimension In Exercises 75–78, find (a) a 
basis for and (b) the dimension of the subspace W of R4.

75. W = {(2s − t, s, t, s): s and t are real numbers}
76. W = {(5t, −3t, t, t): t is a real number}
77. W = {(0, 6t, t, −t): t is a real number}
78. W = {(s + 4t, t, s, 2s − t): s and t are real numbers}

true or false? In Exercises 79 and 80, determine 
whether each statement is true or false. If a statement 
is true, give a reason or cite an appropriate statement 
from the text. If a statement is false, provide an example 
that shows the statement is not true in all cases or cite an 
appropriate statement from the text.

79. (a)  If dim(V) = n, then there exists a set of n − 1  
vectors in V that span V.

 (b)  If dim(V) = n, then there exists a set of n + 1  
vectors in V that span V.

80. (a)  If dim(V) = n, then any set of n + 1 vectors in V 
must be linearly dependent.

 (b)  If dim(V) = n, then any set of n − 1 vectors in V 
must be linearly independent.

81.  proof Prove that if S = {v1, v2, .  .  . , vn} is a basis 
for a vector space V and c is a nonzero scalar, then the 
set S1 = {cv1, cv2, .  .  . , cvn} is also a basis for V.

82. proof Prove Theorem 4.12.

83.  proof Prove that if W  is a subspace of a finite  
dimensional vector space V, then dim(W) ≤ dim(V).

84. CAPSTONE
(a)  A set S1 consists of two vectors of the form 

u = (u1, u2, u3). Explain why S1 is not a basis for R3.

(b)  A set S2 consists of four vectors of the form 
u = (u1, u2, u3). Explain why S2 is not a basis for R3.

(c)  A set S3 consists of three vectors of the form 
u = (u1, u2, u3). Determine the conditions under 
which S3 is a basis for R3.

85.  proof Let S be a linearly independent set of vectors 
from a finite dimensional vector space V. Prove that 
there exists a basis for V containing S.

86.  Guided proof Let S be a spanning set for a finite 
dimensional vector space V. Prove that there exists a 
subset S′ of S that forms a basis for V.

  Getting Started: S is a spanning set, but it may not be 
a basis because it may be linearly dependent. You need 
to remove extra vectors so that a subset S′ is a spanning 
set and is also linearly independent.

 (i)  If S is a linearly independent set, then you are done. 
If not, remove some vector v from S that is a linear 
combination of the other vectors in S. Call this set S1.

 (ii)  If S1 is a linearly independent set, then you are 
done. If not, then continue to remove dependent 
vectors until you produce a linearly independent 
subset S′.

 (iii)  Conclude that this subset is the minimal spanning 
set S′.
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4.6 Rank of a Matrix and Systems of Linear Equations

  Find a basis for the row space, a basis for the column space, and 
the rank of a matrix.

 Find the nullspace of a matrix.

 Find the solution of a consistent system Ax = b in the form xp + xh.

Row Space, column Space, and Rank of a matRix

In this section, you will investigate the vector space spanned by the row vectors (or  
column vectors) of a matrix. Then you will see how such vector spaces relate to solutions 
of systems of linear equations.

For an m × n matrix A, recall that the n-tuples corresponding to the rows of A are 
the row vectors of A.

 Row Vectors of A

A = [
a11

a21

⋮
am1

a12

a22

⋮
am2

.  .  .

.  .  .

.  .  .

a1n

a2n

⋮
amn

]   

(a11, a12, .  .  . , a1n)
(a21, a22, .  .  . , a2n)

⋮
(am1, am2, .  .  . , amn)

Similarly, the m × 1 matrices corresponding to the columns of A are the column 
vectors of A.

 Column Vectors of A

A = [
a11

a21

⋮
am1

a12

a22

⋮
am2

.  .  .

.  .  .

.  .  .

a1n

a2n

⋮
amn

]   [
a11

a21

⋮
am1

][
a12

a22

⋮
am2

] .  .  . [
a1n

a2n

⋮
amn

]
 Row Vectors and column Vectors

For the matrix A = [ 0
−2

1
3

−1
4], the row vectors are (0, 1, −1) and (−2, 3, 4) 

and the column vectors are [ 0
−2], [1

3], and [−1
4]. 

In Example 1, note that for an m × n matrix A, the row vectors are vectors in Rn 
and the column vectors are vectors in Rm. This leads to the definitions of the row space 
and column space of a matrix listed below.

definitions of Row Space and column Space of a matrix

Let A be an m × n matrix.

1. The row space of A is the subspace of Rn spanned by the row vectors of A.
2.  The column space of A is the subspace of Rm spanned by the column  

vectors of A.

Recall that two matrices are row-equivalent when one can be obtained from the 
other by elementary row operations. The next theorem tells you that row-equivalent 
matrices have the same row space.
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pRoof

The rows of B can be obtained from the rows of A by elementary row operations (scalar 
multiplication and addition), so it follows that the row vectors of B can be written as 
linear combinations of the row vectors of A. The row vectors of B lie in the row space 
of A, and the subspace spanned by the row vectors of B is contained in the row space  
of A. But it is also true that the rows of A can be obtained from the rows of B by  
elementary row operations. So, the two row spaces are subspaces of each other, making 
them equal. 

If a matrix B is in row-echelon form, then its nonzero row vectors form a linearly 
independent set. (Verify this.) Consequently, they form a basis for the row space of B, 
and by Theorem 4.13 they also form a basis for the row space of A. The next theorem 
states this important result.

tHeoRem 4.14 Basis for the Row Space of a matrix

If a matrix A is row-equivalent to a matrix B in row-echelon form, then the  
nonzero row vectors of B form a basis for the row space of A.

 finding a Basis for a Row Space

Find a basis for the row space of

A = [
1
0

−3
3
2

3
1
0
4
0

1
1
6

−2
−4

3
0

−1
1

−2
].

Solution

Using elementary row operations, rewrite A in row-echelon form as shown below.

B = [
1
0
0
0
0

3
1
0
0
0

1
1
0
0
0

3
0
1
0
0
] 

w1

w2

w3

By Theorem 4.14, the nonzero row vectors of B, w1 = (1, 3, 1, 3), w2 = (0, 1, 1, 0), 
and w3 = (0, 0, 0, 1), form a basis for the row space of A. 

The technique used in Example 2 to find a basis for the row space of a matrix can 
be used to find a basis for the subspace spanned by the set S = {v1, v2, .  .  . , vk} in Rn. 
Use the vectors in S to form the rows of a matrix A, then use elementary row operations 
to rewrite A in row-echelon form. The nonzero rows of this matrix will then form a 
basis for the subspace spanned by S. Example 3 demonstrates this process.

tHeoRem 4.13  Row-equivalent matrices  
Have the Same Row Space

If an m × n matrix A is row-equivalent to an m × n matrix B, then the row space 
of A is equal to the row space of B.

RemaRk
Theorem 4.13 states that  
elementary row operations  
do not change the row space 
of a matrix. Elementary row 
operations can, however, 
change the column space  
of a matrix.
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finding a Basis for a Subspace

Find a basis for the subspace of R3 spanned by

S = {v1, v2, v3} = {(−1, 2, 5), (3, 0, 3), (5, 1, 8)}.

Solution

Use v1, v2, and v3 to form the rows of a matrix A. Then write A in row-echelon form.

A = [
−1

3
5

2
0
1

5
3
8] 

v1

v2

v3

  B = [
1
0
0

−2
1
0

−5
3
0] 

w1

w2

The nonzero row vectors of B, w1 = (1, −2, −5) and w2 = (0, 1, 3), form a basis 
for the row space of A. That is, they form a basis for the subspace spanned by 
S = {v1, v2, v3}. 

To find a basis for the column space of a matrix A, you have two options. On the one 
hand, you could use the fact that the column space of A is equal to the row space of AT 
and apply the technique of Example 2 to the matrix AT. On the other hand, observe that 
although row operations can change the column space of a matrix, they do not change the 
dependency relationships among columns. (You are asked to prove this in Exercise 80.) 
For example, consider the row-equivalent matrices A and B from Example 2.

A = [
1
0

−3
3
2

3
1
0
4
0

1
1
6

−2
−4

3
0

−1
1

−2
]  B = [

1
0
0
0
0

3
1
0
0
0

1
1
0
0
0

3
0
1
0
0
]

 a1 a2 a3 a4 b1 b2 b3 b4

Notice that columns 1, 2, and 3 of matrix B satisfy b3 = −2b1 + b2, and the  
corresponding columns of matrix A satisfy a3 = −2a1 + a2. Similarly, the column 
vectors b1, b2, and b4 of matrix B are linearly independent, as are the corresponding 
columns of matrix A.

The next two examples show how to find a basis for the column space of a matrix 
using these methods.

  finding a Basis for the column  
Space of a matrix (method 1)

Find a basis for the column space of matrix A from Example 2 by finding a basis for 
the row space of AT.

Solution

Write the transpose of A and use elementary row operations to write AT in row-echelon 
form.

AT = [
1
3
1
3

0
1
1
0

−3
0
6

−1

3
4

−2
1

2
0

−4
−2

]  [
1
0
0
0

0
1
0
0

−3
9
1
0

3
−5
−1

0

2
−6
−1

0
] 

w1

w2

w3

So, w1 = (1, 0, −3, 3, 2), w2 = (0, 1, 9, −5, −6), and w3 = (0, 0, 1, −1, −1) form  
a basis for the row space of AT. This is equivalent to saying that the column vectors 
[1 0 −3 3 2]T, [0 1 9 −5 −6]T, and [0 0 1 −1 −1]T form a
basis for the column space of A. 
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  finding a Basis for the column  
Space of a matrix (method 2)

Find a basis for the column space of matrix A from Example 2 by using the dependency 
relationships among columns.

Solution

 In Example 2, row operations were used on the original matrix A to obtain its row-echelon 
form B. As mentioned earlier, in matrix B, the first, second, and fourth column vectors 
are linearly independent (these columns have the leading 1’s), as are the corresponding 
columns of matrix A. So, a basis for the column space of A consists of the vectors

[
1
0

−3
3
2
], [

3
1
0
4
0
], and [

3
0

−1
1

−2
]. 

Notice that the basis for the column space obtained in Example 5 is different than 
that obtained in Example 4. Verify that these bases both span the column space of A by 
writing the columns of A as linear combinations of the vectors in each basis.

Also notice in Examples 2, 4, and 5 that both the row space and the column space 
of A have a dimension of 3 (because there are three vectors in both bases). The next  
theorem generalizes this.

tHeoRem 4.15  Row and column Spaces  
Have equal dimensions

The row space and column space of an m × n matrix A have the same dimension.

pRoof

Let v1, v2, .  .  . , vm be the row vectors and u1, u2, .  .  . , un be the column vectors of

A = [
a11

a21

⋮
am1

a12

a22

⋮
am2

.  .  .

.  .  .

.  .  .

a1n

a2n

⋮
amn

].

Assume the row space of A has dimension r and basis S = {b1, b2, .  .  . , br}, where 
bi = (bi1, bi2, .  .  . , bin). Using this basis, write the row vectors of A as

v1

v2

vm

=
=
⋮
=

c11b1

c21b1

cm1b1

+
+

+

c12b2

c22b2

cm2b2

+
+

+

.  .  .

.  .  .

.  .  .

+
+

+

c1rbr

c2rbr

cmrbr.

Rewrite this system of vector equations as shown below.

Now, take only entries corresponding to the first column of matrix A to obtain the  
system of scalar equations shown on the next page.

 (a11, a12, .  .  . , a1n) = c11(b11, b12, .  .  . , b1n) + c12(b21, b22, .  .  . , b2n) + .  .  . + c1r(br1, br2, .  .  . , brn)
 (a21, a22, .  .  . , a2n) = c21(b11, b12, .  .  . , b1n) + c22(b21, b22, .  .  . , b2n) + .  .  . + c2r(br1, br2, .  .  . , brn)

 ⋮
 (am1, am2, .  .  . , amn) = cm1(b11, b12, .  .  . , b1n) + cm2(b21, b22, .  .  . , b2n) + .  .  . + cmr(br1, br2, .  .  . , brn)

RemaRk
Notice that the row-echelon 
form B tells you which  
columns of A form the basis 
for the column space. You do 
not use the column vectors  
of B to form the basis.
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a11

a21

am1

=
=
⋮
=

c11b11

c21b11

cm1b11

+
+

+

c12b21

c22b21

cm2b21

+
+

+

.  .  .

.  .  .

.  .  .

+
+

+

c1rbr1

c2rbr1

cmrbr1

Similarly, for the entries of the jth column, you can obtain the system below. 

a1j

a2j

amj

=
=
⋮
=

c11b1j

c21b1j

cm1b1j

+
+

+

c12b2j

c22b2j

cm2b2j

+
+

+

.  .  .

.  .  .

.  .  .

+
+

+

c1rbrj

c2rbrj

cmrbrj

Now, let the vectors 

ci = [c1i  c2i   .  .  .    cmi]
T.

Then the system for the jth column can be rewritten in a vector form as

uj = b1jc1 + b2jc2 + .  .  . + brjcr.

Put all column vectors together to obtain

 u1 = [a11   a12   .  .  .   am1]T = b11c1 + b21c2 + .  .  . + br1cr

 u2 = [a12   a22   .  .  .   am2]T = b12c1 + b22c2 + .  .  . + br2cr

 ⋮
 un = [a1n   a2n   .  .  .   amn]T = b1nc1 + b2nc2 + .  .  . + brncr.

Each column vector of A is a linear combination of r vectors, so you know that the 
dimension of the column space of A is less than or equal to r (the dimension of the row 
space of A). That is,

dim(column space of A) ≤ dim(row space of A).

Repeating this procedure for AT, you can conclude that the dimension of the column 
space of AT is less than or equal to the dimension of the row space of AT. But this 
implies that the dimension of the row space of A is less than or equal to the dimension 
of the column space of A. That is,

dim(row space of A) ≤ dim(column space of A).

So, the two dimensions must be equal. 

The dimension of the row (or column) space of a matrix is the rank of the matrix.

definition of the Rank of a matrix

The dimension of the row (or column) space of a matrix A is the rank of A and 
is denoted by rank(A).

  finding the Rank of a matrix

To find the rank of the matrix A below, convert to a matrix B in row-echelon form as shown.

A = [
1
2
0

−2
1
1

0
5
3

1
−3

5]  B = [
1
0
0

−2
1
0

0
1
1

1
−1

3]
The matrix B has three nonzero rows, so the rank of A is 3. 

RemaRk
Some texts distinguish 
between the row rank and 
the column rank of a matrix, 
but these ranks are equal 
(Theorem 4.15). So, this text 
will not distinguish between 
them.
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tHe nullSpace of a matRix

Row and column spaces and rank have some important applications to systems of 
linear equations. Consider first the homogeneous linear system Ax = 0, where A 
is an m × n matrix, x = [x1   x2   .  .  .   xn]T is the column vector of variables, and 
0 = [0   0   .  .  .    0]T is the zero vector in Rm. The next theorem tells you that the set 
of all solutions of this homogeneous system is a subspace of Rn.

tHeoRem 4.16 Solutions of a Homogeneous System

If A is an m × n matrix, then the set of all solutions of the homogeneous system 
of linear equations Ax = 0 is a subspace of Rn called the nullspace of A and  
is denoted by N(A). So,

N(A) = {x ∈ Rn:  Ax = 0}.

The dimension of the nullspace of A is the nullity of A.

pRoof

The size of A is m × n, so you know that x has size n × 1, and the set of all solutions 
of the system is a subset of Rn. This set is clearly nonempty, because A0 = 0. Verify 
that it is a subspace by showing that it is closed under the operations of addition and 
scalar multiplication. Let x1 and x2 be two solution vectors of the system Ax = 0, and 
let c be a scalar. Both Ax1 = 0 and Ax2 = 0, so you know that

A(x1 + x2) = Ax1 + Ax2 = 0 + 0 = 0 Addition

and

A(cx1) = c(Ax1) = c(0) = 0. Scalar multiplication

So, both (x1 + x2) and cx1 are solutions of Ax = 0, and you can conclude that the set 
of all solutions forms a subspace of Rn. 

lineaR 
algeBRa 
applied

The U.S. Postal Service uses barcodes to represent such 
information as ZIP codes and delivery addresses. The  
ZIP + 4 barcode shown at the left starts with a long bar, 
then has a sequence of short and long bars to represent 
each digit in the ZIP + 4 code, an additional digit for error 
checking, and then the code ends with a long bar. The code 
for the digits is shown below.

0= 1= 2= 3= 4= 

5= 6= 7= 8= 9= 

The error checking digit is such that when it is summed 
with the digits in the ZIP + 4 code, the result is a multiple 
of 10. (Verify this, as well as whether the ZIP + 4 code 
shown is coded correctly.) More sophisticated barcodes  
will also include error correcting digit(s). In an analogous 
way, matrices can be used to check for errors in transmitted  
messages. Information in the form of column vectors can 
be multiplied by an error detection matrix. When the  
resulting product is in the nullspace of the error detection 
matrix, no error in transmission exists. Otherwise, an error 
exists somewhere in the message. If the error detection 
matrix also has error correction, then the resulting matrix 
product will also tell where the error is occurring.

RemaRk
The nullspace of A is also 
called the solution space of  
the system Ax = 0.
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finding the nullspace of a matrix

Find the nullspace of the matrix.

A = [
1
3
1

2
6
2

−2
−5

0

1
4
3]

Solution

The nullspace of A is the solution space of the homogeneous system

Ax = 0.

To solve this system, you could write the augmented matrix [A   0] in reduced  
row-echelon form. However, the last column of the augmented matrix consists entirely 
of zeros and will not change as you perform row operations, so it is sufficient to find 
the reduced row-echelon form of A.

A = [
1
3
1

2
6
2

−2
−5

0

1
4
3]  [

1
0
0

2
0
0

0
1
0

3
1
0]

The system of equations corresponding to the reduced row-echelon form is

x1 + 2x2

   x3

+
+

3x4

x4

=
=

0
0.

Choose x2 and x4 as free variables to represent the solutions in parametric form.

x1 = −2s − 3t, x2 = s, x3 = −t, x4 = t

This means that the solution space of Ax = 0 consists of all solution vectors of the form

x = [
x1

x2

x3

x4

] = [
−2s − 3t

s
−t

t
] = s[

−2
1
0
0
] + t[

−3
0

−1
1
].

So, a basis for the nullspace of A consists of the vectors

[
−2

1
0
0
] and [

−3
0

−1
1
].

In other words, these two vectors are solutions of Ax = 0, and all linear combinations 
of these two vectors are also solutions. 

In Example 7, matrix A has four columns. Furthermore, the rank of A is 2, and the 
dimension of the nullspace is 2. So,

Number of columns = rank + nullity.

One way to see this is to look at the reduced row-echelon form of A.

[
1
0
0

2
0
0

0
1
0

3
1
0]

The columns with the leading 1’s (columns 1 and 3) determine the rank of the 
matrix. The other columns (2 and 4) determine the nullity of the matrix because they  
correspond to the free variables. The next theorem generalizes this relationship.

RemaRk
Although Example 7 shows that 
the basis spans the solution 
set, it does not show that the 
vectors in the basis are linearly 
independent. When you solve 
homogeneous systems from 
the reduced row-echelon form, 
the spanning set is always 
linearly independent. Verify  
this for the basis found in 
Example 7.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



202 Chapter 4 Vector Spaces

pRoof

A has rank r, so you know it is row-equivalent to a reduced row-echelon matrix B with 
r nonzero rows. No generality is lost by assuming that the upper left corner of B has the 
form of the r × r identity matrix Ir. Moreover, the zero rows of B contribute nothing to 
the solution, so discard them to form the r × n matrix B′, where B′ is the augmented 
matrix [Ir   C]. The matrix C has n − r columns corresponding to the variables xr+1,
xr+2, .  .  . , xn, and the solution space of Ax = 0 can be represented by the system

x1 +
x2 +

xr +

c11xr+1

c21xr+1

⋮
cr1xr+1

+
+

+

c12xr+2

c22xr+2

⋮
cr2xr+2

+
+

+

.  .  .

.  .  .

.  .  .

+
+

+

c1, n−rxn

c2, n−rxn

cr, n−rxn

=
=

=

0
0

⋮
0.

Solving for the first r variables in terms of the last n − r variables produces n − r vectors 
in the basis for the solution space, so the solution space has dimension n − r. 

Example 8 illustrates this theorem and further explores the column space of a matrix.

  Rank, nullity of a matrix, and Basis for the 
column Space

See LarsonLinearAlgebra.com for an interactive version of this type of example.

Let the column vectors of the matrix A be denoted by a1, a2, a3, a4, and a5. Find (a) the 
rank and nullity of A, and (b) a subset of the column vectors of A that forms a basis for 
the column space of A.

A = [
1
0

−2
0

0
−1
−1

3

−2
−3

1
9

1
1

−1
0

0
3
3

−12
]

 a1 a2 a3 a4 a5

Solution

Let B be the reduced row-echelon form of A.

A = [
1
0

−2
0

0
−1
−1

3

−2
−3

1
9

1
1

−1
0

0
3
3

−12
]  B = [

1
0
0
0

0
1
0
0

−2
3
0
0

0
0
1
0

1
−4
−1

0
]

a.  B has three nonzero rows, so the rank of A is 3. Also, the number of columns of A
is n = 5, which implies that the nullity of A is n − rank = 5 − 3 = 2.

b.  The first, second, and fourth column vectors of B are linearly independent, so the 
corresponding column vectors of A,

a1 = [
1
0

−2
0
], a2 = [

0
−1
−1

3
], and a4 = [

1
1

−1
0
]

 form a basis for the column space of A. 

tHeoRem 4.17 dimension of the Solution Space

If A is an m × n matrix of rank r, then the dimension of the solution space of 
Ax = 0 is n − r. That is, n = rank(A) + nullity(A).

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 4.6 Rank of a Matrix and Systems of Linear Equations 203

SolutionS of SyStemS of lineaR equationS

You now know that the set of all solution vectors of the homogeneous linear system 
Ax = 0 is a subspace. The set of all solution vectors of the nonhomogeneous system 
Ax = b, where b ≠ 0, is not a subspace because the zero vector is never a solution of a 
nonhomogeneous system. There is a relationship, however, between the sets of solutions 
of the two systems Ax = 0 and Ax = b. Specifically, if xp is a particular solution of the 
nonhomogeneous system Ax = b, then every solution of this system can be written in 
the form x = xp + xh, where xh is a solution of the corresponding homogeneous system 
Ax = 0. The next theorem states this important concept.

tHeoRem 4.18  Solutions of a nonhomogeneous  
linear System

If xp is a particular solution of the nonhomogeneous system Ax = b, then  
every solution of this system can be written in the form x = xp + xh, where xh is 
a solution of the corresponding homogeneous system Ax = 0.

pRoof

Let x be any solution of Ax = b. Then (x − xp) is a solution of the homogeneous  
system Ax = 0, because

A(x − xp) = Ax − Axp = b − b = 0.

Letting xh = x − xp, you have x = xp + xh. 

  finding the Solution Set of a 
nonhomogeneous System

Find the set of all solution vectors of the system of linear equations.

x1

3x1

x1

+
+

x2

2x2

−
−

2x3

5x3

+

−

x4

5x4

=
=
=

5
8

−9

Solution

The augmented matrix for the system Ax = b reduces as shown below.

[
1
3
1

0
1
2

−2
−5

0

1
0

−5

5
8

−9]  [
1
0
0

0
1
0

−2
1
0

1
−3

0

5
−7

0]
The system of linear equations corresponding to the reduced row-echelon matrix is

x1  
  x2

−
+

2x3

x3

+
−

x4

3x4

=
=

5
−7.

Letting x3 = s and x4 = t, write a representative solution vector of Ax = b as shown 
below.

x = [
x1

x2

x3

x4

] = [
5 + 2s − t

−7 − s + 3t
0 + s + 0t
0 + 0s + t

] = [
5

−7
0
0
] + s[

2
−1

1
0
] + t[

−1
3
0
1
] = xp + su1 + tu2

xp is a particular solution vector of Ax = b, and xh = su1 + tu2 represents an arbitrary 
vector in the solution space of Ax = 0. 
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The next theorem describes how the column space of a matrix can be used to  
determine whether a system of linear equations is consistent.

tHeoRem 4.19 Solutions of a System of linear equations

The system Ax = b is consistent if and only if b is in the column space of A.

pRoof

For the system Ax = b, let A, x, and b be the m × n coefficient matrix, the n × 1  
column matrix of variables, and the m × 1 right-hand side, respectively. Then

Ax = [
a11

a21

⋮
am1

a12

a22

⋮
am2

.  .  .

.  .  .

.  .  .

a1n

a2n

⋮
amn

][
x1

x2

⋮
xn

] = x1[
a11

a21

⋮
am1

] + x2[
a12

a22

⋮
am2

] + .  .  . + xn[
a1n

a2n

⋮
amn

].

So, Ax = b if and only if b = [b1   b2   .  .  .    bm]T is a linear combination of the  
columns of A. That is, the system is consistent if and only if b is in the subspace of Rm 
spanned by the columns of A. 

 consistency of a System of linear equations

Consider the system of linear equations

x1

x1

3x1

+

+

x2

2x2

−
+
−

x3

x3

x3

=
=
=

−1
3
1.

The augmented matrix for the system is

[A   b] = [
1
1
3

1
0
2

−1
1

−1

−1
3
1].

 a1 a2 a3 b

Notice that b = 2a1 − 2a2 + a3. So, b is in the column space of A, and the system of 
linear equations is consistent. 

The summary below presents several major results involving systems of linear 
equations, matrices, determinants, and vector spaces.

Summary of equivalent conditions for Square matrices

If A is an n × n matrix, then the conditions below are equivalent.

1. A is invertible.
2. Ax = b has a unique solution for any n × 1 matrix b.
3. Ax = 0 has only the trivial solution.
4. A is row-equivalent to In.
5. ∣A∣ ≠ 0
6. Rank(A) = n
7. The n row vectors of A are linearly independent.
8. The n column vectors of A are linearly independent.

RemaRk
The reduced row-echelon form 
of [A   b] is

[
1
0
0

0
1
0

1
−2

0

3
−4

0]
(verify this). So, there are  
infinitely many ways to write b 
as a linear combination of the 
columns of A.
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4.6 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

Row Vectors and column Vectors In Exercises 1–4, 
write (a) the row vectors and (b) the column vectors of 
the matrix.

 1. [0
1

−2
−3]  2. [6 5 −1]

 3. [4
1

3
−4

1
0]  4. [

0
4

−6

3
0
1

−4
−1

1]
finding a Basis for a Row Space and Rank In 
Exercises 5–12, find (a) a basis for the row space and  
(b) the rank of the matrix.

 5. [1
0

0
2]  6. [0 1 −2]

 7. [1
4

−3
2

2
1]  8. [

2
−2
−6

5
−5

−15]
 9. [

1
7

−3

6
40

−12

18
116

−27] 10. [
2
5
8

−3
10

−7

1
6
5]

11. [
−2

3
−2

−4
6

−4

4
−6

4

5
−4

9]
12. [

4
2
5
4
2

0
−1

2
0

−2

2
2
2
2
0

3
0
1
2
0

1
1

−1
1
1
]

finding a Basis for a Subspace In Exercises 13–16, 
find a basis for the subspace of R3 spanned by S.

13. S = {(1, 2, 4), (−1, 3, 4), (2, 3, 1)}
14. S = {(2, 3, −1), (1, 3, −9), (0, 1, 5)}
15. S = {(4, 4, 8), (1, 1, 2), (1, 1, 1)}
16. S = {(1, 2, 2), (−1, 0, 0), (1, 1, 1)}

finding a Basis for a Subspace In Exercises 17–20, 
find a basis for the subspace of R4 spanned by S.

17. S = { (2, 9, −2, 53), (−3, 2, 3, −2), (8, −3, −8, 17), 
(0, −3, 0, 15)}

18. S = { (6, −3, 6, 34), (3, −2, 3, 19), (8, 3, −9, 6), 
(−2, 0, 6, −5)}

19. S = { (−3, 2, 5, 28), (−6, 1, −8, −1), 
(14, −10, 12, −10), (0, 5, 12, 50)}

20. S = { (2, 5, −3, −2), (−2, −3, 2, −5), (1, 3, −2, 2), 
(−1, −5, 3, 5)}

finding a Basis for a column Space and Rank In 
Exercises 21–26, find (a) a basis for the column space 
and (b) the rank of the matrix.

21. [2
1

4
6] 22. [1 2 3]

23. [ 1
−1

2
2

4
1] 24. [

4
6
2

20
−5

−11

31
−6

−16]
25. [

2
7

−2
2

4
14

−4
4

−3
−6

1
−2

−6
−3
−2
−2

]
26. [

2
2
4
2
0

4
5
3

−4
1

−2
4
1
2
4

1
−2

1
−1

2

1
2
2
1

−1
]

finding the nullspace of a matrix In Exercises 27–40, 
find the nullspace of the matrix.

27. A = [ 2
−6

−1
3] 28. A = [2

1
−1

3]
29. A = [1 2 3] 30. A = [1 4 2]

31. A = [1
0

2
1

3
0] 32. A = [1

0
4
0

2
1]

33. A = [
1
2
4

2
−1

3

−3
4

−2] 34. A = [
3

−2
1

−6
4

−2

21
−14

7]
35. A = [

5
3
2

2
−1

1] 36. A = [
−16

48
−80

1
−3

5]
37. A = [

1
0

−2

3
1

−6

−2
−1

4

4
2

−8]
38. A = [

1
0

−2

4
1

−8

2
1

−4

1
−1
−2]

39. A = [
2
2
3
0

6
1

−2
6

3
0
1
2

1
−2

1
0
]

40. A = [
1
2
4
0

4
−1

2
4

2
1
1
2

1
1
1
0
]
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206 Chapter 4 Vector Spaces

Rank, nullity, Bases, and linear independence In 
Exercises 41 and 42, use the fact that matrices A and B 
are row-equivalent.

(a) Find the rank and nullity of A.

(b) Find a basis for the nullspace of A.

(c) Find a basis for the row space of A.

(d) Find a basis for the column space of A.

(e)  Determine whether the rows of A are linearly  
independent.

(f)  Let the columns of A be denoted by a1, a2, a3, a4, and a5. 
Determine whether each set is linearly independent.

 (i) {a1, a2, a4}  (ii) {a1, a2, a3}  (iii) {a1, a3, a5}

41. A = [
1
2
3
4

2
5
7
9

1
1
2
3

0
1
2

−1

0
0

−2
4
]

 B = [
1
0
0
0

0
1
0
0

3
−1

0
0

0
0
1
0

−4
2

−2
0
]

42. A = [
−2

1
3
1

−5
3

11
7

8
−5

−19
−13

0
1
7
5

−17
5
1

−3
]

 B = [
1
0
0
0

0
1
0
0

1
−2

0
0

0
0
1
0

1
3

−5
0
]

finding a Basis and dimension In Exercises 43–48, 
find (a) a basis for and (b) the dimension of the solution 
space of the homogeneous system of linear equations.

43. − x +  y +  z =  0 44.  x −  2y +  3z =  0

  3x −  y   =  0   −3x +  6y −  9z =  0

  2x −  4y −  5z =  0

45.  3x1 +  3x2 +  15x3 +  11x4 =  0

  x1 −  3x2 +  x3 +  x4 =  0

  2x1 +  3x2 +  11x3 +  8x4 =  0

46.  2x1 +  2x2 +  4x3 −  2x4 =  0

  x1 +  2x2 +  x3 +  2x4 =  0

  −x1 +  x2 +  4x3 −  2x4 =  0

47.  9x1 −  4x2 −  2x3 −  20x4 =  0

  12x1 −  6x2 −  4x3 −  29x4 =  0

  3x1 −  2x2    −  7x4 =  0

  3x1 −  2x2 −  x3 −  8x4 =  0

48.  x1 +  3x2 +  2x3 +  22x4 +  13x5 =  0

  x1    +  x3 −  2x4 +  x5 =  0

  3x1 +  6x2 +  5x3 +  42x4 +  27x5 =  0

nonhomogeneous System In Exercises 49–56,  
determine whether the nonhomogeneous system Ax = b 
is consistent. If it is, write the solution in the form 
x = xp + xh, where xp is a particular solution of Ax = b 
and xh is a solution of Ax = 0.

49.  x −  4y =  17 50.  x +  2y −  4z =  −1

  3x −  12y =  51   −3x −  6y +  12z =  3

  −2x +  8y =  −34

51.  x +  3y +  10z =  18 52.  2x −  4y +  5z =  8

  −2x +  7y +  32z =  29   −7x +  14y +  4z =  −28

  −x +  3y +  14z =  12   3x −  6y +  z =  12

  x +  y +  2z =  8

53.  3x −  8y +  4z      =  19

    −  6y +  2z +  4w =  5

  5x      +  22z +  w =  29

  x −  2y +  2z      =  8

54.  3w −  2x +  16y −  2z =  −7

  −w +  5x −  14y +  18z =  29

  3w −  x +  14y +  2z =  1

55.  x1 +  2x2 +  x3 +  x4 +  5x5 =  0

  −5x1 −  10x2 +  3x3 +  3x4 +  55x5 =  −8

  x1 +  2x2 +  2x3 −  3x4 −  5x5 =  14

  −x1 −  2x2 +  x3 +  x4 +  15x5 =  −2

56.  5x1 −  4x2 +  12x3 −  33x4 +  14x5 =  −4

  −2x1 +  x2 −  6x3 +  12x4 −  8x5 =  1

  2x1 −  x2 +  6x3 −  12x4 +  8x5 =  −1

consistency of Ax = b In Exercises 57–62, determine 
whether b is in the column space of A. If it is, write b as 
a linear combination of the column vectors of A.

57. A = [−1
4

2
0], b = [3

4]
58. A = [−1

2
2

−4], b = [2
4]

59. A = [
1

−1
0

3
1
1

2
2
1], b = [

1
1
0]

60. A = [
1

−1
2

3
1
0

0
0
1], b = [

1
2

−3]
61. A = [

−1
1

−3

−1
0

−2

1
1
1], b = [

0
3

−3]
62. A = [

5
−3

1

4
1
0

4
−2

8], b = [
−9
11

−25]
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63.  proof Prove that if A is not square, then either the row 
vectors of A or the column vectors of A form a linearly 
dependent set.

64.  Give an example showing that the rank of the product of 
two matrices can be less than the rank of either matrix.

65.  Give examples of matrices A and B of the same size 
such that

 (a) rank(A + B) < rank(A) and rank(A + B) < rank(B)
 (b) rank(A + B) = rank(A) and rank(A + B) = rank(B)
 (c) rank(A + B) > rank(A) and rank(A + B) > rank(B).
66.  proof Prove that the nonzero row vectors of a matrix 

in row-echelon form are linearly independent.

67.  Let A be an m × n matrix (where m < n) whose rank is r.

 (a) What is the largest value r can be?

 (b)  How many vectors are in a basis for the row space 
of A?

 (c)  How many vectors are in a basis for the column 
space of A?

 (d)  Which vector space Rk has the row space as a  
subspace?

 (e)  Which vector space Rk has the column space as a 
subspace?

68.  Show that the three points (x1, y1), (x2, y2), and (x3, y3) 
in a plane are collinear if and only if the matrix

 [
x1

x2

x3

y1

y2

y3

1
1
1]

 has rank less than 3.

69.  Consider an m × n matrix A and an n × p matrix B. Show 
that the row vectors of AB are in the row space of B and 
the column vectors of AB are in the column space of A.

70. Find the rank of the matrix

 [
1

n + 1
2n + 1

⋮
n2 − n + 1

2
n + 2

2n + 2

⋮
n2 − n + 2

3
n + 3

2n + 3

⋮
n2 − n + 3

.  .  .

.  .  .

.  .  .

.  .  .

n
2n
3n

⋮
n2
]

 for n = 2, 3, and 4. Can you find a pattern in these ranks?

71.  proof Prove each property of the system of linear 
equations in n variables Ax = b.

 (a)  If rank(A) = rank([A  b]) = n, then the system has 
a unique solution.

 (b)  If rank(A) = rank([A  b]) < n, then the system has 
infinitely many solutions.

 (c)  If rank(A) < rank([A  b]), then the system is  
inconsistent.

72.  proof Let A be an m × n matrix. Prove that 
N(A) ⊂ N(ATA).

true or false? In Exercises 73–76, determine whether 
each statement is true or false. If a statement is true, give 
a reason or cite an appropriate statement from the text. 
If a statement is false, provide an example that shows the 
statement is not true in all cases or cite an appropriate 
statement from the text.

73. (a)  The nullspace of a matrix A is the solution space of 
the homogeneous system Ax = 0.

 (b)  The dimension of the nullspace of a matrix A is the 
nullity of A.

74. (a)  If an m × n matrix A is row-equivalent to an m × n 
matrix B, then the row space of A is equivalent to 
the row space of B.

 (b)  If A is an m × n matrix of rank r, then the dimension  
of the solution space of Ax = 0 is m − r.

75. (a)  If an m × n matrix B can be obtained from elementary  
row operations on an m × n matrix A, then the column  
space of B is equal to the column space of A.

 (b)  The system of linear equations Ax = b is inconsistent  
if and only if b is in the column space of A.

76. (a)  The column space of a matrix A is equal to the row 
space of AT.

 (b)  The row space of a matrix A is equal to the column 
space of AT.

77.  Let A and B be square matrices of order n satisfying 
Ax = Bx for all x in Rn.

 (a) Find the rank and nullity of A − B.

 (b) Show that A and B must be identical.

78.  CAPSTONE The dimension of the row 
space of a 3 × 5 matrix A is 2.

(a) What is the dimension of the column space of A?

(b) What is the rank of A?

(c) What is the nullity of A?

(d)  What is the  dimension of the solution space of the 
homogeneous system Ax = 0?

79. proof Let A be an m × n matrix.

 (a)  Prove that the system of linear equations Ax = b is 
consistent for all column vectors b if and only if the 
rank of A is m.

 (b)  Prove that the homogeneous system of linear  
equations Ax = 0 has only the trivial solution if and 
only if the columns of A are linearly independent.

80.  proof Prove that row operations do not change the 
dependency relationships among the columns of an 
m × n matrix.

81.  writing Explain why the row vectors of a 4 × 3 
matrix form a linearly dependent set. (Assume all 
matrix entries are distinct.)
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208 Chapter 4 Vector Spaces

4.7 Coordinates and Change of Basis

 Find a coordinate matrix relative to a basis in Rn.

 Find the transition matrix from the basis B to the basis B′ in Rn.

 Represent coordinates in general n-dimensional spaces.

Coordinate representation in Rn

In Theorem 4.9, you saw that if B is a basis for a vector space V, then every vector x 
in V can be expressed in one and only one way as a linear combination of vectors in 
B. The coefficients in the linear combination are the coordinates of x relative to B. In 
the context of coordinates, the order of the vectors in the basis is important, so this will 
sometimes be emphasized by referring to the basis B as an ordered basis.

Coordinate representation relative to a Basis

Let B = {v1, v2, .  .  . , vn} be an ordered basis for a vector space V and let x be a 
vector in V such that

x = c1v1 + c2v2 + .  .  . + cnvn.

The scalars c1, c2, .  .  . , cn are the coordinates of x relative to the basis B. The 
coordinate matrix (or coordinate vector) of x relative to B is the column 
matrix in Rn whose components are the coordinates of x.

[x]B = [
c1

c2

⋮
cn

]
In Rn, column notation is used for the coordinate matrix. For the vector 

x = (x1, x2, .  .  . , xn), the xi’s are the coordinates of x relative to the standard basis S 
for Rn. So, you have

[x]S = [
x1

x2

⋮
xn

].

 Coordinates and Components in Rn

Find the coordinate matrix of x = (−2, 1, 3) in R3 relative to the standard basis 

S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

solution

The vector x can be written as x = (−2, 1, 3) = −2(1, 0, 0) + 1(0, 1, 0) + 3(0, 0, 1), 
so the coordinate matrix of x relative to the standard basis is simply

[x]S = [
−2

1
3].

The components of x are the same as its coordinates relative to the standard basis. 
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  Finding a Coordinate Matrix  
relative to a standard Basis

The coordinate matrix of x in R2 relative to the (nonstandard) ordered basis 
B = {v1, v2} = {(1, 0), (1, 2)} is

[x]B = [3
2].

Find the coordinate matrix of x relative to the standard basis 
B′ = {u1, u2} = {(1, 0), (0, 1)}.

solution

The coordinate matrix of x relative to B is [x]B = [3
2], so

 x = 3v1 + 2v2 = 3(1, 0) + 2(1, 2) = (5, 4) = 5(1, 0) + 4(0, 1).

It follows that the coordinate matrix of x relative to B′ is

[x]B′ = [5
4].

Figure 4.17 compares these two coordinate representations. 

Example 2 shows that the procedure for finding the coordinate matrix relative to a 
standard basis is straightforward. It is more difficult, however, to find the coordinate 
matrix relative to a nonstandard basis. Here is an example.

   Finding a Coordinate Matrix  
relative to a nonstandard Basis

Find the coordinate matrix of x = (1, 2, −1) in R3 relative to the (nonstandard)  
basis

B′ = {u1, u2, u3} = {(1, 0, 1), (0, −1, 2), (2, 3, −5)}.

solution

Begin by writing x as a linear combination of u1, u2, and u3.

 x = c1u1 + c2u2 + c3u3

 (1, 2, −1) = c1(1, 0, 1) + c2(0, −1, 2) + c3(2, 3, −5)

Equating corresponding components produces the system of linear equations and  
corresponding matrix equation below.

   
c1

c1 +
−c2

2c2

+
+
−

2c3

3c3

5c3

=
=
=

1
2

−1

[
1
0
1

0
−1

2

2
3

−5][
c1

c2

c3
] = [

1
2

−1]
The solution of this system is c1 = 5, c2 = −8, and c3 = −2. So,

x = 5(1, 0, 1) + (−8)(0, −1, 2) + (−2)(2, 3, −5)

and the coordinate matrix of x relative to B′ is

[x]B′ = [
5

−8
−2]. 

Figure 4.17

Standard basis:
B' = {(1, 0), (0, 1)}

x

(5, 4)
4u2

5u1

u2

u1

[x]B' =
5
4[ [

x = 5(1, 0) + 4(0, 1) y

x'

y'

Nonstandard basis:
B = {(1, 0), (1, 2)}

[x]B = 3
2[ [

x = 3(1, 0) + 2(1, 2)

(3, 2)

2v2

3v1

v2

v1

reMarK
It would be incorrect to write 
the coordinate matrix as 

x = [
5

−8
−2].

Do you see why?
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Change oF Basis in Rn

The procedure demonstrated in Examples 2 and 3 is called a change of basis. That is, 
you were given the coordinates of a vector relative to a basis B and were asked to find 
the coordinates relative to another basis B′.

For instance, if in Example 3 you let B be the standard basis, then the problem of 
finding the coordinate matrix of x = (1, 2, −1) relative to the basis B′ becomes one of 
solving for c1, c2, and c3 in the matrix equation

[
1
0
1

0
−1

2

2
3

−5][
c1

c2

c3
] = [

1
2

−1].

 P [x]B′ [x]B

The matrix P is the transition matrix from B′ to B, where [x]B′ is the coordinate matrix 
of x relative to B′, and [x]B is the coordinate matrix of x relative to B. Multiplication 
by the transition matrix P changes a coordinate matrix relative to B′ into a coordinate 
matrix relative to B. That is,

P[x]B′ = [x]B. Change of basis from B′ to B

To perform a change of basis from B to B′, use the matrix P−1 (the transition matrix 
from B to B′) and write

[x]B′ = P−1[x]B. Change of basis from B to B′

So, the change of basis problem in Example 3 can be represented by the matrix equation

[
c1

c2

c3
] = [

−1
3
1

4
−7
−2

2
−3
−1][

1
2

−1] = [
5

−8
−2].

 P−1 [x]B [x]B′

Generalizing this discussion, assume that

B = {v1, v2, .  .  . , vn} and B′ = {u1, u2, .  .  . , un}

are two ordered bases for Rn. If x is a vector in Rn and

[x]B = [
c1

c2

⋮
cn

] and [x]B′ = [
d1

d2

⋮
dn

]
are the coordinate matrices of x relative to B and B′, then the transition matrix P from 
B′ to B is the matrix P such that 

[x]B = P[x]B′.

The next theorem tells you that the transition matrix P is invertible and its inverse is the 
transition matrix from B to B′. That is, 

 [x]B′ = P−1[x]B.

theoreM 4.20 the inverse of a transition Matrix

If P is the transition matrix from a basis B′ to a basis B in Rn, then P is invertible 
and the transition matrix from B to B′ is P−1.

Coordinate  
matrix of x  

relative to B′

Transition 
matrix 

from B to B′

Coordinate  
matrix of x  
relative to B
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Before proving Theorem 4.20, it is necessary to look at and prove a preliminary 
lemma.

prooF (oF leMMa)

Let v = d1v1 + d2v2 + .  .  . + dnvn be an arbitrary vector in V. The coordinate matrix 
of v with respect to the basis B is 

[v]B = [
d1

d2

⋮
dn

].

Then you have

Q[v]B = [
c11

c21

⋮
cn1

c12

c22

⋮
cn2

.  .  .

.  .  .

.  .  .

c1n

c2n

⋮
cnn

][
d1

d2

⋮
dn

] = [
c11d1

c21d1

⋮
cn1d1

+
+

+

c12d2

c22d2

⋮
cn2d2

+
+

+

.  .  .

.  .  .

.  .  .

+
+

+

c1ndn

c2ndn

⋮
cnndn

].

On the other hand, 

v = d1v1 + d2v2 + .  .  . + dnvn

= d1(c11u1 + c21u2 + .  .  . + cn1un) + d2(c12u1 + c22u2 + .  .  . + cn2un) + .  .  .

 + dn(c1nu1 + c2nu2 + .  .  . + cnnun)
= (d1c11 + d2c12 + .  .  . + dnc1n)u1 + (d1c21 + d2c22 + .  .  . + dnc2n)u2 + .  .  .

 + (d1cn1 + d2cn2 + .  .  . + dncnn)un

which implies

[v]B′ = [
c11d1

c21d1

⋮
cn1d1

+
+

+

c12d2

c22d2

⋮
cn2d2

+
+

+

.  .  .

.  .  .

.  .  .

+
+

+

c1ndn

c2ndn

⋮
cnndn

].

So, Q[v]B = [v]B′ and you can conclude that Q is the transition matrix from B to B′. 

prooF (oF theoreM 4.20)

From the preceding lemma, let Q be the transition matrix from B to B′. Then 
[v]B = P[v]B′ and [v]B′ = Q[v]B, which implies that [v]B = PQ[v]B for every vector v 
in Rn. From this it follows that PQ = I. So, P is invertible and P−1 is equal to Q, the 
transition matrix from B to B′. 

leMMa

Let B = {v1, v2, .  .  . , vn} and B′ = {u1, u2, .  .  . , un} be two bases for a vector 
space V. If

 v1 = c11u1 + c21u2 + .  .  . + cn1un

 v2 = c12u1 + c22u2 + .  .  . + cn2un

 ⋮
 vn = c1nu1 + c2nu2 + .  .  . + cnnun

then the transition matrix from B to B′ is

Q = [
c11

c21

⋮
cn1

c12

c22

⋮
cn2

.  .  .

.  .  .

.  .  .

c1n

c2n

⋮
cnn

].
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Gauss-Jordan elimination can be used to find the transition matrix P−1. First define 
two matrices B and B′ whose columns correspond to the vectors in B and B′. That is,

B = [
v11

v21

⋮
vn1

v12

v22

⋮
vn2

.  .  .

.  .  .

.  .  .

v1n

v2n

⋮
vnn

] and B′ = [
u11

u21

⋮
un1

u12

u22

⋮
un2

.  .  .

.  .  .

.  .  .

u1n

u2n

⋮
unn

].

 v1 v2 vn u1 u2 un

Then, by reducing the n × 2n matrix [B′    B] so that the identity matrix In occurs in 
place of B′, you obtain the matrix [In    P

−1]. The next theorem states this procedure 
formally.

theoreM 4.21 transition Matrix from B to B′

Let

B = {v1, v2, .  .  . , vn} and B′ = {u1, u2, .  .  . , un}

be two bases for Rn. Then the transition matrix P−1 from B to B′ can be found by 
using Gauss-Jordan elimination on the n × 2n matrix [B′    B], as shown below.

[B′    B]  [In    P
−1] 

prooF

To begin, let

 v1 = c11u1 + c21u2 + .  .  . + cn1un

 v2 = c12u1 + c22u2 + .  .  . + cn2un

 ⋮
 vn = c1nu1 + c2nu2 + .  .  . + cnnun

which implies that

c1i[
u11

u21

⋮
un1

] + c2i[
u12

u22

⋮
un2

] + .  .  . + cni[
u1n

u2n

⋮
unn

] = [
v1i

v2i

⋮
vni

]
for i = 1, 2, .  .  . , n. From these vector equations, write the n systems of linear  
equations

 u11c1i + u12c2i + .  .  . + u1ncni = v1i

 u21c1i + u22c2i + .  .  . + u2ncni = v2i

 ⋮
 un1c1i + un2c2i + .  .  . + unncni = vni

for i = 1, 2, .  .  . , n. Each of the n systems has the same coefficient matrix, so you can 
reduce all n systems simultaneously using the augmented matrix below.

[
u11

u21

⋮
un1

u12

u22

⋮
un2

.  .  .

.  .  .

.  .  .

u1n

u2n

⋮
unn

v11

v21

⋮
vn1

v12

v22

⋮
vn2

.  .  .

.  .  .

.  .  .

v1n

v2n

⋮
vnn

]
 B′ B

Applying Gauss-Jordan elimination to this matrix produces

reMarK
Verify that the transition matrix 
P−1 from B to B′ is (B′)−1B. 
Also verify that the transition 
matrix P  from B′ to B is  
B−1B′. You can use these  
relationships to check the 
results obtained by  
Gauss-Jordan elimination.
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[
1
0

⋮
0

0
1

⋮
0

.  .  .

.  .  .

.  .  .

0
0

⋮
1

c11

c21

⋮
cn1

c12

c22

⋮
cn2

.  .  .

.  .  .

.  .  .

c1n

c2n

⋮
cnn

].

By the lemma following Theorem 4.20, however, the right-hand side of this matrix 
is Q = P−1, which implies that the matrix has the form [I    P−1], which proves the 
theorem. 

In the next example, you will apply this procedure to the change of basis problem 
from Example 3.

 
Finding a transition Matrix

See LarsonLinearAlgebra.com for an interactive version of this type of example.

Find the transition matrix from B to B′ for the bases for R3 below.

B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and B′ = {(1, 0, 1), (0, −1, 2), (2, 3, −5)}

solution

First use the vectors in the two bases to form the matrices B and B′.

B = [
1
0
0

0
1
0

0
0
1] and B′ = [

1
0
1

0
−1

2

2
3

−5]
Then form the matrix [B′    B] and use Gauss-Jordan elimination to rewrite [B′    B] as 
[I3    P

−1].

[
1
0
1

0
−1

2

2
3

−5

1
0
0

0
1
0

0
0
1]  [

1
0
0

0
1
0

0
0
1

−1
3
1

4
−7
−2

2
−3
−1]

From this, you can conclude that the transition matrix from B to B′ is

P−1 = [
−1

3
1

4
−7
−2

2
−3
−1].

Multiply P−1 by the coordinate matrix of x = [1    2    −1]T to see that the result is the 
same as that obtained in Example 3. 

linear
algeBra
applied

Crystallography is the science of atomic and molecular 
structure. In a crystal, atoms are in a repeating pattern 
called a lattice. The simplest repeating unit in a lattice is a 
unit cell. Crystallographers can use bases and coordinate 
matrices in R3 to designate the locations of atoms in a 
unit cell. For example, the figure below shows the unit 
cell known as end-centered monoclinic.

One possible coordinate matrix for the top end-centered 
(blue) atom is [x]B′ = [1

2    12    1]T.
Brazhnykov Andriy/Shutterstock.com

DISCOVERY
1.  Let B = {(1, 0), (1, 2)} 

and B′ = {(1, 0), (0, 1)}. 
Form the matrix 
[B′    B].

2.  Make a conjecture 
about the necessity of 
using Gauss-Jordan 
elimination to obtain 
the transition matrix 
P−1 when the change 
of basis is from a 
nonstandard basis to 
a standard basis.
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214 Chapter 4 Vector Spaces

Note that when B is the standard basis, as in Example 4, the process of changing 
[B′    B] to [In    P

−1] becomes

[B′    In]  [In    P
−1]. 

But this is the same process that was used to find inverse matrices in Section 2.3. In 
other words, if B is the standard basis for Rn, then the transition matrix from B to B′ is

P−1 = (B′)−1. Standard basis to nonstandard basis

The process is even simpler when B′ is the standard basis, because the matrix [B′    B] 
is already in the form

[In    B] = [In    P
−1].

In this case, the transition matrix is simply

P−1 = B. Nonstandard basis to standard basis

For instance, the transition matrix in Example 2 from B = {(1, 0), (1, 2)} to 
B′ = {(1, 0), (0, 1)} is

P−1 = B = [1
0

1
2].

 Finding a transition Matrix

Find the transition matrix from B to B′ for the bases for R2 below.

B = {(−3, 2), (4, −2)} and B′ = {(−1, 2), (2, −2)}

solution

Begin by forming the matrix

[B′    B] = [−1
2

2
−2

−3
2

4
−2]

and use Gauss-Jordan elimination to obtain the transition matrix P−1 from B to B′:

[I2    P
−1] = [1

0
0
1

−1
−2

2
3].

So, you have

P−1 = [−1
−2

2
3]. 

In Example 5, if you had found the transition matrix from B′ to B (rather than from 
B to B′), then you would have obtained

[B    B′] = [−3
2

4
−2

−1
2

2
−2]

which reduces to

[I2    P] = [1
0

0
1

3
2

−2
−1].

The transition matrix from B′ to B is

P = [3
2

−2
−1].

Verify that this is the inverse of the transition matrix found in Example 5 by  multiplying 
PP−1 to obtain I2.

teChnology
Many graphing utilities and 
software programs can form 
an augmented matrix and find 
its reduced row-echelon form. 
If you use a graphing utility, 
then you may see something 
similar to the screen below for 
Example 5.

[[-3 4 ]

[[-1 2 ]

[[-1 2  -3 4 ]

[[1 0 -1 2]

[2  -2]]

[2  -2 2  -2]]

[0 1 -2 3]]

[2  -2]]

B

BPRIME

aug(BPRIME,B)

rref aug(BPRIME,B)

The technology guide at  
CengageBrain.com can help 
you use technology to find a 
transition matrix.
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Coordinate representation in general  
n-diMensional spaCes

One benefit of coordinate representation is that it enables you to represent vectors  
in any n-dimensional space using the same notation used in Rn. For instance, in 
Example 6, note that the coordinate matrix of a vector in P3 is a vector in R4.

 Coordinate representation in P3

Find the coordinate matrix of 

p = 4 − 2x2 + 3x3

relative to the standard basis for P3,

S = {1, x, x2, x3}.

solution

Write p as a linear combination of the basis vectors (in the given order).

p = 4(1) + 0(x) + (−2)(x2) + 3(x3)

So, the coordinate matrix of p relative to S is

[ p]S = [
4
0

−2
3
]. 

In the next example, the coordinate matrix of a vector in M3,1 is a vector in R3.

 Coordinate representation in M3,1

Find the coordinate matrix of

X = [
−1

4
3]

relative to the standard basis for M3,1,

S = {[1
0
0], [

0
1
0], [

0
0
1]}.

solution

X can be written as

X = [
−1

4
3] = (−1)[

1
0
0] + 4[

0
1
0] + 3[

0
0
1]

so the coordinate matrix of X relative to S is

[X]S = [
−1

4
3]. 

Theorems 4.20 and 4.21 can be generalized to cover arbitrary n-dimensional 
spaces. This text, however, does not cover the generalizations of these theorems.

reMarK
In Section 6.2 you will learn 
more about the use of Rn  
to represent an arbitrary  
n-dimensional vector space.
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4.7 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

Finding a Coordinate Matrix In Exercises 1–4, find 
the coordinate matrix of x in Rn relative to the standard 
basis.

 1. x = (5, −2)  2. x = (1, −3, 0)
 3. x = (7, −4, −1, 2)  4. x = (−6, 12, −4, 9, −8)

Finding a Coordinate Matrix In Exercises 5–10, given 
the coordinate matrix of x relative to a (nonstandard) 
basis B for Rn, find the coordinate matrix of x relative to 
the standard basis.

 5. B = {(2, −1), (0, 1)},  6. B = {(−2, 3), (3, −2)},

 [x]B = [4
1]  [x]B = [−1

4]
 7. B = {(1, 0, 1), (1, 1, 0), (0, 1, 1)},

 [x]B = [
2
3
1]

 8. B = {(3
4, 52, 32), (3, 4, 72), (−3

2, 6, 2)},

 [x]B = [
2
0
4]

 9. B = {(0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 1, 1), (1, 1, 1, 1)},

 [x]B = [
1

−2
3

−1
]

10. B = { (4, 0, 7, 3), (0, 5, −1, −1), (−3, 4, 2, 1), 
(0, 1, 5, 0)},

 [x]B = [
−2

3
4
1
]

Finding a Coordinate Matrix In Exercises 11–16, find 
the coordinate matrix of x in Rn relative to the basis B′.
11. B′ = {(4, 0), (0, 3)},  x = (12, 6)
12. B′ = {(−5, 6), (3, −2)},  x = (−17, 22)
13. B′ = {(8, 11, 0), (7, 0, 10), (1, 4, 6)},  x = (3, 19, 2)
14. B′ = {(3

2, 4, 1), (3
4, 52, 0), (1, 12, 2)},  x = (3, −1

2, 8)
15. B′ = {(4, 3, 3), (−11, 0, 11), (0, 9, 2)},
 x = (11, 18, −7)
16. B′ = { (9, −3, 15, 4), (3, 0, 0, 1), (0, −5, 6, 8), 

(3, −4, 2, −3)},
 x = (0, −20, 7, 15)

Finding a transition Matrix In Exercises 17–24, find 
the transition matrix from B to B′.
17. B = {(1, 0), (0, 1)},  B′ = {(2, 4), (1, 3)}
18. B = {(1, 0), (0, 1)},  B′ = {(1, 1), (5, 6)}
19. B = {(2, 4), (−1, 3)},  B′ = {(1, 0), (0, 1)}
20. B = {(1, 1), (1, 0)},  B′ = {(1, 0), (0, 1)}
21. B = {(−1, 0, 0), (0, 1, 0), (0, 0, −1)},
 B′ = {(0, 0, 2), (1, 4, 0), (5, 0, 2)}
22. B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)},
 B′ = {(1, 3, −1), (2, 7, −4), (2, 9, −7)}
23. B = {(3, 4, 0), (−2, −1, 1), (1, 0, −3)},
 B′ = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
24. B = {(1, 3, 2), (2, −1, 2), (5, 6, 1)},
 B′ = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

Finding a transition Matrix In Exercises 25–36, use 
a software program or a graphing utility to find the  
transition matrix from B to B′.
25. B = {(2, 5), (1, 2)},  B′ = {(2, 1), (−1, 2)}
26. B = {(−2, 1), (3, 2)},  B′ = {(1, 2), (−1, 0)}
27. B = {(−3, 4), (3, −5)},  B′ = {(−5, −6), (7, −8)}
28. B = {(2, −2), (−2, −2)},  B′ = {(3, −3), (−3, −3)}
29. B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)},
 B′ = {(1, 3, 3), (1, 5, 6), (1, 4, 5)}
30. B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)},
 B′ = {(2, −1, 4), (0, 2, 1), (−3, 2, 1)}
31. B = {(1, 2, 4), (−1, 2, 0), (2, 4, 0)},
 B′ = {(0, 2, 1), (−2, 1, 0), (1, 1, 1)}
32. B = {(3, 2, 1), (1, 1, 2), (1, 2, 0)},
 B′ = {(1, 1, −1), (0, 1, 2), (−1, 4, 0)}
33. B = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)},
 B′ = { (1, 3, 2, −1), (−2, −5, −5, 4), 

(−1, −2, −2, 4), (−2, −3, −5, 11)}
34. B = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)},
 B′ = {(1, 1, 1, 1), (0, 1, 1, 1), (0, 0, 1, 1), (0, 0, 0, 1)}
35. B = { (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), 

(0, 0, 0, 1, 0), (0, 0, 0, 0, 1)},
 B′ = { (1, 2, 4, −1, 2), (−2, −3, 4, 2, 1), 

(0, 1, 2, −2, 1), (0, 1, 2, 2, 1), (1, −1, 0, 1, 2)}
36. B = { (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), 

(0, 0, 0, 1, 0), (0, 0, 0, 0, 1)},
 B′ = { (2, 4, −2, 1, 0), (3, −1, 0, 1, 2), (0, 0, −2, 4, 5), 

(2, −1, 2, 1, 1), (0, 1, 2, −3, 1)}
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Finding transition and Coordinate Matrices  
In Exercises 37–40, (a) find the transition matrix from 
B to B′, (b) find the transition matrix from B′ to B,  
(c) verify that the two transition matrices are inverses of 
each other, and (d) find the coordinate matrix [x]B, given 
the coordinate matrix [x]B′.

37. B = {(1, 3), (−2, −2)},  B′ = {(−12, 0), (−4, 4)},

 [x]B′ = [−1
3]

38. B = {(2, −2), (6, 3)},  B′ = {(1, 1), (32, 31)},

 [x]B′ = [ 2
−1]

39. B = {(1, 0, 2), (0, 1, 3), (1, 1, 1)},
 B′ = {(2, 1, 1), (1, 0, 0), (0, 2, 1)},

 [x]B′ = [
1
2

−1]
40. B = {(1, 1, 1), (1, −1, 1), (0, 0, 1)},
 B′ = {(2, 2, 0), (0, 1, 1), (1, 0, 1)},

 [x]B′ = [
2
3
1]

Finding transition and Coordinate Matrices  
In Exercises 41–44, use a software program or a graphing  
utility to (a) find the transition matrix from B to B′,  
(b) find the transition matrix from B′ to B, (c) verify 
that the two transition matrices are inverses of each 
other, and (d) find the coordinate matrix [x]B, given the  
coordinate matrix [x]B′.

41. B = {(4, 2, −4), (6, −5, −6), (2, −1, 8)},
 B′ = {(1, 0, 4), (4, 2, 8), (2, 5, −2)},
 [x]B′ = [1 −1 2]T

42. B = {(1, 3, 4), (2, −5, 2), (−4, 2, −6)},
 B′ = {(1, 2, −2), (4, 1, −4), (−2, 5, 8)},
 [x]B′ = [−1 0 2]T

43. B = {(2, 0, −1), (0, −1, 3), (1, −3, −2)},
 B′ = {(0, −1, −3), (−1, 3, −2), (−3, −2, 0)},
 [x]B′ = [4 −3 −2]T

44. B = {(1, −1, 9), (−9, 1, 1), (1, 9, −1)},
 B′ = {(3, 0, 3), (−3, 3, 0), (0, −3, 3)},
 [x]B′ = [−5 −4 1]T

Coordinate representation in P3 In Exercises 45–48, 
find the coordinate matrix of p relative to the standard 
basis for P3.

45. p = 1 + 5x − 2x2 + x3 46. p = −2 − 3x + 4x3

47. p = 13 + 114x + 3x2

48. p = 4 + 11x + x2 + 2x3

Coordinate representation in M3, 1 In Exercises 
49–52, find the coordinate matrix of X relative to the 
standard basis for M3,1.

49. X = [
0
3
2] 50. X = [

2
−1

4]
51. X = [

1
2

−1] 52. X = [
1
0

−4]
53.  Writing Is it possible for a transition matrix to equal 

the identity matrix? Explain.

54. CAPSTONE Let B and B′ be two bases for Rn.

(a)  When B = In, write the transition matrix from B to 
B′ in terms of B′.

(b)  When B′ = In, write the transition matrix from B 
to B′ in terms of B.

(c)  When B = In, write the transition matrix from B′ 
to B in terms of B′.

(d)  When B′ = In, write the transition matrix from B′ 
to B in terms of B.

true or False? In Exercises 55 and 56, determine 
whether each statement is true or false. If a statement 
is true, give a reason or cite an appropriate statement 
from the text. If a statement is false, provide an example 
that shows the statement is not true in all cases or cite an 
appropriate statement from the text.

55. (a)  If P is the transition matrix from a basis B to B′, then 
the equation P[x]B′ = [x]B represents the change of 
basis from B to B′.

 (b)  If B is the standard basis in Rn, then the transition 
matrix from B to B′ is P−1 = (B′)−1.

 (c)  For any 4 × 1 matrix X, the coordinate matrix [X]S 
relative to the standard basis for M4,1 is equal to X 
itself.

56. (a)  If P is the transition matrix from a basis B′ to B, 
then P−1 is the transition matrix from B to B′.

 (b)  To perform the change of basis from a nonstandard  
basis B′ to the standard basis B, the transition 
matrix P−1 is simply B′.

 (c)  The coordinate matrix of p = −3 + x + 5x2 relative  
to the standard basis for P2 is [ p]S = [5 1 −3]T.

57.  Let P be the transition matrix from B″ to B′, and let Q  
be the transition matrix from B′ to B. What is the  
transition matrix from B″ to B?

58.  Let P be the transition matrix from B″ to B′, and let Q  
be the transition matrix from B′ to B. What is the  
transition matrix from B to B″?
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218 Chapter 4 Vector Spaces

4.8 Applications of Vector Spaces

  Use the Wronskian to test a set of solutions of a linear  
homogeneous differential equation for linear independence.

  Identify and sketch the graph of a conic section and perform a  
rotation of axes.

Linear DifferentiaL equations (CaLCuLus)

A linear differential equation of order n is of the form

y(n) + gn−1(x)y(n−1) + .  .  . + g1(x)y′ + g0(x)y = f (x)

where g0, g1, .  .  . , gn−1 and f  are functions of x with a common domain. If f (x) = 0, 
then the equation is homogeneous. Otherwise it is nonhomogeneous. A function y is 
a solution of the linear differential equation if the equation is satisfied when y and its 
first n derivatives are substituted into the equation.

 a second-order Linear Differential equation

Show that both y = ex and y2 = e−x are solutions of the second-order linear differential 
equation y″ − y = 0.

soLution

For the function y1 = ex, you have y1′ = ex and y1″ = ex. So,

y1″ − y1 = ex − ex = 0

which means that y1 = ex is a solution of the differential equation. Similarly, for 
y2 = e−x, you have

y2′ = −e−x and y2″ = e−x.

This implies that

y2″ − y2 = e−x − e−x = 0.

So, y2 = e−x is also a solution of the linear differential equation. 

There are two important observations you can make about Example 1. The first is 
that in the vector space C ″(−∞, ∞) of all twice differentiable functions defined on the 
entire real line, the two solutions y1 = ex and y2 = e−x are linearly independent. This 
means that the only solution of

C1y1 + C2y2 = 0

that is valid for all x is C1 = C2 = 0. The second observation is that every linear  
combination of y1 and y2 is also a solution of the linear differential equation. To see 
this, let y = C1y1 + C2y2. Then

 y = C1e
x + C2e

−x

 y′ = C1e
x − C2e

−x

 y″ = C1e
x + C2e

−x.

Substituting into the differential equation y″ − y = 0 produces

y″ − y = (C1e
x + C2e

−x) − (C1e
x + C2e

−x) = 0.

So, y = C1e
x + C2e

−x is a solution.
The next theorem, which is stated without proof, generalizes these observations.
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In light of the preceding theorem, you can see the importance of being able to 
determine whether a set of solutions is linearly independent. Before describing a way 
of testing for linear independence, consider the definition below.

Definition of the Wronskian of a set of functions

Let { y1, y2, .  .  . , yn} be a set of functions, each of which has n − 1 derivatives 
on an interval I. The determinant

W(y1, y2, .  .  . , yn) = ∣ y1

y1′
⋮

 y1
(n−1)

  y2

  y2′
  ⋮

  y2
(n−1)

.  .  .   

.  .  .   

.  .  .   

yn    
yn′    
⋮    

yn
(n−1)      ∣

is the Wronskian of the set of functions.

 finding the Wronskian of a set of functions

a. The Wronskian of the set {1 − x, 1 + x, 2 − x} is

 W = ∣1 − x
−1

0

1 + x
1
0

2 − x
−1

0∣ = 0.

b. The Wronskian of the set {x, x2, x3} is

 W = ∣x
1
0

x2

2x
2

x3

3x2

6x∣ = 2x3. 

The Wronskian in part (a) of Example 2 is identically equal to zero, because it 
is zero for any value of x. The Wronskian in part (b) is not identically equal to zero 
because values of x exist for which this Wronskian is nonzero.

The next theorem shows how the Wronskian of a set of functions can be used to 
test for linear independence.

Wronskian test for Linear independence

Let { y1, y2, .  .  . , yn} be a set of n solutions of an nth-order linear homogeneous 
differential equation. This set is linearly independent if and only if the Wronskian 
is not identically equal to zero.

The proof of this theorem for the case where n = 2 is left as an exercise. (See 
Exercise 40.)

solutions of a Linear Homogeneous Differential equation

Every nth-order linear homogeneous differential equation

y(n) + gn−1(x)y(n−1) + .  .  . + g1(x)y′ + g0(x)y = 0

has n linearly independent solutions. Moreover, if {y1, y2, .  .  . , yn} is a set of 
linearly independent solutions, then every solution is of the form

y = C1y1 + C2y2 + .  .  . + Cnyn

where C1, C2, .  .  . , Cn are real numbers.

reMarK
The solution 

y = C1y1 + C2y2 + .  .  . + Cnyn

is the general solution of the 
differential equation.

reMarK
The Wronskian of a set of  
functions is named after the 
Polish mathematician Josef 
Maria Wronski (1778–1853).

reMarK
This test does not apply to an 
arbitrary set of functions. Each 
of the functions y1, y2, .  .  . , 
and yn must be a solution of 
the same linear homogeneous 
differential equation of order n.
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  testing a set of solutions
for Linear independence

Determine whether {1, cos x, sin x} is a set of linearly independent solutions of the 
linear homogeneous differential equation

y″′ + y′ = 0.

soLution

Begin by observing that each of the functions is a solution of y″′ + y′ = 0. (Check 
this.) Next, testing for linear independence produces the Wronskian of the three 
functions, as shown below.

 W = ∣100 cos x
−sin x
−cos x

sin x
cos x

−sin x∣
 = sin2 x + cos2 x

 = 1

The Wronskian W  is not identically equal to zero, so the set 

{1, cos x, sin x}

is linearly independent. Moreover, this set consists of three linearly independent 
solutions of a third-order linear homogeneous differential equation, so the general
solution is 

y = C1 + C2 cos x + C3 sin x

where C1, C2, and C3 are real numbers. 

  testing a set of solutions
for Linear independence

See LarsonLinearAlgebra.com for an interactive version of this type of example.

Determine whether {ex, xex, (x + 1)ex} is a set of linearly independent solutions of the 
linear homogeneous differential equation

y′″ − 3y″ + 3y′ − y = 0.

soLution

As in Example 3, begin by verifying that each of the functions is a solution of 
y′″ − 3y″ + 3y′ − y = 0. (This verification is left to you.) Testing for linear 
independence produces the Wronskian of the three functions, as shown below.

W = ∣ex

ex

ex

xex

(x + 1)ex

(x + 2)ex

(x + 1)ex

(x + 2)ex

(x + 3)ex∣ = 0

So, the set {ex, xex, (x + 1)ex} is linearly dependent. 

In Example 4, the Wronskian is used to determine that the set {ex, xex, (x + 1)ex} 
is linearly dependent. Another way to determine the linear dependence of this set is to 
observe that the third function is a linear combination of the first two. That is,

(x + 1)ex = ex + xex.

Verify that a different set, {ex, xex, x2ex}, forms a linearly independent set of solutions 
of the differential equation

y′″ − 3y″ + 3y′ − y = 0.
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ConiC seCtions anD rotation

Every conic section in the xy-plane has an equation that can be written in the form

ax2 + bxy + cy2 + dx + ey + f = 0.

Identifying the graph of this equation is fairly simple as long as b, the coefficient of 
the xy-term, is zero. When b is zero, the conic axes are parallel to the coordinate axes, 
and the identification is accomplished by writing the equation in standard (completed 
square) form. The standard forms of the equations of the four basic conics are given  
in the summary below. For circles, ellipses, and hyperbolas, the point (h, k) is the  
center. For parabolas, the point (h, k) is the vertex.

standard forms of equations of Conics

Circle (r = radius): (x − h)2 + (y − k)2 = r2

Ellipse (2α = major axis length, 2β = minor axis length):

x

(x h)2 (y k)2

2 2+ 1
y

(h, k)

2

2

=− −

β

α

βα
 (x h)2 (y k)2

+ 1

x

y

2

(h, k)
2

2

2

− −
=

β

α

β α

Hyperbola (2α = transverse axis length, 2β = conjugate axis length):

(x − h)2 (y − k)2

− = 1

x

y

2

2

2

(h, k)

2

β

α

βα
 (y − k)2 (x − h)2

− = 1

x

y

2

2

(h, k)

2 2

β

α

βα

Parabola (p = directed distance from vertex to focus):

Focus
(h, k + p)

Vertex
(h, k)

p > 0

(x − h)2 = 4p(y − k)
x

y  

x

Focus
( + )h p, k

Vertex
( , )h  k

p > 0

(y − k )2 = 4p(x − h) 

y
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identifying Conic sections

a. The standard form of x2 − 2x + 4y − 3 = 0 is 

 (x − 1)2 = 4(−1)(y − 1).

  The graph of this equation is a parabola with the vertex at (h, k) = (1, 1). The axis 
of the parabola is vertical. The directed distance p from the vertex to the focus is 
p = −1, so the focus is the point (1, 0). Finally, the focus lies below the vertex, so 
the parabola opens downward, as shown in Figure 4.18(a).

b. The standard form of x2 + 4y2 + 6x − 8y + 9 = 0 is

 
(x + 3)2

4
+

(y − 1)2

1
= 1.

  The graph of this equation is an ellipse with its center at (h, k) = (−3, 1). The major 
axis is horizontal, and its length is 2α = 4. The length of the minor axis is 2β = 2. 
The vertices of this ellipse occur at (−5, 1) and (−1, 1), and the endpoints of the 
minor axis occur at (−3, 2) and (−3, 0), as shown in Figure 4.18(b).

a. 

−2 2 3 4

−3

−2

−1

1

x

(1, 1)

(1, 0)

Focus

y

(x 1)2 = 4( 1)( y 1)− − −

 b. 

−5 −4 −3 −2 −1

1

2

3

x

(−3, 2)

(−3, 1)
(−1, 1)(−5, 1)

(−3, 0)

y

(x + 3)2

4
(y −  1)2

1
+ = 1

figure 4.18 

Note that the equations of the conics in Example 5 have no xy-term, so the axes 
of the graphs of these conics are parallel to the coordinate axes. For second-degree  
equations that have an xy-term, the axes of the graphs of the corresponding  
conics are not parallel to the coordinate axes. In such cases, it is helpful to rotate the 
standard axes to form a new x′-axis and y′-axis. The required rotation angle θ (measured  
counterclockwise) can be found using the equation cot 2θ = (a − c)�b. Then, the  
standard basis for R2,

B = {(1, 0), (0, 1)}

rotates to form the new basis

B′ = {(cos θ, sin θ), (−sin θ, cos θ)}

as shown below.

y'

x

x'

(cos   , sin   )

(−sin   , cos   )
(0, 1)

(1, 0)

y

θ

θθ

θθ

To find the coordinates of a point (x, y) relative to this new basis, you can use a 
transition matrix, as demonstrated in Example 6.
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 a transition Matrix for rotation in R2

Find the coordinates of a point (x, y) in R2 relative to the basis

B′ = {(cos θ, sin θ), (−sin θ, cos θ)}.

soLution

By Theorem 4.21 you have

[B′    B] = [cos θ
sin θ

     −sin θ
cos θ

1
0

0
1].

B is the standard basis for R2, so P−1 is represented by (B′)−1. You can use the formula 
given in Section 2.3 (page 66) for the inverse of a 2 × 2 matrix to find (B′)−1. This 
results in 

[I    P−1] = [1
0

 0 
1  

cos θ
−sin θ

sin θ
  cos θ].

By letting (x′, y′) be the coordinates of (x, y) relative to B′, you can use the transition 
matrix P−1 as shown below.

[ cos θ
−sin θ

sin θ
cos θ][

x
y] = [x′

y′]
The x′- and y′-coordinates are x′ = x cos θ + y sin θ and y′ = −x sin θ + y cos θ.

The last two equations in Example 6 give the x′y′-coordinates in terms of the 
xy-coordinates. To perform a rotation of axes for a general second-degree equation, it is 
helpful to express the xy-coordinates in terms of the x′y′-coordinates. To do this, solve 
the last two equations in Example 6 for x and y to obtain

x = x′ cos θ − y′ sin θ and y = x′ sin θ + y′ cos θ.

Substituting these expressions for x and y into the given second-degree equation 
produces a second-degree equation in x′ and y′ that has no x′y′-term.

rotation of axes

The general second-degree equation ax2 + bxy + cy2 + dx + ey + f = 0 can be 
written in the form

a′(x′)2 + c′( y′)2 + d′x′ + e′y′ + f ′ = 0

by rotating the coordinate axes counterclockwise through the angle θ, where θ is

found using the equation cot 2θ =
a − c

b
. The coefficients of the new equation

are obtained from the substitutions

x = x′ cos θ − y′ sin θ and y = x′ sin θ + y′ cos θ.

The proof of the above result is left to you. (See Exercise 80.)

Linear
aLGeBra
aPPLieD

A satellite dish is an antenna that is designed to transmit 
signals to or receive signals from a communications satellite. 
A standard satellite dish consists of a bowl-shaped surface 
and a feed horn that is aimed toward the surface. The 
bowl-shaped surface is typically in the shape of a rotated 
elliptic paraboloid. (See Section 7.4.) The cross section of the 
surface is typically in the shape of a rotated parabola.

Chris H. Galbraith/Shutterstock.com
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Example 7 demonstrates how to identify the graph of a second-degree equation by 
rotating the coordinate axes.

 rotation of a Conic section

Perform a rotation of axes to eliminate the xy-term in

5x2 − 6xy + 5y2 + 14√2x − 2√2y + 18 = 0

and sketch the graph of the resulting equation in the x′y′-plane.

soLution

Find the angle of rotation θ using

cot 2θ =
a − c

b
=

5 − 5
−6

= 0.

This implies that θ = π�4. So,

sin θ =
1

√2
 and cos θ =

1

√2
.

By substituting

x = x′ cos θ − y′ sin θ =
1

√2
(x′ − y′)

and

y = x′ sin θ + y′ cos θ =
1

√2
(x′ + y′)

into the original equation and simplifying, verify that you obtain

(x′)2 + 4( y′)2 + 6x′ − 8y′ + 9 = 0.

Finally, by completing the square, the standard form of this equation is

(x′ + 3)2

22 +
(y′ − 1)2

12 =
(x′ + 3)2

4
+

( y′ − 1)2

1
= 1

which is the equation of an ellipse, as shown in Figure 4.19. 

In Example 7, the new (rotated) basis for R2 is

B′ = {( 1

√2
, 

1

√2), (−
1

√2
, 

1

√2)}
and the coordinates of the vertices of the ellipse relative to B′ are 

[−5
1] and [−1

1].

To find the coordinates of the vertices relative to the standard basis 
B = {(1, 0), (0, 1)}, use the equations

x =
1

√2
(x′ − y′)

and

y =
1

√2
(x′ + y′)

to obtain (−3√2, −2√2) and (−√2, 0), as shown in Figure 4.19.

figure 4.19

−5 −4

−4

−3

−2

1

2
y'

x'

x
( 2, 0)−

(−3 2, −2 2)

= 45°

y

(x' + 3)2

4
(y' −  1)2

1
+ = 1

θ
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4.8 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

Determining solutions of a Differential equation  
In Exercises 1–12, determine which functions are  
solutions of the linear differential equation.

 1. y″ + y = 0

 (a) ex (b) sin x

 (c) cos x (d) sin x − cos x

 2. y′′′ + y = 0

 (a) ex (b) e−x (c) e−2x (d) 2e−x

 3. y′′′ + y″ + y′ + y = 0

 (a) x (b) ex (c) e−x (d) xe−x

 4. y″ − 6y′ + 9y = 0

 (a) e3x (b) xe3x

 (c) x2e3x (d) (x + 3)e3x

 5. y(4) + y′′′ − 2y″ = 0

 (a) 1 (b) x (c) x2 (d) ex

 6. y(4) − 16y = 0

 (a) 3 cos x (b) 3 cos 2x

 (c) e−2x (d) 3e2x − 4 sin 2x

 7. x2y″ − 2y = 0

 (a) 
1
x2 (b) x2 (c) ex2 (d) e−x2

 8. y′ + (2x − 1)y = 0

 (a) ex−x2 (b) 2ex−x2 (c) 3ex−x2 (d) 4ex−x2

 9. xy′ − 2y = 0

 (a) √x (b) x (c) x2 (d) x3

10. xy″ + 2y′ = 0

 (a) x (b) 
1
x
 (c) xex (d) xe−x

11. y″ − y′ − 12y = 0

 (a) e−4x (b) e4x (c) e−3x (d) e3x

12. y′ − 2xy = 0

 (a) 3ex2 (b) xex2 (c) x2ex (d) xe−x

finding the Wronskian for a set of functions  
In Exercises 13–26, find the Wronskian for the set of 
functions.

13. {x, −sin x} 14. {e3x, sin 2x}
15. {ex, e−x} 16. {ex2, e−x2}
17. {x, sin x, cos x} 18. {x, −sin x, cos x}
19. {e−x, xe−x, (x + 3)e−x} 20. {x, e−x, ex}
21. {1, ex, e2x} 22. {x2, ex2, x2ex}
23. {1, x, x2, x3} 24. {x, x2, ex, e−x}
25. {1, x, cos x, e−x} 26. {x, ex, sin x, cos x}

showing Linear independence In Exercises 27–30, 
show that the set of solutions of a second-order linear 
homogeneous differential equation is linearly independent.

27. {eax, ebx}, a ≠ b 28. {eax, xeax}
29. {cos ax, sin ax}, a ≠ 0

30. {eax cos bx, eax sin bx}, b ≠ 0

testing for Linear independence In Exercises 31–38,  
(a) verify that each solution satisfies the differential  
equation, (b) test the set of solutions for linear  
independence, and (c) if the set is linearly independent, 
then write the general solution of the differential equation.
 Differential Equation Solutions

31. y″ + 16y = 0 {sin 4x, cos 4x}
32. y″ − 4y′ + 5y = 0 {e2x sin x, e2x cos x}
33. y′′′ + 4y″ + 4y′ = 0 {e−2x, xe−2x, (2x + 1)e−2x}
34. y′′′ + 4y′ = 0 {1, 2 cos 2x, 2 + cos 2x}
35. y′′′ + 4y′ = 0 {1, sin 2x, cos 2x}
36. y′′′ + 3y″ + 3y′ + y = 0 {e−x, xe−x, x2e−x}
37. y′′′ + 3y″ + 3y′ + y = 0 {e−x, xe−x, e−x + xe−x}
38. y(4) − 2y′′′ + y″ = 0 {1, x, ex, xex}

39.  Pendulum Consider a pendulum of length L that 
swings by the force of gravity only.

L
θ

  For small values of θ = θ(t), the motion of the pendulum  
can be approximated by the differential equation

 
d2θ
dt2 +

g
L
θ = 0

 where g is the acceleration due to gravity.

 (a) Verify that

  {sin√g
L

t,  cos√g
L

t}
   is a set of linearly independent solutions of the  

differential equation.

 (b)  Find the general solution of the differential equation 
and show that it can be written in the form

  θ(t) = A cos[√g
L

(t + ϕ)].
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40.  Proof Let {y1, y2} be a set of solutions of a 
second-order linear homogeneous differential equation. 
Prove that this set is linearly independent if and only if 
the Wronskian is not identically equal to zero.

41.  Writing Is the sum of two solutions of a  
nonhomogeneous linear differential equation also a 
solution? Explain.

42.  Writing Is the scalar multiple of a solution of a  
nonhomogeneous linear differential equation also a 
solution? Explain.

identifying and Graphing a Conic section  
In Exercises 43–58, identify and sketch the graph of the 
conic section.

43. y2 + x = 0 44. x2 − 6y = 0

45. x2 + 4y2 − 16 = 0 46. 5x2 + 3y2 − 15 = 0

47. 
x2

9
−

y2

16
− 1 = 0 48. 

x2

36
−

y2

49
= 1

49. x2 + 4x + 6y − 2 = 0 50. y2 − 6y − 4x + 21 = 0

51. 16x2 + 36y2 − 64x − 36y + 73 = 0

52. 4x2 + y2 − 8x + 3 = 0

53. 9x2 − y2 + 54x + 10y + 55 = 0

54. 4y2 − 2x2 − 4y − 8x − 15 = 0

55. x2 + 4y2 + 4x + 32y + 64 = 0

56. 4y2 + 4x2 − 24x + 35 = 0

57. 2x2 − y2 + 4x + 10y − 22 = 0

58. y2 + 8x + 6y + 25 = 0

Matching a Graph with an equation In Exercises 
59–62, match the graph with its equation. [The graphs 
are labeled (a), (b), (c), and (d).]

(a) 

x
3

− 3

− 2

y′

x′

y  (b) 

x

3

2

− 3

y ′

x ′

y

(c) 

x

y′ x′

−4

−4 −2
−2

y  (d) 

x

3

−3 3

−2

y′

x ′

y

59. xy + 2 = 0

60. −2x2 + 3xy + 2y2 + 3 = 0

61. x2 − xy + 3y2 − 5 = 0

62. x2 − 4xy + 4y2 + 10x − 30 = 0

rotation of a Conic section In Exercises 63–74,  
perform a rotation of axes to eliminate the xy-term, and 
sketch the graph of the conic.

63. xy + 1 = 0 64. xy − 8x − 4y = 0

65. 4x2 + 2xy + 4y2 − 15 = 0

66. x2 + 2xy + y2 − 8x + 8y = 0

67. 2x2 − 3xy − 2y2 + 10 = 0

68. 5x2 − 2xy + 5y2 − 24 = 0

69. 9x2 + 24xy + 16y2 + 90x − 130y = 0

70. 5x2 − 6xy + 5y2 − 12 = 0

71. 7x2 − 6√3xy + 13y2 − 64 = 0

72. 7x2 − 2√3xy + 5y2 = 16

73. 3x2 − 2√3xy + y2 + 2x + 2√3y = 0

74. x2 + 2√3xy + 3y2 − 2√3x + 2y + 16 = 0

rotation of a Degenerate Conic section In Exercises 
75–78, perform a rotation of axes to eliminate the 
xy-term, and sketch the graph of the “degenerate” conic.

75. x2 − 2xy + y2 = 0 76. 5x2 − 2xy + 5y2 = 0

77. x2 + 2xy + y2 − 1 = 0 78. x2 − 10xy + y2 = 0

79.  Proof Prove that a rotation of θ = π�4 will eliminate 
the xy-term from the equation

 ax2 + bxy + ay2 + dx + ey + f = 0.

80.  Proof Prove that a rotation of θ, where 
cot 2θ = (a − c)�b, will eliminate the xy-term from 
the equation

 ax2 + bxy + cy2 + dx + ey + f = 0.

81.  Proof For the equation ax2 + bxy + cy2 = 0, define 
the matrix A as

 A = [ a
b�2

b�2
c ].

 (a)  Prove that if ∣A∣ = 0, then the graph of 
ax2 + bxy + cy2 = 0 is a line.

 (b)  Prove that if ∣A∣ ≠ 0, then the graph of 
ax2 + bxy + cy2 = 0 is two intersecting lines.

82. CAPSTONE
(a)  Explain how to use the Wronskian to test a set 

of solutions of a linear homogeneous differential 
equation for linear independence.

(b)  Explain how to eliminate the xy-term when it 
appears in the general equation of a conic section.

83.  Use your school’s library, the Internet, or some other 
reference source to find real-life applications of  
(a) linear differential equations and (b) rotation of conic 
sections that are different than those discussed in this 
section.
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4 Review Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

Vector Operations In Exercises 1–4, find (a) u + v, 
(b) 2v, (c) u − v, and (d) 3u − 2v.

 1. u = (1, −2, −3), v = (3, 1, 0)
 2. u = (−1, 2, 1), v = (0, 1, 1)
 3. u = (3, −1, 2, 3), v = (0, 2, 2, 1)
 4. u = (0, 1, −1, 2), v = (1, 0, 0, 2)

Solving a Vector Equation In Exercises 5–8, solve for 
x, where u = (1, −1, 2), v = (0, 2, 3), and w = (0, 1, 1).
 5. 2x − u + 3v + w = 0  6. 3x + 2u − v + 2w = 0

 7. 5u − 2x = 3v + w  8. 3u + 2x = w − v

Writing a Linear Combination In Exercises 9–12, write  
v as a linear combination of u1, u2, and u3, if possible.

 9.  v = (3, 0, −6), u1 = (1, −1, 2), u2 = (2, 4, −2), 
u3 = (1, 2, −4)

10.  v = (4, 4, 5), u1 = (1, 2, 3), u2 = (−2, 0, 1), 
u3 = (1, 0, 0)

11.  v = (1, 2, 3, 5), u1 = (1, 2, 3, 4), 
u2 = (−1, −2, −3, 4), u3 = (0, 0, 1, 1)

12.  v = (4, −13, −5, −4), u1 = (1, −2, 1, 1), 
u2 = (−1, 2, 3, 2), u3 = (0, −1, −1, −1)

Describing the Zero Vector and the Additive Inverse  
In Exercises 13–16, describe the zero vector and the 
additive inverse of a vector in the vector space.

13. M4,2 14. P8

15. R5  16. M2,3

Determining Subspaces In Exercises 17–24, determine  
whether W is a subspace of the vector space V.

17. W = {(x, y): x = 2y}, V = R2

18. W = {(x, y): x − y = 1}, V = R2

19. W = {(x, y): y = ax, a is an integer}, V = R2

20. W = {(x, y): y = ax2}, V = R2

21. W = {(x, 2x, 3x): x is a real number}, V = R3

22. W = {(x, y, z): x ≥ 0}, V = R3

23. W = { f :  f (0) = −1}, V = C [−1, 1]
24. W = { f :  f (−1) = 0}, V = C [−1, 1]

25. Which of the subsets of R3 is a subspace of R3?

 (a) W = {(x1, x2, x3): x2
1 + x2

2 + x2
3 = 0}

 (b) W = {(x1, x2, x3): x2
1 + x2

2 + x2
3 = 1}

26. Which of the subsets of R3 is a subspace of R3?

 (a) W = {(x1, x2, x3): x1 + x2 + x3 = 0}
 (b) W = {(x1, x2, x3): x1 + x2 + x3 = 1}

Spanning Sets, Linear Independence, and Bases  
In Exercises 27–32, determine whether the set (a) spans 
R3, (b) is linearly independent, and (c) is a basis for R3.

27. S = {(1, −5, 4), (11, 6, −1), (2, 3, 5)}
28. S = {(4, 0, 1), (0, −3, 2), (5, 10, 0)}
29. S = {(−1

2, 34, −1), (5, 2, 3), (−4, 6, −8)}
30. S = {(2, 0, 1), (2, −1, 1), (4, 2, 0)}
31. S = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (−1, 2, −3)}
32. S = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (2, −1, 0)}

33. Determine whether

 S = {1 − t, 2t + 3t2, t2 − 2t3, 2 + t3}

 is a basis for P3.

34. Determine whether S = {1, t, 1 + t2} is a basis for P2.

Determining Whether a Set Is a Basis In Exercises 
35 and 36, determine whether the set is a basis for M2,2.

35. S = {[−2
1

3
0], [ 2

−4
0
0], [ 1

−1
3
1], [1

2
0
1]}

36. S = {[1
0

0
1], [−1

1
0
1], [2

1
1
0], [1

0
1
1]}

Finding the Nullspace, Nullity, and Rank of a Matrix  
In Exercises 37–42, find (a) the nullspace, (b) the nullity,  
and (c) the rank of the matrix A. Then verify that 
rank(A) + nullity(A) = n, where n is the number of 
columns of A.

37. A = [−4
12

3
−9]

38. A = [1
3

4
2]

39. A = [
2
1
2

−3
5
7

−6
−3
−6

−4
11
16]

40. A = [
1
4

−2

0
−2

0

−2
4
1

0
−2

3]
41. A = [

1
4

−1
1

3
−1

3
2

2
−18

10
0
]

42. A = [
1
1

−2
1

2
4
3
2

1
0
0
6

2
3
2
1
]
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Finding a Basis for a Row Space and Rank In Exercises 
43–46, find (a) a basis for the row space and (b) the rank 
of the matrix.

43. [
1

−4
6

2
3
1] 44. [

2
1
1

−1
5

16

4
6

14]
45. [

7
4

−1

0
1

16

2
6

14] 46. [
1

−1
0

2
4
1

0
1
3]

Finding a Basis and Dimension In Exercises 47–50, 
find (a) a basis for and (b) the dimension of the solution 
space of the homogeneous system of linear equations.

47.  2x1 +  4x2 +  3x3 −  6x4 =  0
  x1 +  2x2 +  2x3 −  5x4 =  0
  3x1 +  6x2 +  5x3 −  11x4 =  0

48.  16x1 +  24x2 +  8x3 −  32x4 =  0
  4x1 +  6x2 +  2x3 −  8x4 =  0
  2x1 +  3x2 +  x3 −  4x4 =  0

49.  x1 −  3x2 +  x3 +  x4 =  0
  2x1 +  x2 −  x3 +  2x4 =  0
  x1 +  4x2 −  2x3 +  x4 =  0
  5x1 −  8x2 +  2x3 +  5x4 =  0

50.  −x1 +  2x2 −  x3 +  2x4 =  0
  −2x1 +  2x2 +  x3 +  4x4 =  0
  3x1 +  2x2 +  2x3 +  5x4 =  0
  −3x1 +  8x2 +  5x3 +  17x4 =  0

Finding a Coordinate Matrix In Exercises 51–56, given 
the coordinate matrix of x relative to a (nonstandard) 
basis B for Rn, find the coordinate matrix of x relative to 
the standard basis.

51. B = {(1, 1), (−1, 1)}, [x]B = [3 5]T

52. B = {(2, 0), (3, 3)}, [x]B = [1 1]T

53. B = {(1
2, 12), (1, 0)}, [x]B = [1

2
1
2]T

54. B = {(2, 4), (−1, 1)}, [x]B = [4 −7]T

55. B = {(1, 0, 0), (1, 1, 0), (0, 1, 1)},
 [x]B = [2 0 −1]T

56. B = {(1, 0, 1), (0, 1, 0), (0, 1, 1)}, [x]B = [4 0 2]T

Finding a Coordinate Matrix In Exercises 57–62, find 
the coordinate matrix of x in Rn relative to the basis B′.
57. B′ = {(5, 0), (0, −8)}, x = (2, 2)
58. B′ = {(2, 2), (0, −1)}, x = (−1, 2)
59. B′ = {(1, 2, 3), (1, 2, 0), (0, −6, 2)}, x = (3, −3, 0)
60. B′ = {(1, 0, 0), (0, 1, 0), (1, 1, 1)}, x = (4, −2, 9)
61. B′ = { (9, −3, 15, 4), (−3, 0, 0, −1), (0, −5, 6, 8), 

(−3, 4, −2, 3)}, x = (21, −5, 43, 14)
62. B′ = { (1, −1, 2, 1), (1, 1, −4, 3), (1, 2, 0, 3), 

(1, 2, −2, 0)}, x = (5, 3, −6, 2)

Finding a Transition Matrix In Exercises 63–68, find 
the transition matrix from B to B′.
63. B = {(1, −1), (3, 1)}, B′ = {(1, 0), (0, 1)}
64. B = {(1, −1), (3, 1)}, B′ = {(1, 2), (−1, 0)}
65. B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)},
 B′ = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}
66. B = {(1, 1, 1), (1, 1, 0), (1, 0, 0)},
 B′ = {(1, 2, 3), (0, 1, 0), (1, 0, 1)}
67. B = {(1, 1, 2), (2, 3, 4), (3, 3, 3)},
 B′ = {(7, −1, −1), (−3, 1, 0), (−3, 0, 1)}
68. B = {(1, 1, 1), (3, 4, 3), (3, 3, 4)},
 B′ = {(1, −1, 23), (−2, 1, 0), (1, 0, −1

3)}
Finding Transition and Coordinate Matrices  
In Exercises 69–72, (a) find the transition matrix from 
B to B′, (b) find the transition matrix from B′ to B, 
(c) verify that the two transition matrices are inverses 
of each other, and (d) find the coordinate matrix [x]B′, 
given the coordinate matrix [x]B.

69. B = {(−2, 1), (1, −1)}, B′ = {(0, 2), (1, 1)},
 [x]B = [6 −6]T

70. B = {(1, 0), (1, −1)}, B′ = {(1, 1), (1, −1)},
 [x]B = [2 −2]T

71. B = {(1, 0, 0), (1, 1, 0), (1, 1, 1)},
 B′ = {(0, 0, 1), (0, 1, 1), (1, 1, 1)},
 [x]B = [−1 2 −3]T

72. B = {(1, 1, −1), (1, 1, 0), (1, −1, 0)},
 B′ = {(1, −1, 2), (2, 2, −1), (2, 2, 2)},
 [x]B = [2 2 −1]T

73.  Let W  be the subspace of P3 [the set of all polynomials 
p(x) of degree 3 or less] such that p(0) = 0, and let U be 
the subspace of P3 such that p(1) = 0. Find a basis for W,  
a basis for U, and a basis for their intersection W ∩ U.

74.  Calculus Let V = C′(−∞, ∞), the vector space of 
all continuously differentiable functions on the real line.

 (a) Prove that W = { f :  f ′ = 4 f } is a subspace of V.

 (b)  Prove that U = { f :  f ′ = f + 1} is not a subspace  
of V.

75.  Writing Let B = {p1(x), p2(x), .  .  . , pn(x), pn+1(x)} 
be a basis for Pn. Must B contain a polynomial of each 
degree 0, 1, 2, .  .  . , n? Explain.

76.  Proof Let A and B be n × n square matrices with 
A ≠ O and B ≠ O. Prove that if A is symmetric and B 
is skew-symmetric (BT = −B), then {A, B} is a linearly 
independent set.

77.  Proof Let V = P5 and consider the set W  of all  
polynomials of the form (x3 + x)p(x), where p(x) is in 
P2. Is W  a subspace of V? Prove your answer.
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78.  Let v1, v2, and v3 be three linearly independent  
vectors in a vector space V. Is the set 
{v1 − 2v2, 2v2 − 3v3, 3v3 − v1} linearly dependent or 
linearly independent? Explain.

79.  Proof Let A be an n × n square matrix. Prove that the 
row vectors of A are linearly dependent if and only if 
the column vectors of A are linearly dependent.

80.  Proof Let A be an n × n square matrix, and let λ be a 
scalar. Prove that the set

 S = {x: Ax = λx}
  is a subspace of Rn. Determine the dimension of S when 

λ = 3 and

 A = [
3
0
0

1
3
0

0
0
1].

81. Let  f(x) = x and g(x) = ∣x∣.
 (a)  Show that f  and g are linearly independent in 

C[−1, 1].
 (b) Show that f  and g are linearly dependent in C[0, 1].
82.  Describe how the domain of a set of functions can  

influence whether the set is linearly independent or 
dependent.

True or False? In Exercises 83–86, determine whether 
each statement is true or false. If a statement is true, give 
a reason or cite an appropriate statement from the text. 
If a statement is false, provide an example that shows the 
statement is not true in all cases or cite an appropriate 
statement from the text.

83. (a)  The standard operations in Rn are vector addition 
and scalar multiplication.

 (b) The additive inverse of a vector is not unique.

 (c)  A vector space consists of four entities: a set of  
vectors, a set of scalars, and two operations.

84. (a)  The set W = {(0, x2, x3): x2 and x3 are real numbers} 
is a subspace of R3.

 (b)  A set of vectors S in a vector space V is a basis for 
V when S spans V and S is linearly independent.

 (c)  If A is an invertible n × n matrix, then the n row 
vectors of A are linearly dependent.

85. (a)  The set of all n-tuples is n-space and is denoted  
by Rn.

 (b) The additive identity of a vector space is not unique.

 (c)  Once a theorem has been proved for an abstract 
vector space, you need not give separate proofs for 
n-tuples, matrices, and polynomials.

86. (a)  The set of points on the line x + y = 0 is a  
subspace of R2.

 (b)  Elementary row operations preserve the column 
space of the matrix A.

Determining Solutions of a Differential Equation  
In Exercises 87–90, determine which functions are  
solutions of the linear differential equation.

 87. y″ − y′ − 6y = 0

  (a) e3x (b) e2x (c) e−3x (d) e−2x

 88. y(4) − y = 0

  (a) ex (b) e−x (c) cos x (d) sin x

 89. y′ + 2y = 0

  (a) e−2x (b) xe−2x (c) x2e−x (d) 2xe−2x

 90. y″ + 25y = 0

  (a) sin 5x + cos 5x (b) 5 sin x + 5 cos x

  (c) sin 5x (d) cos 5x

Finding the Wronskian for a Set of Functions  
In Exercises 91–94, find the Wronskian for the set of 
functions.

 91. {1, x, ex} 92. {2, x2, 3 + x}
 93. {1, sin 2x, cos 2x} 94. {x, sin2 x, cos2 x}

Testing for Linear Independence In Exercises 95–98, 
(a) verify that each solution satisfies the differential  
equation, (b) test the set of solutions for linear  
independence, and (c) if the set is linearly independent,  
then write the general solution of the differential  
equation.

 Differential Equation Solutions

 95. y″ + 6y′ + 9y = 0 {e−3x, xe−3x}
 96. y″ + 6y′ + 9y = 0 {e−3x, 3e−3x}
 97. y′′′ − 6y″ + 11y′ − 6y = 0  {ex, e2x, ex − e2x}
 98. y″ + 9y = 0 {sin 3x, cos 3x}

Identifying and Graphing a Conic Section  
In Exercises 99–106, identify and sketch the graph of the 
conic section.

 99. x2 + y2 + 4x − 2y − 11 = 0

100. 9x2 + 9y2 + 18x − 18y + 14 = 0

101. x2 − y2 + 2x − 3 = 0

102. 4x2 − y2 + 8x − 6y + 4 = 0

103. 2x2 − 20x − y + 46 = 0

104. y2 − 4x − 4 = 0

105. 4x2 + y2 + 32x + 4y + 63 = 0

106. 16x2 + 25y2 − 32x − 50y + 16 = 0

Rotation of a Conic Section In Exercises 107–110, 
perform a rotation of axes to eliminate the xy-term, and 
sketch the graph of the conic.

107. xy = 3

108. 9x2 + 4xy + 9y2 − 20 = 0

109. 16x2 − 24xy + 9y2 − 60x − 80y + 100 = 0

110. x2 + 2xy + y2 + √2x − √2y = 0
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4 Projects

1 Solutions of Linear Systems
Write a paragraph to answer the question. Do not perform any calculations, but 
instead base your explanations on appropriate properties from the text.

1. One solution of the homogeneous linear system

  x +  2y +  z +  3w =  0

  x −  y   +  w =  0

    y −  z +  2w =  0

  is x = −2, y = −1, z = 1, and w = 1. Explain why x = 4, y = 2, z = −2, and 
w = −2 is also a solution.

2.  The vectors x1 and x2 are solutions of the homogeneous linear system Ax = 0. 
Explain why the vector 2x1 − 3x2 is also a solution.

3. Consider the two systems represented by the augmented matrices.

 [
1
1
2

1
0

−1

−5
−2
−1

3
1
0]  [

1
1
2

1
0

−1

−5
−2
−1

−9
−3

0]
 If the first system is consistent, then why is the second system also consistent? 

4.  The vectors x1 and x2 are solutions of the linear system Ax = b. Is the vector 
2x1 − 3x2 also a solution? Why or why not?

5.  The linear systems Ax = b1 and Ax = b2 are consistent. Is the system 
Ax = b1 + b2 necessarily consistent? Why or why not?

2 Direct Sum
In this project, you will explore the sum and direct sum of subspaces. In Exercise 
58 in Section 4.3, you proved that for two subspaces U and W  of a vector space V, 
the sum U + W  of the subspaces, defined as U + W = {u + w: u ∈ U, w ∈ W}, is 
also a subspace of V.

1. Consider the subspaces of V = R3 below.

 U = {(x, y, x − y): x, y ∈ R}
 W = {(x, 0, x): x ∈ R}
 Z = {(x, x, x): x ∈ R}
 Find U + W, U + Z, and W + Z.

2.  If U and W  are subspaces of V such that V = U + W  and U ∩ W = {0}, then 
prove that every vector in V has a unique representation of the form u + w, where 
u is in U and w is in W. V is called the direct sum of U and W, and is written as

 V = U ⊕ W.  Direct sum

 Which of the sums in part (1) are direct sums?

3.  Let V = U ⊕ W, and let {u1, u2, .  .  . , uk} be a basis for the subspace U 
and {w1, w2, .  .  . , wm} be a basis for the subspace W. Prove that the set 
{u1, .  .  . , uk, w1, .  .  . , wm} is a basis for V.

4.  Consider the subspaces U = {(x, 0, y): x, y ∈ R} and W = {(0, x, y): x, y ∈ R} of 
V = R3. Show that R3 = U + W. Is R3 the direct sum of U and W? What are the 
dimensions of U, W, U ∩ W, and U + W? Formulate a conjecture that relates the 
dimensions of U, W, U ∩ W, and U + W.

5.  Do there exist two two-dimensional subspaces of R3 whose intersection is the 
zero vector? Why or why not?

East/Shutterstock.com
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232 Chapter 5 Inner Product Spaces

5.1 Length and Dot Product in Rn

 Find the length of a vector and find a unit vector.

 Find the distance between two vectors.

  Find a dot product and the angle between two vectors, determine 
orthogonality, and verify the Cauchy-Schwarz Inequality, the triangle 
inequality, and the Pythagorean Theorem.

 Use a matrix product to represent a dot product.

Vector Length anD Unit Vectors

Section 4.1 mentioned that vectors can be characterized by two quantities, length and 
direction. This section defines these and other geometric properties (such as distance 
and angle) of vectors in Rn. Section 5.2 extends these ideas to general vector spaces.

You will begin by reviewing the definition of the length of a vector in R2. If 
v = (v1, v2) is a vector in R2, then the length, or norm, of v, denoted by �v�, is the length 
of the hypotenuse of a right triangle whose legs have lengths of ∣v1∣ and ∣v2∣, as shown in 
Figure 5.1. Applying the Pythagorean Theorem produces

 �v�2 = ∣v1∣2 + ∣v2∣2 = v1
2 + v2

2

 �v� = √v1
2 + v2

2.

Using R2 as a model, the length of a vector in Rn is defined below.

This definition shows that the length of a vector cannot be negative. That is, 
�v� ≥ 0. Moreover, �v� = 0 if and only if v is the zero vector 0.

 the Length of a Vector in Rn

a. In R5, the length of v = (0, −2, 1, 4, −2) is

 �v� = √02 + (−2)2 + 12 + 42 + (−2)2 = √25 = 5.

b. In R3, the length of v = (2�√17, −2�√17, 3�√17) is
 �v� = √(2�√17)2 + (−2�√17)2 + (3√17)2 = √17�17 = 1.

 The length of v is 1, so v is a unit vector, as shown in Figure 5.2. 

Each vector in the standard basis for Rn has length 1 and is a standard unit vector 
in Rn. It is common to denote the standard unit vectors in R2 and R3 as

{i, j} = {(1, 0), (0, 1)} and {i, j, k} = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

Two nonzero vectors u and v in Rn are parallel when one is a scalar multiple of 
the other—that is, u = cv. Moreover, if c > 0, then u and v have the same direction, 
and if c < 0, then u and v have opposite directions. The next theorem gives a formula 
for finding the length of a scalar multiple of a vector.

Figure 5.1

|v2|

|v1|

||v||

||v|| = v1
2 + v2

2

(v1, v2)

Definition of the Length of a Vector in Rn

The length, or norm, of a vector v = (v1, v2, .  .  . , vn) in Rn is

�v� = √v1
2 + v2

2 + .  .  . + vn
2.

The length of a vector is also called its magnitude. If �v� = 1, then the vector v 
is a unit vector.

Figure 5.2

v = , − ,
17 17 17( )2 2 3

z

x y

||v|| = 1
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5.1 Length and Dot Product in Rn 233

ProoF

cv = (cv1, cv2, .  .  . , cvn), so it follows that

�cv� = �(cv1, cv2, .  .  . , cvn)�
 = √(cv1)2 + (cv2)2 + .  .  . + (cvn)2

 = ∣c∣√v1
2 + v2

2 + .  .  . + vn
2

 = ∣c∣ �v�.  

One important use of Theorem 5.1 is in finding a unit vector having the same 
direction as a given vector. Theorem 5.2 provides a procedure for doing this.

ProoF

v ≠ 0, so you know that �v� ≠ 0. You also know that 1��v� is positive, so you can write 
u as a positive scalar multiple of v.

u = ( 1
�v�)v

It follows that u has the same direction as v, and u has length 1 because

�u� = � v
�v� � =

1
�v�

�v� = 1. 

The process of finding the unit vector in the direction of v is called normalizing
the vector v. The next example demonstrates this procedure.

 Finding a Unit Vector

Find the unit vector in the direction of v = (3, −1, 2), and verify that this vector has 
length 1.

soLUtion

The unit vector in the direction of v is

v
�v�

=
(3, −1, 2)

√32 + (−1)2 + 22
=

1

√14
(3, −1, 2) = ( 3

√14
, −

1

√14
, 

2

√14)
which is a unit vector because

√( 3

√14)
2

+ (− 1

√14)
2

+ ( 2

√14)
2

=√14
14

= 1. (See Figure 5.3.) 

theoreM 5.1 Length of a scalar Multiple

Let v be a vector in Rn and let c be a scalar. Then

�cv� = ∣c∣ �v�

where ∣c∣ is the absolute value of c.

theoreM 5.2 Unit Vector in the Direction of v

If v is a nonzero vector in Rn, then the vector

u =
v

�v�

has length 1 and has the same direction as v. This vector u is the unit vector in 
the direction of v.

technoLogy
You can use a graphing utility 
or software program to find 
the length of a vector v, the 
length of a scalar multiple cv 
of a vector, or a unit vector in 
the direction of v. For instance, 
if you use a graphing utility to 
verify the result of Example 2, 
then you may see something 
similar to the screen below.

3

[.8018 -.2673 .5345]

VECTOR:V

unitV V

e1=3

e3=2
e2=-1

Note that 
3

√14
≈ 0.8018, 

−
1

√14
≈ −0.2673, and 

2
√14

≈ 0.5345.

See LarsonLinearAlgebra.com 
for an interactive example.

Figure 5.3

z

2
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4

4

2
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y
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14 14 14( )
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v

−
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234 Chapter 5 Inner Product Spaces

Distance Between two Vectors in Rn

To define the distance between two vectors in Rn, R2 will be used as a model. The 
Distance Formula from analytic geometry states that the distance d between two points 
in R2, (u1, u2) and (v1, v2), is

d = √(u1 − v1)2 + (u2 − v2)2.

In vector terminology, this distance can be viewed as the length of u − v, where 
u = (u1, u2) and v = (v1, v2), as shown below. That is,

�u − v� = √(u1 − v1)2 + (u2 − v2)2.

v u

(v1, v2)
(u1, u2)d(u, v)

d(u, v) =   u −  v   = (u1 −  v1)2 + (u2 −  v2)2⎪⎪ ⎪⎪

This leads to the next definition.

Verify the three properties of distance listed below.

1. d(u, v) ≥ 0

2. d(u, v) = 0 if and only if u = v.

3. d(u, v) = d(v, u)

 Finding the Distance Between two Vectors

a. The distance between u = (−1, −4) and v = (2, 3) is

 d(u, v) = �u − v� = �(−1 − 2, −4 − 3)� = √(−3)2 + (−7)2 = √58.

b. The distance between u = (0, 2, 2) and v = (2, 0, 1) is

d(u, v) = �u − v� = �(0 − 2, 2 − 0, 2 − 1)� = √(−2)2 + 22 + 12 = 3.

c. The distance between u = (3, −1, 0, −3) and v = (4, 0, 1, 2) is

 d(u, v) = �u − v�
  = �(3 − 4, −1 − 0, 0 − 1, −3 − 2)�
  = √(−1)2 + (−1)2 + (−1)2 + (−5)2

  = √28

  = 2√7.  

Definition of Distance Between two Vectors

The distance between two vectors u and v in Rn is

d(u, v) = �u − v�.

olga taussky-todd
(1906–1995)

Taussky-Todd was born 
in what is now the Czech 
Republic. She became 
interested in mathematics 
at an early age. During 
her life, Taussky-Todd 
was a distinguished and 
prolific mathematician. 
She wrote many research 
papers in such areas as 
matrix theory, group 
theory, algebraic number 
theory, and numerical 
analysis. Taussky-Todd 
received many honors and 
distinctions for her work. 
For example, her paper 
on the sum of squares 
earned her the Ford Prize 
from the 
Mathematical 
Association 
of America.
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 5.1 Length and Dot Product in Rn 235

Dot ProDUct anD the angLe Between two Vectors

To find the angle θ (0 ≤ θ ≤ π) between two nonzero  
vectors u = (u1, u2) and v = (v1, v2) in R2, apply the Law 
of Cosines to the triangle shown to obtain

�v − u�2 = �u�2 + �v�2 − 2�u� �v� cos θ.

Expanding and solving for cos θ yields

cos θ =
u1v1 + u2v2

�u� �v�
.

The numerator of the quotient above is the dot product of u and v and is denoted by

u ∙ v = u1v1 + u2v2.

The definition below generalizes the dot product to Rn.

 Finding the Dot Product of two Vectors

The dot product of u = (1, 2, 0, −3) and v = (3, −2, 4, 2) is

u ∙ v = (1)(3) + (2)(−2) + (0)(4) + (−3)(2) = −7. 

ProoF

The proofs of these properties follow from the definition of dot product. For example, 
to prove the first property, write

 u ∙ v = u1v1 + u2v2 + .  .  . + unvn

 = v1u1 + v2u2 + .  .  . + vnun

 = v ∙ u.  

In Section 4.1, Rn was defined to be the set of all ordered n-tuples of real numbers.  
When Rn is combined with the standard operations of vector addition, scalar 
multiplication, vector length, and the dot product, the resulting vector space is 
Euclidean n-space. In the remainder of this text, unless stated otherwise, assume that  
Rn has the standard Euclidean operations.

Definition of Dot Product in Rn

The dot product of u = (u1, u2, .  .  . , un) and v = (v1, v2, .  .  . , vn) is the scalar 
quantity

u ∙ v = u1v1 + u2v2 + .  .  . + unvn.

theoreM 5.3 Properties of the Dot Product

If u, v, and w are vectors in Rn and c is a scalar, then the properties listed below 
are true.

1. u ∙ v = v ∙ u
2. u ∙ (v + w) = u ∙ v + u ∙ w
3. c(u ∙ v) = (cu) ∙ v = u ∙ (cv)
4. v ∙ v = �v�2

5. v ∙ v ≥ 0, and v ∙ v = 0 if and only if v = 0.

||u||

||v||

||v − u||

Angle Between Two Vectors

θ

reMarK
Notice that the dot product  
of two vectors is a scalar,  
not a vector.

technoLogy
You can use a graphing utility 
or software program to find 
the dot product of two vectors. 
If you use a graphing utility, 
then you may verify Example 4 
as shown below.

4VECTOR:U

dot(U,V)

e1=1
e2=2
e3=0
e4=-3

4

-7

VECTOR:V
e1=3
e2=-2
e3=4
e4=2

The technology guide at  
CengageBrain.com can help  
you use technology to find a  
dot product.
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236 Chapter 5 Inner Product Spaces

 
Finding Dot Products

Let u = (2, −2), v = (5, 8), and w = (−4, 3). Find each quantity.

a. u ∙ v

b. (u ∙ v)w
c. u ∙ (2v)
d. �w�2

e. u ∙ (v − 2w)

soLUtion

a. By definition, you have

 u ∙ v = 2(5) + (−2)(8) = −6.

b. Using the result in part (a), you have

 (u ∙ v)w = −6w = −6(−4, 3) = (24, −18).

c. By Property 3 of Theorem 5.3, you have

 u ∙ (2v) = 2(u ∙ v) = 2(−6) = −12.

d. By Property 4 of Theorem 5.3, you have

 �w�2 = w ∙ w = (−4)(−4) + (3)(3) = 25.

e. 2w = (−8, 6), so you have

 v − 2w = (5 − (−8), 8 − 6) = (13, 2).

Consequently,

u ∙ (v − 2w) = 2(13) + (−2)(2) = 26 − 4 = 22. 

 Using Properties of the Dot Product

Consider two vectors u and v in Rn such that u ∙ u = 39, u ∙ v = −3, and v ∙ v = 79. 
Evaluate (u + 2v) ∙ (3u + v).

soLUtion

Using Theorem 5.3, rewrite the dot product as

 (u + 2v) ∙ (3u + v) = u ∙ (3u + v) + (2v) ∙ (3u + v)
 = u ∙ (3u) + u ∙ v + (2v) ∙ (3u) + (2v) ∙ v

 = 3(u ∙ u) + u ∙ v + 6(v ∙ u) + 2(v ∙ v)
 = 3(u ∙ u) + 7(u ∙ v) + 2(v ∙ v)
 = 3(39) + 7(−3) + 2(79)
 = 254.  

To define the angle θ between two nonzero vectors u and v in Rn, use the formula 
in R2

cos θ =
u ∙ v

�u� �v�
.

For such a definition to make sense, however, the absolute value of the right-hand 
side of this formula cannot exceed 1. This fact comes from a famous theorem named 
after the French mathematician Augustin-Louis Cauchy (1789–1857) and the German 
mathematician Hermann Schwarz (1843–1921).

DISCOVERY
1.  Let u = (1, 1) and 

v = (−4, −3). Calculate 
u ∙ v and �u� �v�.

2.  Repeat with other 
choices for u and v. 

3.  Formulate a conjecture 
about the relationship 
between the dot 
product of two vectors 
and the product of their 
lengths.
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ProoF

Case 1. If u = 0, then it follows that ∣u ∙ v∣ = ∣0 ∙ v∣ = 0 and �u� �v� = 0�v� = 0. So, 
the theorem is true when u = 0.
Case 2. When u ≠ 0. let t be any real number and consider the vector tu + v. The 
product (tu + v) ∙ (tu + v) is nonnegative, so it follows that

(tu + v) ∙ (tu + v) = t2(u ∙ u) + 2t(u ∙ v) + v ∙ v ≥ 0.

Now, let a = u ∙ u, b = 2(u ∙ v), and c = v ∙ v to obtain the quadratic inequality  
at2 + bt + c ≥ 0. This quadratic is never negative, so it has either no real roots 
or a single repeated real root. But by the Quadratic Formula, this implies that the  
discriminant, b2 − 4ac, is less than or equal to zero.

 b2 − 4ac ≤ 0

 b2 ≤ 4ac

 4(u ∙ v)2 ≤ 4(u ∙ u)(v ∙ v)
 (u ∙ v)2 ≤ (u ∙ u)(v ∙ v)

Taking the square roots of both sides produces

∣u ∙ v∣ ≤ √u ∙ u√v ∙ v = �u� �v�. 

 Verifying the cauchy-schwarz inequality

Verify the Cauchy-Schwarz Inequality for u = (1, −1, 3) and v = (2, 0, −1).

soLUtion

u ∙ v = −1, u ∙ u = 11, and v ∙ v = 5, so you have

∣u ∙ v∣ = ∣−1∣ = 1

and

 �u� �v� = √u ∙ u√v ∙ v

 = √11√5

 = √55.

The inequality ∣u ∙ v∣ ≤ �u� �v� holds, because 1 ≤ √55. 

The Cauchy-Schwarz Inequality allows the definition of the angle between two 
nonzero vectors to be extended to Rn.

theoreM 5.4 the cauchy-schwarz inequality

If u and v are vectors in Rn, then

∣u ∙ v∣ ≤ �u� �v�

where ∣u ∙ v∣ denotes the absolute value of u ∙ v.

Definition of the angle Between two Vectors in Rn

The angle θ between two nonzero vectors in Rn can be found using

cos θ =
u ∙ v
�u� �v�

, 0 ≤ θ ≤ π.

reMarK
The angle between the zero 
vector and another vector is 
not defined.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



238 Chapter 5 Inner Product Spaces

 
Finding the angle Between two Vectors

See LarsonLinearAlgebra.com for an interactive version of this type of example.

The angle between u = (−4, 0, 2, −2) and v = (2, 0, −1, 1) is

cos θ =
u ∙ v
�u� �v�

=
−12

√24√6
= −

12

√144
= −1.

Consequently, θ = π. It makes sense that u and v should have opposite directions, 
because u = −2v. 

Note that �u� and �v� are always positive, so u ∙ v and cos θ will always have the 
same sign. Moreover, the cosine is positive in the first quadrant and negative in the second 
quadrant, so the sign of the dot product of two vectors can be used to determine, for 
instance, whether the angle between them is acute or obtuse.

Note from the above that two nonzero vectors meet at a right angle if and only if 
their dot product is zero. Two such vectors are orthogonal (or perpendicular).

 orthogonal Vectors in Rn

a. The vectors u = (1, 0, 0) and v = (0, 1, 0) are orthogonal because

 u ∙ v = (1)(0) + (0)(1) + (0)(0) = 0.

b. The vectors u = (3, 2, −1, 4) and v = (1, −1, 1, 0) are orthogonal because

 u ∙ v = (3)(1) + (2)(−1) + (−1)(1) + (4)(0) = 0. 

 Finding orthogonal Vectors

Determine all vectors in R2 that are orthogonal to u = (4, 2).

soLUtion

Let v = (v1, v2) be orthogonal to u. Then

u ∙ v = (4, 2) ∙ (v1, v2) = 4v1 + 2v2 = 0

which implies that 2v2 = −4v1 and v2 = −2v1. So, every vector that is orthogonal to 
(4, 2) is of the form

v = (t, −2t) = t(1, −2)

where t is a real number. (See Figure 5.4.) 

=
cos     = −1

u v

Opposite
direction

θ

θ
θ π

u
v

<<

cos     < 0
2

θ

θ

θ

ππ

u • v < 0
Obtuse angle

u

v

=

cos     = 0
2

u • v = 0

θ

θ
θ

π

Right angle

u

v
<<

cos     > 0

0
2

u • v > 0

θ

θ

θ

π

Acute angle

u
v

direction

= 0
cos     = 1

Same

θ
θ

Definition of orthogonal Vectors

Two vectors u and v in Rn are orthogonal when

u ∙ v = 0.

reMarK
Even though the angle 
between the zero vector 
and another vector is not 
defined, it is convenient to 
extend the definition of 
orthogonality to include the 
zero vector. In other words, 
the vector 0 is said to be 
orthogonal to every vector.

Figure 5.4

u

x

(4, 2)

1

2

y

1 2 3 4

−1

−2

v = (1, −2)
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The Cauchy-Schwarz Inequality can be used to prove another well-known  
inequality called the triangle inequality (Theorem 5.5 below). The name “triangle 
inequality” is derived from the interpretation of the theorem in R2, illustrated for the 
vectors u and v in Figure 5.5(a). When you consider 

�u� and �v�

to be the lengths of two sides of a triangle, the length of the third side is 

�u + v�.

Moreover, the length of any side of a triangle cannot be greater than the sum of the 
lengths of the other two sides, so you have

�u + v� ≤ �u� + �v�.

Figure 5.5(b) illustrates the triangle inequality for the vectors u and v in R3. The  
theorem below generalizes these results to Rn.

ProoF

Using the properties of the dot product, you have

 �u + v�2 = (u + v) ∙ (u + v)
 = u ∙ (u + v) + v ∙ (u + v)
 = u ∙ u + 2(u ∙ v) + v ∙ v

 = �u�2 + 2(u ∙ v) + �v�2

 ≤ �u�2 + 2∣u ∙ v∣ + �v�2.

Now, by the Cauchy-Schwarz Inequality, ∣u ∙ v∣ ≤ �u� �v�, and 

 �u + v�2 ≤ �u�2 + 2∣u ∙ v∣ + �v�2

 ≤ �u�2 + 2�u� �v� + �v�2

 = (�u� + �v�)2.

Both �u + v� and (�u� + �v�) are nonnegative, so taking the square roots of both sides 
yields

�u + v� ≤ �u� + �v�. 

From the proof of the triangle inequality, you have

�u + v�2 = �u�2 + 2(u ∙ v) + �v�2.

If u and v are orthogonal, then u ∙ v = 0, and you have the extension of the 
Pythagorean Theorem to Rn, shown below.

Figure 5.6 illustrates this relationship graphically for R2 and R3.

theoreM 5.5 the triangle inequality

If u and v are vectors in Rn, then

�u + v� ≤ �u� + �v�.

theoreM 5.6 the Pythagorean theorem

If u and v are vectors in Rn, then u and v are orthogonal if and only if

�u + v�2 = �u�2 + �v�2.

reMarK
Equality occurs in the triangle 
inequality if and only if the  
vectors u and v have the same 
direction. (See Exercise 86.)

a. 

||u + v||

|| || || || || ||u + v

||u||

u   +   v 

||v||

||v||

x

<

y

b. 

x y

z

||u + v||

||u||

||v||

||v||

||u + v|| ||u|| ||v|| ≤ +

Figure 5.5
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the Dot ProDUct anD MatriX MULtiPLication

It is often useful to represent a vector in Rn as an n × 1 column matrix. In this notation, 
the dot product of two vectors

u = [
u1

u2

⋮
un

] and v = [
v1

v2

⋮
vn

]
can be represented as the matrix product of the transpose of u multiplied by v.

u ∙ v = uTv = [u1  u2  .  .  .  un][
v1

v2

⋮
vn

] = [u1v1 + u2v2 + .  .  . + unvn]

  Using Matrix Multiplication
to Find Dot Products

a. The dot product of the vectors

u = [2
0] and v = [3

1]
 is u ∙ v = uTv = [2  0][3

1] = [(2)(3) + (0)(1)] = 6.

b. The dot product of the vectors

u = [
1
2

−1] and v = [
3

−2
4]

 is u ∙ v = uTv = [1  2  −1][
3

−2
4] = [(1)(3) + (2)(−2) + (−1)(4)] = −5. 

Many of the properties of the dot product are direct consequences of the 
corresponding properties of matrix multiplication. In Exercise 87, you are asked to use 
the properties of matrix multiplication to prove the first three properties of Theorem 5.3.

Linear
aLgeBra
aPPLieD

Electrical engineers can use the dot product to calculate 
electric or magnetic flux, which is a measure of the 
strength of the electric or magnetic field penetrating a 
surface. Consider an arbitrarily shaped surface with an 
element of area dA, normal (perpendicular) vector da, 
electric field vector e, and magnetic field vector B. The 
electric flux Φe can be found using the surface integral 
Φe = ∫e ∙ da and the magnetic flux Φm can be found 
using the surface integral Φm = ∫B ∙ da. It is interesting to 
note that for a closed surface that surrounds an electrical 
charge, the net electric flux is proportional to the charge, 
but the net magnetic flux is zero. This is because electric 
fields initiate at positive charges and terminate at negative 
charges, but magnetic fields form closed loops, so they do 
not initiate or terminate at any point. This means that the 
magnetic field entering a closed surface must equal the 
magnetic field leaving the closed surface.

Awe Inspiring Images/Shutterstock.com
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5.1 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

Finding the Length of a Vector In Exercises 1–4, find 
the length of the vector.

 1. v = (4, 3)  2. v = (0, 1)
 3. v = (5, −3, −4)  4. v = (2, 0, −5, 5)

Finding the Length of a Vector In Exercises 5–8, find 
(a) �u�, (b) �v�, and (c) �u + v�.
 5. u = (−1, 14), v = (4, −1

8)
 6. u = (1, 12), v = (2, −1

2)
 7. u = (3, 1, 3), v = (0, −1, 1)
 8. u = (0, 1, −1, 2), v = (1, 1, 3, 0)

Finding a Unit Vector In Exercises 9–12, find a unit 
vector (a) in the direction of u and (b) in the direction 
opposite that of u. Verify that each vector has length 1.

 9. u = (−5, 12) 10. u = (2, −2)
11. u = (3, 2, −5) 12. u = (−1, 3, 4)

Finding a Vector In Exercises 13–16, find the vector v 
with the given length and the same direction as u.

13. �v� = 4, u = (1, 1) 14. �v� = 4, u = (−1, 1)
15. �v� = 5, u = (√5, 5, 0)
16. �v� = 3, u = (0, 2, 1, −1)

17. Consider the vector v = (−1, 3, 0, 4). Find u such that

 (a) u has the same direction as v and one-half its length.

 (b)  u has the direction opposite that of v and twice its 
length.

18. For what values of c is �c(1, 2, 3)� = 1?

Finding the Distance Between two Vectors In 
Exercises 19–22, find the distance between u and v.

19. u = (1, −1), v = (−1, 1)
20. u = (−1, 2, 5), v = (3, 0, −1)
21. u = (1, 2, 0), v = (−1, 4, 1)
22. u = (0, 1, −1, 2), v = (1, 1, 2, 2)

Finding Dot Products In Exercises 23–26, find 
(a) u ∙ v, (b) v ∙ v, (c) �u�2, (d) (u ∙ v)v, and (e) u ∙ (5v).
23. u = (3, 4), v = (2, −3)
24. u = (−1, 2), v = (2, −2)
25. u = (2, −2, 1), v = (2, −1, −6)
26. u = (4, 0, −3, 5), v = (0, 2, 5, 4)

27.  Find (u + v) ∙ (2u − v) when u ∙ u = 4, u ∙ v = −5, 
and v ∙ v = 10.

28.  Find (3u − v) ∙ (u − 3v) when u ∙ u = 8, u ∙ v = 7, 
and v ∙ v = 6.

Finding Lengths, Unit Vectors, and Dot Products  
In Exercises 29–34, use a software program or a graphing  
utility to find (a) the lengths of u and v, (b) a unit vector 
in the direction of v, (c) a unit vector in the direction 
opposite that of u, (d) u ∙ v, (e) u ∙ u, and (f) v ∙ v.

29. u = (1, 18, 25), v = (0, 14, 15)
30. u = (−1, 12, 14), v = (0, 14, −1

2)
31. u = (0, 1, √2), v = (−1, √2, −1)
32. u = (−1, √3, 2), v = (√2, −1, −√2)
33. u = (2, √3, √2, √3), v = (−2, √2, −√3, −√2)
34. u = (1, √2, −1, √2), v = (1, −

1

√2
, 1, −

1

√2) 

Verifying the cauchy-schwarz inequality In 
Exercises 35–38, verify the Cauchy-Schwarz Inequality 
for the vectors.

35. u = (6, 8), v = (3, −2)
36. u = (−1, 0), v = (1, 1)
37. u = (1, 1, −2), v = (1, −3, −2)
38. u = (1, −1, 0), v = (0, 1, −1)

Finding the angle Between two Vectors In Exercises 
39–46, find the angle θ between the vectors.

39. u = (3, 1), v = (−2, 4)
40. u = (−4, 1), v = (5, 0)

41. u = (cos 
π
6

, sin 
π
6), v = (cos 

3π
4

, sin 
3π
4 )

42. u = (cos 
π
3

, sin 
π
3), v = (cos 

π
4

, sin 
π
4)

43. u = (1, 1, 1), v = (2, 1, −1)
44. u = (2, 3, 1), v = (−3, 2, 0)
45. u = (0, 1, 0, 1), v = (3, 3, 3, 3)
46. u = (1, −1, 0, 1), v = (−1, 2, −1, 0)

Determining a relationship Between two Vectors  
In Exercises 47–54, determine whether u and v are 
orthogonal, parallel, or neither.

47. u = (2, 18), v = (3
2, −1

6)
48. u = (4, 3), v = (1

2, −2
3)

49. u = (−1
3, 23), v = (2, −4)

50. u = (1, −1), v = (0, −1)
51. u = (0, 1, 0), v = (1, −2, 0)
52. u = (0, 3, −4), v = (1, −8, −6)
53. u = (−2, 5, 1, 0), v = (1

4, −5
4, 0, 1)

54. u = (4, 32, −1, 12), v = (−2, −3
4, 12, −1

4)
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Finding orthogonal Vectors In Exercises 55–58, 
determine all vectors v that are orthogonal to u.

55. u = (0, 5) 56. u = (11, 2)
57. u = (2, −1, 1) 58. u = (4, −1, 0)

Verifying the triangle inequality In Exercises 59–62, 
verify the triangle inequality for the vectors u and v.

59. u = (4, 0), v = (1, 1) 60. u = (−1, 1), v = (2, 0)
61. u = (1, 1, 1), v = (0, 1, −2)
62. u = (1, −1, 0), v = (0, 1, 2)

Verifying the Pythagorean theorem In Exercises 
63–66, verify the Pythagorean Theorem for the vectors 
u and v.

63. u = (1, −1), v = (1, 1)
64. u = (3, −2), v = (4, 6)
65. u = (3, 4, −2), v = (4, −3, 0)
66. u = (4, 1, −5), v = (2, −3, 1)

67. Rework Exercise 23 using matrix multiplication.

68. Rework Exercise 24 using matrix multiplication.

69. Rework Exercise 25 using matrix multiplication.

70. Rework Exercise 26 using matrix multiplication.

writing In Exercises 71 and 72, determine whether the 
vectors are orthogonal, parallel, or neither. Explain.

71. u = (cos θ, sin θ, −1), v = (sin θ, −cos θ, 0)
72. u = (−sin θ, cos θ, 1), v = (sin θ, −cos θ, 0)

true or False? In Exercises 73 and 74, determine 
whether each statement is true or false. If a statement 
is true, give a reason or cite an appropriate statement 
from the text. If a statement is false, provide an example 
that shows the statement is not true in all cases or cite an 
appropriate statement from the text.

73. (a) The length or norm of a vector is

  �v� = ∣v1 + v2 + v3 + .  .  . + vn∣.
 (b)  The dot product of two vectors u and v is another 

vector represented by

  u ∙ v = (u1v1, u2v2, u3v3, .  .  . , unvn).
74. (a)  If v is a nonzero vector in Rn, then the unit vector in 

the direction of v is u = �v��v.

 (b)  If u ∙ v < 0, then the angle θ between u and v 
is acute.

writing In Exercises 75 and 76, explain why each 
expression involving dot product(s) is meaningless. 
Assume that u and v are vectors in Rn, and that c is 
a scalar.

75. (a) (u ∙ v) − v (b) u + (u ∙ v)
76. (a) (u ∙ v) ∙ u (b) c ∙ (u ∙ v)

orthogonal Vectors In Exercises 77 and 78, let 
v = (v1, v2) be a vector in R2. Show that (v2, −v1) is 
orthogonal to v, and use this fact to find two unit vectors 
orthogonal to the given vector.

77. v = (12, 5) 78. v = (8, 15)

79.  revenue The vector u = (3140, 2750) gives the 
numbers of hamburgers and hot dogs, respectively, 
sold at a fast-food stand in one month. The vector 
v = (2.25, 1.75) gives the prices (in dollars) of the food 
items. Find the dot product u ∙ v and interpret the result 
in the context of the problem.

80.  revenue The vector u = (4600, 4290, 5250) gives 
the numbers of units of three models of cellular phones 
manufactured. The vector v = (499.99, 199.99, 99.99) 
gives the prices in dollars of the three models of cellular  
phones, respectively. Find the dot product u ∙ v and 
interpret the result in the context of the problem.

81.  Find the angle between the diagonal of a cube and one 
of its edges.

82.  Find the angle between the diagonal of a cube and the 
diagonal of one of its sides.

83.  guided Proof Prove that if u is orthogonal to v and w,  
then u is orthogonal to cv + dw for any scalars c and d.

  Getting Started: To prove that u is orthogonal to 
cv + dw, you need to show that the dot product of u 
and cv + dw is 0.

  (i)  Rewrite the dot product of u and cv + dw as a 
linear combination of (u ∙ v) and (u ∙ w) using 
Properties 2 and 3 of Theorem 5.3.

 (ii)  Use the fact that u is orthogonal to v and w, and the 
result of part (i), to lead to the conclusion that u is 
orthogonal to cv + dw.

84.  Proof Prove that if u and v are vectors in Rn, then

 u ∙ v = 1
4 �u + v�2 − 1

4�u − v�2.

85.  Proof Prove that the vectors u = (cos θ, −sin θ) and 
v = (sin θ, cos θ) are orthogonal unit vectors for any 
value of θ. Graph u and v for θ = π�3.

86.  Proof Prove that �u + v� = �u� + �v� if and only if u 
and v have the same direction.

87.  Proof Use the properties of matrix multiplication to 
prove the first three properties of Theorem 5.3.

88.  CAPSTONE What do you know about θ, the 
angle between two nonzero vectors u and v, under 
each condition?

 (a) u ∙ v = 0   (b) u ∙ v > 0   (c) u ∙ v < 0

89.  writing Let x be a solution to the m × n homogeneous  
linear system of equations Ax = 0. Explain why x is 
orthogonal to the row vectors of A.
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5.2 Inner Product Spaces

  Determine whether a function defines an inner product, and find 
the inner product of two vectors in Rn, Mm, n, Pn, and C [a, b].

  Find an orthogonal projection of a vector onto another vector in  
an inner product space.

Inner Products

In Section 5.1, the concepts of length, distance, and angle were extended from R2 to Rn.  
This section extends these concepts one step further—to general vector spaces—by 
using the idea of an inner product of two vectors.

You are already familiar with one example of an inner product: the dot product in 
Rn. The dot product, called the Euclidean inner product, is only one of several inner 
products that can be defined on Rn. To distinguish between the standard inner product 
and other possible inner products, use the notation below.

u ∙ v = dot product (Euclidean inner product for Rn)
〈u, v〉 = general inner product for a vector space V

A general inner product is defined in much the same way that a general vector 
space is defined—that is, in order for a function to qualify as an inner product, it must 
satisfy a set of axioms. The axioms below parallel Properties 1, 2, 3, and 5 of the dot 
product given in Theorem 5.3.

A vector space V with an inner product is an inner product space. Whenever 
an inner product space is referred to, assume that the set of scalars is the set of real 
numbers.

  the euclidean Inner Product for Rn

Show that the dot product in Rn satisfies the four axioms of an inner product.

solutIon

In Rn, the dot product of two vectors u = (u1, u2, .  .  . , un) and v = (v1, v2, .  .  . , vn) is 

u ∙ v = u1v1 + u2v2 + .  .  . + unvn.

By Theorem 5.3, you know that this dot product satisfies the required four axioms, 
which verifies that it is an inner product on Rn. 

The Euclidean inner product is not the only inner product that can be defined on 
Rn. Example 2 illustrates a different inner product. To show that a function is an inner 
product, you must show that it satisfies the four inner product axioms.

definition of Inner Product

Let u, v, and w be vectors in a vector space V, and let c be any scalar. An inner 
product on V is a function that associates a real number 〈u, v〉 with each pair of 
vectors u and v and satisfies the axioms listed below.

1. 〈u, v〉 = 〈v, u〉
2. 〈u, v + w〉 = 〈u, v〉 + 〈u, w〉
3. c〈u, v〉 = 〈cu, v〉
4. 〈v, v〉 ≥ 0, and 〈v, v〉 = 0 if and only if v = 0.
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A different Inner Product for R 2

Show that the function below defines an inner product on R2, where u = (u1, u2) and 
v = (v1, v2).

〈u, v〉 = u1v1 + 2u2v2

solutIon

1. The product of real numbers is commutative, so

〈u, v〉 = u1v1 + 2u2v2 = v1u1 + 2v2u2 = 〈v, u〉.

2. Let w = (w1, w2) Then

 〈u, v + w〉 = u1(v1 + w1) + 2u2(v2 + w2)
 = u1v1 + u1w1 + 2u2v2 + 2u2w2

 = (u1v1 + 2u2v2) + (u1w1 + 2u2w2)
 = 〈u, v〉 + 〈u, w〉.

3. If c is any scalar, then

c〈u, v〉 = c(u1v1 + 2u2v2) = (cu1)v1 + 2(cu2)v2 = 〈cu, v〉.

4. The square of a real number is nonnegative, so

〈v, v〉 = v1
2 + 2v2

2 ≥ 0.

  Moreover, this expression is equal to zero if and only if v = 0 (that is, if and only if  
v1 = v2 = 0). 

Example 2 can be generalized. The function

〈u, v〉 = c1u1v1 + c2u2v2 + .  .  . + cnunvn,  ci > 0

is an inner product on Rn. (In Exercise 89, you are asked to prove this.) The positive 
constants c1, .  .  . , cn are weights. If any ci is negative or 0, then this function does not 
define an inner product.

  A Function that Is not an Inner Product

Show that the function below is not an inner product on R3, where u = (u1, u2, u3) and 
v = (v1, v2, v3).

〈u, v〉 = u1v1 − 2u2v2 + u3v3

solutIon

Observe that Axiom 4 is not satisfied. For example, let v = (1, 2, 1). Then  
〈v, v〉 = (1)(1) − 2(2)(2) + (1)(1) = −6, which is less than zero. 

  An Inner Product on M2,2

Let A = [a11

a21

a12

a22
] and B = [b11

b21

b12

b22
] be matrices in the vector space M2,2. 

The function

〈A, B〉 = a11b11 + a12b12 + a21b21 + a22b22

is an inner product on M2,2. The verification of the four inner product axioms is left to 
you. (See Exercise 27.) 
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You obtain the inner product in the next example from calculus. The verification of 
the inner product properties depends on the properties of the definite integral.

  An Inner Product defined by 
a definite Integral (calculus)

Let f  and g be real-valued continuous functions in the vector space C[a, b]. Show that 

〈 f, g〉 = ∫b

a

f(x)g(x) dx

defines an inner product on C[a, b].

solutIon

Use familiar properties from calculus to verify the four parts of the definition.

1. 〈 f, g〉 = ∫b

a

f(x)g(x) dx = ∫b

a

g(x) f(x) dx = 〈g, f 〉

2.  〈 f, g + h〉 = ∫b

a

f(x)[g(x) + h(x)] dx = ∫b

a

[ f(x)g(x) + f(x)h(x)] dx

 = ∫b

a

f(x)g(x) dx + ∫b

a

f(x)h(x) dx = 〈 f, g〉 + 〈 f, h〉

3. c〈 f, g〉 = c∫b

a

f(x)g(x) dx = ∫b

a

cf(x)g(x) dx = 〈cf, g〉

4. [ f(x)]2 ≥ 0 for all x, so you know from calculus that

〈 f, f 〉 = ∫b

a

[ f(x)]2 dx ≥ 0

with

〈 f, f 〉 = ∫b

a

[ f(x)]2 dx = 0

if and only if f  is the zero function in C[a, b]. 

The next theorem lists some properties of inner products.

ProoF

The proof of the first property is given here. The proofs of the other two properties are 
left as exercises. (See Exercises 91 and 92.) From the definition of an inner product, 
you know 〈0, v〉 = 〈v, 0〉, so you only need to show one of these to be zero. Using the 
fact that 0(v) = 0,

 〈0, v〉 = 〈0(v), v〉
 = 0〈v, v〉
 = 0.  

tHeoreM 5.7 Properties of Inner Products

Let u, v, and w be vectors in an inner product space V, and let c be any real 
number.

1. 〈0, v〉 = 〈v, 0〉 = 0
2. 〈u + v, w〉 = 〈u, w〉 + 〈v, w〉
3. 〈u, cv〉 = c〈u, v〉

reMArK
Remember that a and b must 
be distinct, otherwise

∫b

a
f (x)g(x) dx

is zero regardless of which 
functions f and g you use.
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The definitions of length (or norm), distance, and angle for general inner product 
spaces closely parallel those for Euclidean n-space.

If �u� = 1, then u is a unit vector. Moreover, if v is any nonzero vector in an inner 
product space V, then the vector u = v��v� is the unit vector in the direction of v.

Note that the definition of the angle θ between u and v presumes that

−1 ≤
〈u, v〉
�u� �v� ≤ 1

for a general inner product (as with Euclidean n-space), which follows from the 
Cauchy-Schwarz Inequality given later in Theorem 5.8.

  Finding Inner Products

For polynomials p = a0 + a1x + .  .  . + anxn and q = b0 + b1x + .  .  . + bnxn  
in the vec tor space Pn, the function 〈 p, q〉 = a0b0 + a1b1 + .  .  . + anbn is an 
inner product. (In Exercise 34, you are asked to show this.) Let p(x) = 1 − 2x2, 
q(x) = 4 − 2x + x2, and r(x) = x + 2x2 be polynomials in P2, and find each quantity.

a. 〈p, q〉    b. 〈q, r〉    c. �q�    d. d(p, q)

solutIon

a. The inner product of p and q is

〈p, q〉 = a0b0 + a1b1 + a2b2 = (1)(4) + (0)(−2) + (−2)(1) = 2.

b.  The inner product of q and r is 〈q, r〉 = (4)(0) + (−2)(1) + (1)(2) = 0. 
Notice that the vectors q and r are orthogonal.

c. The length of q is �q� = √〈q, q〉 = √42 + (−2)2 + 12 = √21.

d. The distance between p and q is

 d(p, q) = �p − q�
 = �(1 − 2x2) − (4 − 2x + x2)�
 = �−3 + 2x − 3x2�
 = √(−3)2 + 22 + (−3)2

 = √22.  

Orthogonality depends on the inner product. That is, two vectors may be orthogonal  
with respect to one inner product but not to another. Rework parts (a) and (b) of 
Example 6 using the inner product 〈 p, q〉 = a0b0 + a1b1 + 2a2b2. With this inner 
product, p and q are orthogonal, but q and r are not.

definitions of length, distance, and Angle

Let u and v be vectors in an inner product space V.

1. The length (or norm) of u is �u� = √〈u, u〉.
2. The distance between u and v is d(u, v) = �u − v�.
3. The angle between two nonzero vectors u and v can be found using

cos θ =
〈u, v〉
�u� �v�

,  0 ≤ θ ≤ π.

4. u and v are orthogonal when 〈u, v〉 = 0.
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using the Inner Product on C [0, 1] (calculus)

Use the inner product defined in Example 5 and the functions f(x) = x and g(x) = x2 
in C[0, 1] to find each quantity.

a. � f �   b. d( f, g)

solutIon

a. f(x) = x, so you have

� f �2 = 〈 f, f 〉 = ∫1

0
(x)(x) dx = ∫1

0
x2 dx = [x3

3 ]
1

0
=

1
3

.

So, � f � =
1

√3
.

b. To find d( f, g), write

 [d( f, g)]2 = 〈 f − g, f − g〉

 = ∫1

0
[ f(x) − g(x)]2dx = ∫1

0
[x − x2]2 dx

 = ∫1

0
[x2 − 2x3 + x4] dx = [x3

3
−

x4

2
+

x5

5 ]
1

0
=

1
30

.

So, d( f, g) =
1

√30
. 

In Example 7, the distance between the functions f(x) = x and g(x) = x2 in 
C[0, 1] is 1�√30 ≈ 0.183. In practice, the distance between a pair of vectors is not as 
useful as the relative distance(s) between more than one pair. For example, the distance 
between g(x) = x2 and h(x) = x2 + 1 in C[0, 1] is 1. (Verify this.) From the figures 
below, it seems reasonable to say that f  and g are closer than g and h.

1

30

1 2

1

2

x

y

d( f, g) =

g(x) = x2

f (x) = x

 

d(h, g) = 1
1 2

1

2

x

y

g(x) = x2

h(x) = x2 + 1

The properties of length and distance listed for Rn in the preceding section also 
hold for general inner product spaces. For instance, if u and v are vectors in an inner 
product space, then the properties listed below are true.

 Properties of Length Properties of Distance

1. �u� ≥ 0 1. d(u, v) ≥ 0

2. �u� = 0 if and only if u = 0. 2. d(u, v) = 0 if and only if u = v.

3. �cu� = ∣c∣ �u� 3. d(u, v) = d(v, u)

tecHnology
Many graphing utilities and 
software programs can  
approximate definite integrals. 
For instance, if you use a 
graphing utility, then you  
may verify Example 7(b) as 
shown below.

.182574185835

 (fnInt((x-x2)2,x,0,1
))

The result should be 

approximately 0.183 ≈
1

√30
.

The technology guide at  
CengageBrain.com can help 
you use technology to  
approximate a definite integral.
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248 Chapter 5 Inner Product Spaces

Theorem 5.8 lists the general inner product space versions of the Cauchy-Schwarz 
Inequality, the triangle inequality, and the Pythagorean Theorem.

The proof of each part of Theorem 5.8 parallels the proofs of Theorems 5.4, 5.5, 
and 5.6, respectively. Simply substitute 〈u, v〉 for the Euclidean inner product u ∙ v in 
each proof.

  An example of the cauchy-schwarz
Inequality (calculus)

Let f(x) = 1 and g(x) = x be functions in the vector space C[0, 1], with the inner 
product defined in Example 5. Verify that ∣〈 f, g〉∣ ≤ � f � �g�.

solutIon

For the left side of this inequality, you have

〈 f, g〉 = ∫1

0
f(x)g(x) dx = ∫1

0
x dx =

x2

2 ]
1

0
=

1
2

.

For the right side of the inequality, you have

� f �2 = ∫1

0
f(x)f(x) dx = ∫1

0
dx = x]

1

0
= 1

and

�g�2 = ∫1

0
g(x)g(x) dx = ∫1

0
x2 dx =

x3

3 ]
1

0
=

1
3

.

So,

� f � �g� =√(1)(1
3) =

1

√3
≈ 0.577, and ∣〈 f, g〉∣ ≤ � f � �g�. 

tHeoreM 5.8

Let u and v be vectors in an inner product space V.

1. Cauchy-Schwarz Inequality: ∣〈u, v〉∣ ≤ �u� �v�
2. Triangle inequality: �u + v� ≤ �u� + �v�
3. Pythagorean Theorem: u and v are orthogonal if and only if

�u + v�2 = �u�2 + �v�2.

lIneAr
AlgeBrA
APPlIed

The concept of work is important for determining the 
energy needed to perform various jobs. If a constant force 
F acts at an angle θ with the line of motion of an object to 
move the object from point A to point B (see figure below), 
then the work W done by the force is

 W = (cos θ)�F� �AB
\

�
 = F ∙ AB

\

where AB
\

 represents the directed line segment from A 
to B. The quantity (cos θ)�F� is the length of the orthogonal 
projection of F onto AB

\

. Orthogonal projections are 
discussed on the next page.

A B

F
θ

iStockphoto.com/kupicoo
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ortHogonAl ProJectIons In Inner Product sPAces

Let u and v be vectors in R2. If v is nonzero, then u can be orthogonally projected 
onto v, as shown in Figure 5.7. This projection is denoted by projvu and is a scalar 
multiple of v, so you can write projvu = av. If a > 0, as shown in Figure 5.7(a), then 
cos θ > 0 and the length of projvu is

�av� = ∣a∣ �v� = a�v� = �u� cos θ =
�u� �v� cos θ

�v�
=

u ∙ v
�v�

which implies that a = (u ∙ v)��v�2 = (u ∙ v)�(v ∙ v). So,

projvu =
u ∙ v
v ∙ v

v.

If a < 0, as shown in Figure 5.7(b), then the orthogonal projection of u onto v can be 
found using the same formula. (Verify this.)

a. 

u

v

projvu = av, a > 0

θ

 b. 
u

v

projvu = av, a < 0

θ

Figure 5.7

  Finding the orthogonal Projection of u onto v

In R2, the orthogonal projection of u = (4, 2) onto v = (3, 4) is

projvu =
u ∙ v
v ∙ v

v =
(4, 2) ∙ (3, 4)
(3, 4) ∙ (3, 4)(3, 4) =

20
25

(3, 4) = (12
5

, 
16
5 )

as shown in Figure 5.8. 

An orthogonal projection in a general inner product space is defined below.

  Finding an orthogonal Projection in R 3

See LarsonLinearAlgebra.com for an interactive version of this type of example.

Use the Euclidean inner product in R3 to find the orthogonal projection of u = (6, 2, 4)
onto v = (1, 2, 0).

solutIon

u ∙ v = 10 and v ∙ v = 5, so the orthogonal projection of u onto v is

projvu =
u ∙ v
v ∙ v

v =
10
5

(1, 2, 0) = 2(1, 2, 0) = (2, 4, 0)

as shown in Figure 5.9. 

definition of orthogonal Projection

Let u and v be vectors in an inner product space V, such that v ≠ 0. Then the 
orthogonal projection of u onto v is

projvu =
〈u, v〉
〈v, v〉

v.

Figure 5.9

2 2

6

2

4

x

y

z

4

(6, 2, 4) u

(2, 4, 0)

projvu

v

(1, 2, 0)

Figure 5.8

u

(3, 4)

(         ),

(4, 2)

v

3

1

4

2

1 2 3 4

projvu

12
5

16
5

x

y

reMArK
If v is a unit vector, then 
〈v, v〉 = �v�2 = 1, and the 
formula for the orthogonal 
projection of u onto v takes 
the simpler form

projvu = 〈u, v〉v.
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250 Chapter 5 Inner Product Spaces

Verify in Example 10 that u − projvu = (6, 2, 4) − (2, 4, 0) = (4, −2, 4) is 
orthogonal to v = (1, 2, 0). This is true in general. If u and v are nonzero vectors in an 
inner product space, then u − projvu is orthogonal to v. (In Exercise 90, you are asked 
to prove this.)

An important property of orthogonal projections used in mathematical modeling  
(see Section 5.4) is given in the next theorem. It states that, of all possible scalar  
multiples of a vector v, the orthogonal projection of u onto v is the one closest to u, as 
shown in Figure 5.10. For instance, in Example 10, this theorem implies that, of all the 
scalar multiples of the vector v = (1, 2, 0), the vector projvu = (2, 4, 0) is closest to 
u = (6, 2, 4). You are asked to prove this explicitly in Exercise 101.

ProoF

Let b = 〈u, v〉�〈v, v〉. Then

�u − cv�2 = �(u − bv) + (b − c)v�2

where (u − bv) and (b − c)v are orthogonal. Verify this by using the inner product 
axioms to show that 〈(u − bv), (b − c)v〉 = 0. Now, by the Pythagorean Theorem,

�(u − bv) + (b − c)v�2 = �u − bv�2 + �(b − c)v�2

which implies that

�u − cv�2 = �u − bv�2 + (b − c)2�v�2.

b ≠ c and v ≠ 0, so you know that (b − c)2�v�2 > 0. This means that

�u − bv�2 < �u − cv�2

and it follows that d(u, bv) < d(u, cv). 

The next example discusses an orthogonal projection in the inner product space 
C[a, b].

  Finding an orthogonal Projection 
in C[a, b] (calculus)

Let f(x) = 1 and g(x) = x be functions in C[0, 1]. Use the inner product on C[a, b] 
defined in Example 5,

〈 f, g〉 = ∫b

a

f(x)g(x) dx

to find the orthogonal projection of f  onto g.

solutIon

From Example 8, you know that

〈 f, g〉 =
1
2

  and  〈g, g〉 = �g�2 =
1
3

.

So, the orthogonal projection of f  onto g is

projg f =
〈 f, g〉
〈g, g〉

g =
1�2
1�3

x =
3
2

x. 

tHeoreM 5.9 orthogonal Projection and distance

Let u and v be two vectors in an inner product space V, such that v ≠ 0. Then

d(u, projvu) < d(u, cv),  c ≠
〈u, v〉
〈v, v〉

.

Figure 5.10

u

v
cv

d(u, cv)

u

v

d( , proj )u uv

projvu
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5.2 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

showing that a Function Is an Inner Product In 
Exercises 1–4, show that the function defines an inner 
product on R2, where u = (u1, u2) and v = (v1, v2).
 1. 〈u, v〉 = 3u1v1 + u2v2  2. 〈u, v〉 = u1v1 + 9u2v2

 3. 〈u, v〉 = 1
2 u1v1 + 1

4 u2v2

 4. 〈u, v〉 = 2u1v2 + u2v1 + u1v2 + 2u2v2

showing that a Function Is an Inner Product In 
Exercises 5–8, show that the function defines an inner 
product on R3, where u = (u1, u2, u3) and v = (v1, v2, v3).
 5. 〈u, v〉 = 2u1v1 + 3u2v2 + u3v3

 6. 〈u, v〉 = u1v1 + 2u2v2 + u3v3

 7. 〈u, v〉 = 4u1v1 + 3u2v2 + 2u3v3

 8. 〈u, v〉 = 1
2 u1v1 + 1

4 u2v2 + 1
2 u3v3

showing that a Function Is not an Inner Product In 
Exercises 9–12, show that the function does not define an 
inner product on R3, where u = (u1, u2) and v = (v1, v2).
 9. 〈u, v〉 = u1v1 10. 〈u, v〉 = u1v1 − 6u2v2

11. 〈u, v〉 = u1
2v1

2 − u2
2v2

2 12. 〈u, v〉 = 3u1v2 − u2v1

showing that a Function Is not an Inner Product In 
Exercises 13–16, show that the function does not define 
an inner product on R3, where u = (u1, u2, u3) and 
v = (v1, v2, v3).
13. 〈u, v〉 = −u1u2u3

14. 〈u, v〉 = u1v1 − u2v2 − u3v3

15. 〈u, v〉 = u1
2v1

2 + u2
2 v2

2 + u3
2v2

2

16. 〈u, v〉 = 2u1u2 + 3v1v2 + u3v3

Finding Inner Product, length, and distance In 
Exercises 17–26, find (a) 〈u, v〉, (b) �u�, (c) �v�, and  
(d) d(u, v) for the given inner product defined on Rn.

17. u = (3, 4), v = (5, −12), 〈u, v〉 = u ∙ v

18. u = (−1, 1), v = (6, 8), 〈u, v〉 = u ∙ v

19. u = (−4, 3), v = (0, 5), 〈u, v〉 = 3u1v1 + u2v2

20. u = (0, −6), v = (−1, 1), 〈u, v〉 = u1v1 + 2u2v2

21. u = (0, 7, 2), v = (9, −3, −2), 〈u, v〉 = u ∙ v

22. u = (0, 1, 2), v = (1, 2, 0), 〈u, v〉 = u ∙ v

23. u = (8, 0, −8), v = (8, 3, 16),
 〈u, v〉 = 2u1v1 + 3u2v2 + u3v3

24. u = (1, 1, 1), v = (2, 5, 2),
 〈u, v〉 = u1v1 + 2u2v2 + u3v3

25. u = (−1, 2, 0, 1), v = (0, 1, 2, 2), 〈u, v〉 = u ∙ v

26. u = (1, −1, 2, 0), v = (2, 1, 0, −1),
 〈u, v〉 = u ∙ v

showing that a Function Is an Inner Product In 
Exercises 27 and 28, let

A = [a11

a21

a12

a22
] and B = [b11

b21

b12

b22
]

be matrices in the vector space M2,2. Show that the  
function defines an inner product on M2,2.

27. 〈A, B〉 = a11b11 + a12b12 + a21b21 + a22b22

28. 〈A, B〉 = 2a11b11 + a12b12 + a21b21 + 2a22b22

Finding Inner Product, length, and distance In 
Exercises 29–32, find (a) 〈A, B〉, (b) �A�, (c) �B�, and 
(d) d(A, B) for the matrices in M2,2 using the inner  
product 〈A, B〉 = 2a11b11 + a12b12 + a21b21 + 2a22b22.

29. A = [ 2
−3

−4
1], B = [−2

1
1
0]

30. A = [1
0

0
1], B = [0

1
1
0]

31. A = [1
2

−1
4], B = [ 0

−2
1
0]

32. A = [1
0

0
−1], B = [1

0
1

−1]
showing that a Function Is an Inner Product In 
Exercises 33 and 34, show that the function defines an inner 
product for polynomials p(x) = a0 + a1x + .  .  . + anxn 
and q(x) = b0 + b1x + .  .  . + bnxn.

33. 〈 p, q〉 = a0b0 + 2a1b1 + a2b2 in P2

34. 〈 p, q〉 = a0b0 + a1b1 + .  .  . + anbn in Pn

Finding Inner Product, length, and distance In 
Exercises 35–38, find (a) 〈 p, q〉, (b) � p�, (c) �q�, and  
(d) d( p, q) for the polynomials in P2 using the inner 
product 〈 p, q〉 = a0b0 + a1b1 + a2b2.

35. p(x) = 1 − x + 3x2, q(x) = x − x2

36. p(x) = 1 + x + 1
2 x2, q(x) = 1 + 2x2

37. p(x) = 1 + x2, q(x) = 1 − x2

38. p(x) = 1 − 3x + x2, q(x) = −x + 2x2

calculus In Exercises 39–42, use the functions f  and 
g in C[−1, 1] to find (a) 〈 f, g〉, (b) � f �, (c) �g�, and  
(d) d( f, g) for the inner product

〈 f, g〉 = ∫1

−1
f (x)g(x) dx.

39. f(x) = 1, g(x) = 4x2 − 1

40. f(x) = −x, g(x) = x2 − x + 2

41. f(x) = x, g(x) = ex

42. f(x) = x, g(x) = e−x
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252 Chapter 5 Inner Product Spaces

Finding the Angle Between two Vectors In Exercises 
43–52, find the angle θ between the vectors.

43. u = (3, 4), v = (5, −12), 〈u, v〉 = u ∙ v

44. u = (3, −1), v = (1
3, 1), 〈u, v〉 = u ∙ v

45. u = (−4, 3), v = (0, 5), 〈u, v〉 = 3u1v1 + u2v2

46. u = (1
4, −1), v = (2, 1),

 〈u, v〉 = 2u1v1 + u2v2

47. u = (1, 1, 1), v = (2, −2, 2),
 〈u, v〉 = u1v1 + 2u2v2 + u3v3

48. u = (0, 1, −2), v = (3, −2, 1), 〈u, v〉 = u ∙ v

49. p(x) = 1 − x + x2, q(x) = 1 + x + x2,

 〈 p, q〉 = a0b0 + a1b1 + a2b2

50. p(x) = 1 + x2, q(x) = x − x2,

 〈 p, q〉 = a0b0 + 2a1b1 + a2b2

51. calculus f(x) = x, g(x) = x2,

 〈 f, g〉 = ∫1

−1
f(x)g(x) dx

52. calculus f(x) = 1, g(x) = x2,

 〈 f, g〉 = ∫1

−1
f(x)g(x) dx

Verifying Inequalities In Exercises 53–64, verify  
(a) the Cauchy-Schwarz Inequality and (b) the triangle 
inequality for the given vectors and inner products.

53. u = (5, 12), v = (3, 4), 〈u, v〉 = u ∙ v

54. u = (−1, 1), v = (1, −1), 〈u, v〉 = u ∙ v

55. u = (0, 1, 5), v = (−4, 3, 3), 〈u, v〉 = u ∙ v

56. u = (1, 0, 2), v = (1, 2, 0), 〈u, v〉 = u ∙ v

57. p(x) = 2x, q(x) = 1 + 3x2,

 〈 p, q〉 = a0b0 + a1b1 + a2b2

58. p(x) = x, q(x) = 1 − x2,

 〈 p, q〉 = a0b0 + 2a1b1 + a2b2

59. A = [0
2

3
1], B = [−3

4
1
3],

 〈A, B〉 = a11b11 + a12b12 + a21b21 + a22b22

60. A = [0
2

1
−1], B = [1

2
1

−2],

 〈A, B〉 = a11b11 + a12b12 + a21b21 + a22b22

61. calculus f(x) = sin x, g(x) = cos x,

 〈 f, g〉 = ∫π�4

0
f(x)g(x) dx

62. calculus f(x) = x, g(x) = cos π x,

 〈 f, g〉 = ∫2

0
f (x)g(x) dx

63. calculus f(x) = x, g(x) = ex,

 〈 f, g〉 = ∫1

0
f(x)g(x) dx

64. calculus f(x) = x, g(x) = e−x,

 〈 f, g〉 = ∫1

0
f(x)g(x) dx

calculus In Exercises 65–68, show that f  and g are 
orthogonal in the inner product space C[a, b] with the 
inner product

〈 f, g〉 = ∫b

a
f(x)g(x) dx.

65. C[−π�2, π�2], f(x) = cos x, g(x) = sin x

66. C[−1, 1], f(x) = x, g(x) = 1
2(3x2 − 1)

67. C[−1, 1], f(x) = x, g(x) = 1
2(5x3 − 3x)

68. C[0, π], f(x) = 1, g(x) = cos(2nx),
 n = 1, 2, 3, .  .  .

Finding and graphing orthogonal Projections in R2 
In Exercises 69–72, (a) find projvu, (b) find projuv, and 
(c) sketch a graph of both projvu and projuv. Use the 
Euclidean inner product.

69. u = (1, 2), v = (2, 1)
70. u = (−3, −1), v = (6, 3)
71. u = (−1, 3), v = (4, 4)
72. u = (2, −2), v = (3, 1)

Finding orthogonal Projections In Exercises 73–76, 
find (a) projvu and (b) projuv. Use the Euclidean inner 
product.

73. u = (5, −3, 1), v = (1, −1, 0)
74. u = (1, 2, −1), v = (−1, 2, −1)
75. u = (0, 1, 3, −6), v = (−1, 1, 2, 2)
76. u = (−1, 4, −2, 3), v = (2, −1, 2, −1)

calculus In Exercises 77–84, find the orthogonal  
projection of f  onto g. Use the inner product in C[a, b]

〈 f, g〉 = ∫b

a
f(x)g(x) dx.

77. C[−1, 1], f(x) = x, g(x) = 1

78. C[−1, 1], f(x) = x3 − x, g(x) = 2x − 1

79. C[0, 1], f(x) = x, g(x) = ex

80. C[0, 1], f(x) = x, g(x) = e−x

81. C[−π, π], f(x) = sin x, g(x) = cos x

82. C[−π, π], f(x) = sin 2x, g(x) = cos 2x

83. C[−π, π], f(x) = x, g(x) = sin 2x

84. C[−π, π], f(x) = x, g(x) = cos 2x
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 5.2 Exercises 253

true or False? In Exercises 85 and 86, determine 
whether each statement is true or false. If a statement 
is true, give a reason or cite an appropriate statement 
from the text. If a statement is false, provide an example 
that shows the statement is not true in all cases or cite an 
appropriate statement from the text.

85. (a)  The dot product is the only inner product that can be 
defined in Rn.

 (b)  A nonzero vector in an inner product can have a 
norm of zero.

86. (a)  The norm of the vector u is the angle between u and 
the positive x-axis.

 (b)  The angle θ between a vector v and the projection 
of u onto v is obtuse when the scalar a < 0 and 
acute when a > 0, where av = projvu.

87.  Let u = (4, 2) and v = (2, −2) be vectors in R2 with 
the inner product 〈u, v〉 = u1v1 + 2u2v2.

 (a) Show that u and v are orthogonal.

 (b)  Sketch u and v. Are they orthogonal in the Euclidean 
sense?

88. Proof Prove that

 �u + v�2 + �u − v�2 = 2�u�2 + 2�v�2

 for any vectors u and v in an inner product space V.

89. Proof Prove that the function is an inner product on Rn.

 〈u, v〉 = c1u1v1 + c2u2v2 + .  .  . + cnunvn, ci > 0

90.  Proof Let u and v be nonzero vectors in an inner 
product space V. Prove that u − projvu is orthogonal  
to v.

91.  Proof Prove Property 2 of Theorem 5.7: If u, v, 
and w are vectors in an inner product space V, then 
〈u + v, w〉 = 〈u, w〉 + 〈v, w〉.

92.  Proof Prove Property 3 of Theorem 5.7: If u and v 
are vectors in an inner product space V and c is any real 
number, then 〈u, cv〉 = c〈u, v〉.

93.  guided Proof Let W  be a subspace of the inner  
product space V. Prove that the set

 W⊥ = {v ∈ V: 〈v, w〉 = 0 for all w ∈ W}
 is a subspace of V.

  Getting Started: To prove that W⊥ is a subspace of 
V, you must show that W⊥ is nonempty and that the  
closure conditions for a subspace hold (Theorem 4.5).

   (i) Find a vector in W⊥ to conclude that it is nonempty.

  (ii)  To show the closure of W⊥ under addition, you 
need to show that 〈v1 + v2, w〉 = 0 for all w ∈ W  
and for any v1, v2 ∈ W⊥. Use the properties of 
inner products and the fact that 〈v1, w〉 and 〈v2, w〉 
are both zero to show this.

 (iii)  To show closure under multiplication by a scalar, 
proceed as in part (ii). Use the properties of inner 
products and the condition of belonging to W⊥.

 94.  Use the result of Exercise 93 to find W⊥ when W  is the 
span of (1, 2, 3) in V = R3.

 95.  guided Proof Let 〈u, v〉 be the Euclidean inner 
product on Rn. Use the fact that 〈u, v〉 = uTv to prove 
that for any n × n matrix A,

  (a) 〈ATAu, v〉 = 〈u, Av〉
  and

  (b) 〈ATAu, u〉 = �Au�2.

   Getting Started: To prove (a) and (b), make use of both 
the properties of transposes (Theorem 2.6) and the 
properties of the dot product (Theorem 5.3).

   (i)  To prove part (a), make repeated use of the property  
〈u, v〉 = uTv and Property 4 of Theorem 2.6.

  (ii)  To prove part (b), make use of the property 
〈u, v〉 = uTv, Property 4 of Theorem 2.6, and 
Property 4 of Theorem 5.3.

96. CAPSTONE
(a)  Explain how to determine whether a function 

defines an inner product.

(b)  Let u and v be vectors in an inner product space V, 
such that v ≠ 0. Explain how to find the orthogonal  
projection of u onto v.

Finding Inner Product Weights In Exercises 97–100, 
find c1 and c2 for the inner product of R2,

〈u, v〉 = c1u1v1 + c2u2v2

such that the graph represents a unit circle as shown.

 97. y

x
−2−3 2 3

−2

−3

2

3

||u|| = 1

  98. y

x

||u|| = 1

−3 1 3−1

−4

1

4

 99. y

x

||u|| = 1

−3−5 1 3 5

−5

1

5

 100. y

x

||u|| = 1

−6 6

−4

−6

4

6

101. Consider the vectors

  u = (6, 2, 4) and v = (1, 2, 0)
   from Example 10. Without using Theorem 5.9, show 

that among all the scalar multiples cv of the vector 
v, the projection of u onto v is the vector closest to  
u—that is, show that d(u, projvu) is a minimum.
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254 Chapter 5 Inner Product Spaces

5.3 Orthonormal Bases: Gram-Schmidt Process

  Show that a set of vectors is orthogonal and forms an orthonormal 
basis, and represent a vector relative to an orthonormal basis.

 Apply the Gram-Schmidt orthonormalization process.

OrthOgOnal and OrthOnOrmal SetS

You saw in Section 4.7 that a vector space can have many different bases. While studying  
that section, you may have noticed that some bases are more convenient than others. For 
example, R3 has the basis B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. This set is the standard basis  
for R3 because it has important characteristics that are particularly useful. One important  
characteristic is that the three vectors in the basis are mutually orthogonal. That is,

(1, 0, 0) ∙ (0, 1, 0) = 0

(1, 0, 0) ∙ (0, 0, 1) = 0

(0, 1, 0) ∙ (0, 0, 1) = 0.

A second important characteristic is that each vector in the basis is a unit vector. (Verify 
this by inspection.)

This section identifies some advantages of using bases consisting of mutually 
orthogonal unit vectors and develops a procedure for constructing such bases, known 
as the Gram-Schmidt orthonormalization process.

For S = {v1, v2, .  .  . , vn}, this definition has the form below.

 Orthogonal Orthonormal

1. 〈vi, vj〉 = 0, i ≠ j 1. 〈vi, vj〉 = 0, i ≠ j

 2. �vi� = 1, i = 1, 2, .  .  . , n

If S is a basis, then it is an orthogonal basis or an orthonormal basis, respectively.
The standard basis for Rn is orthonormal, but it is not the only orthonormal basis 

for Rn. For example, a nonstandard orthonormal basis for R3 can be formed by rotating 
the standard basis about the z-axis, resulting in

B = {(cos θ, sin θ, 0), (−sin θ, cos θ, 0), (0, 0, 1)}

as shown below. Verify that the dot product of any two distinct vectors in B is zero, and 
that each vector in B is a unit vector.

k

j
i

x y

z

v2

v1

v3

θ

definitions of Orthogonal and Orthonormal Sets

A set S of vectors in an inner product space V is orthogonal when every pair of 
vectors in S is orthogonal. If, in addition, each vector in the set is a unit vector, 
then S is orthonormal.

remarK
In this section, when the 
inner product space is Rn or a 
subspace of Rn, assume that 
the inner product used is the 
Euclidean inner product (dot 
product) unless otherwise 
noted.
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Example 1 describes another nonstandard orthonormal basis for R3.

  a nonstandard Orthonormal Basis for R3

Show that the set is an orthonormal basis for R3.

S = {v1, v2, v3} = {( 1

√2
, 

1

√2
, 0), (−√2

6
, 
√2
6

, 
2√2

3 ), (2
3

, −
2
3

, 
1
3)}

SOlUtiOn

First show that the three vectors are mutually orthogonal.

 v1 ∙ v2 = −
1
6

+
1
6

+ 0 = 0

 v1 ∙ v3 =
2

3√2
−

2

3√2
+ 0 = 0

 v2 ∙ v3 = −
√2
9

−
√2
9

+
2√2

9
= 0

Now, each vector is of length 1 because

�v1� = √v1 ∙ v1 = √1
2 + 1

2 + 0 = 1

�v2� = √v2 ∙ v2 = √ 1
18 + 1

18 + 8
9 = 1

�v3� = √v3 ∙ v3 = √4
9 + 4

9 + 1
9 = 1.

So, S is an orthonormal set. The three vectors do not lie in the same plane (see Figure 
5.11), so you know that they span R3. By Theorem 4.12, they form a (nonstandard) 
orthonormal basis for R3. 

  an Orthonormal Basis for P3

In P3, with the inner product

〈 p, q〉 = a0b0 + a1b1 + a2b2 + a3b3

the standard basis B = {1, x, x2, x3} is orthonormal. The verification of this is left as an 
exercise. (See Exercise 17.) 

figure 5.11

k

j
i

x y
,

, ,−, − ,

, 01

3

1
2

2   2

2(
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)

))

z

2 22
3

2
3

1
3

v1

v2
v3

6 6

linear
algeBra
applied

Time-frequency analysis of irregular physiological signals, 
such as beat-to-beat cardiac rhythm variations (also known 
as heart rate variability or HRV), can be difficult. This is 
because the structure of a signal can include multiple 
periodic, nonperiodic, and pseudo-periodic components. 
Researchers have proposed and validated a simplified HRV 
analysis method called orthonormal-basis partitioning and 
time-frequency representation (OPTR). This method can 
detect both abrupt and slow changes in the HRV signal’s 
structure, divide a nonstationary HRV signal into segments 
that are “less nonstationary,” and determine patterns in the 
HRV. The researchers found that although it had poor time 
resolution with signals that changed gradually, the OPTR
method accurately represented multicomponent and abrupt 
changes in both real-life and simulated HRV signals. 
(Source: Orthonormal-Basis Partitioning and Time-Frequency 
Representation of Cardiac Rhythm Dynamics, Aysin, Benhur, et al, 
IEEE Transactions on Biomedical Engineering, 52, no. 5)

Sebastian Kaulitzki/Shutterstock.com
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256 Chapter 5 Inner Product Spaces

The orthogonal set in the next example is used to construct Fourier approximations 
of continuous functions. (See Section 5.5.)

 an Orthogonal Set in C [0, 2π] (Calculus)

In C[0, 2π], with the inner product

〈 f, g〉 = ∫2π

0
f(x)g(x) dx

show that the set S = {1, sin x, cos x, sin 2x, cos 2x, .  .  . , sin nx, cos nx} is orthogonal.

SOlUtiOn

To show that this set is orthogonal, verify the inner products listed below, where m and 
n are positive integers.

 〈1, sin nx〉 = ∫2π

0
sin nx dx = 0

 〈1, cos nx〉 = ∫2π

0
cos nx dx = 0

 〈sin mx, cos nx〉 = ∫2π

0
sin mx cos nx dx = 0

 〈sin mx, sin nx〉 = ∫2π

0
 sin mx sin nx dx = 0,  m ≠ n

〈cos mx, cos nx〉 = ∫2π

0
cos mx cos nx dx = 0,  m ≠ n

One of these inner products is verified below, and the others are left to you. If 
m ≠ n, then use the formula for rewriting a product of trigonometric functions as a sum 
to obtain

∫2π

0
 sin mx cos nx dx =

1
2∫

2π

0
[sin(m + n)x + sin(m − n)x] dx = 0.

If m = n, then

∫2π

0
sin nx cos nx dx =

1
2n[sin2 nx]

2π

0
= 0. 

The set S in Example 3 is orthogonal but not orthonormal. An orthonormal set can 
be formed, however, by normalizing each vector in S. That is,

 �1�2 = ∫2π

0
dx = 2π

 �sin nx�2 = ∫2π

0
sin2 nx dx = π

�cos nx�2 = ∫2π

0
cos2 nx dx = π

so it follows that the set

{ 1

√2π
, 

1

√π
 sin x, 

1

√π
 cos x, .  .  . , 

1

√π
 sin nx, 

1

√π
 cos nx}

is orthonormal.

© Science and Society/SuperStock

Jean-Baptiste Joseph fourier
(1768–1830)

Fourier was born in Auxerre, 
France. He is credited as a 
significant contributor to 
the field of education for 
scientists, mathematicians, 
and engineers. His research 
led to important results 
pertaining to eigenvalues 
(Section 7.1), differential 
equations, and what would 
later become known as Fourier 
series (representations of 
functions using trigonometric 
series). His work forced 
mathematicians to 
reconsider the 
accepted, but 
narrow, definition 
of a function.
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 5.3 Orthonormal Bases: Gram-Schmidt Process 257

Each set in Examples 1, 2, and 3 is linearly independent. This is a characteristic of 
any orthogonal set of nonzero vectors, as stated in the next theorem.

prOOf

You need to show that the vector equation

c1v1 + c2v2 + .  .  . + cnvn = 0

implies c1 = c2 = .  .  . = cn = 0. To do this, form the inner product of both sides of 
the equation with each vector in S. That is, for each i,

 〈(c1v1 + c2v2 + .  .  . + civi + .  .  . + cnvn), vi〉 = 〈0, vi〉
 c1〈v1, vi〉 + c2〈v2, vi〉 + .  .  . + ci〈vi, vi〉 + .  .  . + cn〈vn, vi〉 = 0.

Now, S is orthogonal, so 〈vi, vj〉 = 0 for j ≠ i, and the equation reduces to

ci〈vi, vi〉 = 0.

But each vector in S is nonzero, so you know that

〈vi, vi〉 = �vi�2 ≠ 0.

This means that every ci must be zero and the set must be linearly independent. 

As a consequence of Theorems 4.12 and 5.10, you have the corollary below.

  Using Orthogonality to test for a Basis

Show that the set S below is a basis for R4.

 v1 v2 v3 v4

S = {(2, 3, 2, −2), (1, 0, 0, 1), (−1, 0, 2, 1), (−1, 2, −1, 1)}

SOlUtiOn

The set S has four nonzero vectors. By the corollary to Theorem 5.10, you can show 
that S is a basis for R4 by showing that it is an orthogonal set.

v1 ∙ v2 = 2 + 0 + 0 − 2 = 0

v1 ∙ v3 = −2 + 0 + 4 − 2 = 0

v1 ∙ v4 = −2 + 6 − 2 − 2 = 0

v2 ∙ v3 = −1 + 0 + 0 + 1 = 0

v2 ∙ v4 = −1 + 0 + 0 + 1 = 0

v3 ∙ v4 = 1 + 0 − 2 + 1 = 0

S is orthogonal, and by the corollary to Theorem 5.10, it is a basis for R4. 

theOrem 5.10 Orthogonal Sets are linearly independent

If S = {v1, v2, .  .  . , vn} is an orthogonal set of nonzero vectors in an inner  
product space V, then S is linearly independent.

theOrem 5.10 Corollary

If V is an inner product space of dimension n, then any orthogonal set of n  
nonzero vectors is a basis for V.
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258 Chapter 5 Inner Product Spaces

Section 4.7 discusses a technique for finding a coordinate representation relative to 
a nonstandard basis. When the basis is orthonormal, this procedure can be streamlined.

Before looking at this procedure, consider an example in R2. Figure 5.12 shows 
an orthonormal basis for R2, i = (1, 0) and j = (0, 1). Any vector w in R2 can be  
represented as w = w1 + w2, where w1 = projiw and w2 = projjw. The vectors i and 
j are unit vectors, so it follows that w1 = (w ∙ i)i and w2 = (w ∙ j)j. Consequently,

w = w1 + w2 = (w ∙ i)i + (w ∙ j)j = c1i + c2 j

which shows that the coefficients c1 and c2 are simply the dot products of w with the 
respective basis vectors. The next theorem generalizes this.

prOOf

B is a basis for V, so there must exist unique scalars c1, c2, .  .  . , cn such that

w = c1v1 + c2v2 + .  .  . + cnvn.

Taking the inner product (with vi) of both sides of this equation, you have

 〈w, vi〉 = 〈(c1v1 + c2v2 + .  .  . + cnvn), vi〉
 = c1〈v1, vi〉 + c2〈v2, vi〉 + .  .  . + cn〈vn, vi〉

and by the orthogonality of B, this equation reduces to

〈w, vi〉 = ci〈vi, vi〉.

B is orthonormal, so you have 〈vi, vi〉 = �vi�2 = 1, and it follows that 〈w, vi〉 = ci. 

In Theorem 5.11, the coordinates of w relative to the orthonormal basis B are 
called the Fourier coefficients of w relative to B, after Jean-Baptiste Joseph Fourier. 
The corresponding coordinate matrix of w relative to B is

[w]B = [c1  c2 .  .  . cn]T = [〈w, v1〉  〈w, v2〉  .  .  .  〈w, vn〉]T.

  representing Vectors relative 
to an Orthonormal Basis

Find the coordinate matrix of w = (5, −5, 2) relative to the orthonormal basis B for 
R3 below.

 v1 v2 v3

B = {(3
5, 45, 0), (−4

5, 35, 0), (0, 0, 1)}
SOlUtiOn

B is orthonormal (verify this), so use Theorem 5.11 to find the coordinates.

w ∙ v1 = (5, −5, 2) ∙ (3
5, 45, 0) = −1

w ∙ v2 = (5, −5, 2) ∙ (−4
5, 35, 0) = −7

w ∙ v3 = (5, −5, 2) ∙ (0, 0, 1) = 2

So, the coordinate matrix relative to B is [w]B = [−1   −7   2]T. 

figure 5.12

j

i

w = w1 + w2

w2 = projjw

w1 = projiw

w = w1 + w2 = c1i + c2j

theOrem 5.11 Coordinates relative to an Orthonormal Basis

If B = {v1, v2, .  .  . , vn} is an orthonormal basis for an inner product space V, 
then the coordinate representation of a vector w relative to B is

w = 〈w, v1〉v1 + 〈w, v2〉v2 + .  .  . + 〈w, vn〉vn.
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gram-SChmidt OrthOnOrmalizatiOn prOCeSS

Having seen one of the advantages of orthonormal bases (the straightforwardness  
of coordinate representation), you will now look at a procedure for finding such a  
basis. This procedure is called the Gram-Schmidt orthonormalization process, after  
the Danish mathematician Jorgen Pederson Gram (1850–1916) and the German  
mathematician Erhardt Schmidt (1876–1959). It has three steps.

1.  Begin with a basis for the inner product space. It need not be orthogonal nor  
consist of unit vectors.

2. Convert the basis to an orthogonal basis.

3. Normalize each vector in the orthogonal basis to form an orthonormal basis.

Rather than give a proof of this theorem, it is more instructive to discuss a special 
case for which you can use a geometric model. Let {v1, v2} be a basis for R2, as shown 
in Figure 5.13. To determine an orthogonal basis for R2, first choose one of the original 
vectors, say v1, and call it w1. Now you want to find a second vector orthogonal to w1. 
The figure below shows that v2 − projv1

v2 has this property.

w2

v2

v1 = w1

projv1
v2

w2 = v2 −  projv1
v2

is orthogonal to w1 = v1.

By letting w1 = v1 and w2 = v2 − projv1
v2 = v2 −

v2 ∙ w1

w1 ∙ w1
w1, you can conclude

that the set {w1, w2} is orthogonal. By the corollary to Theorem 5.10, it is a basis for 
R2. Finally, by normalizing w1 and w2, you obtain the orthonormal basis for R2 below.

{u1, u2} = { w1

�w1�
, 

w2

�w2�
}

figure 5.13

v1

v2

{v1, v2} is a basis for R2.

theOrem 5.12 gram-Schmidt Orthonormalization process

1. Let B = {v1, v2, .  .  . , vn} be a basis for an inner product space V.
2. Let B′ = {w1, w2, .  .  . , wn}, where

w1 = v1

w2 = v2 −
〈v2, w1〉
〈w1, w1〉

w1

w3 = v3 −
〈v3, w1〉
〈w1, w1〉

w1 −
〈v3, w2〉
〈w2, w2〉

w2

 ⋮
wn = vn −

〈vn, w1〉
〈w1, w1〉

w1 −
〈vn, w2〉
〈w2, w2〉

w2 − .  .  . −
〈vn, wn−1〉

〈wn−1, wn−1〉
wn−1.

Then B′ is an orthogonal basis for V.

3. Let ui =
wi

�wi�
. Then B″ = {u1, u2, .  .  . , un} is an orthonormal basis for V.

Also, span{v1, v2, .  .  . , vk} = span{u1, u2, .  .  . , uk} for k = 1, 2, .  .  . , n.

remarK
The Gram-Schmidt  
orthonormalization process 
leads to a matrix factorization 
similar to the LU-factorization 
you studied in Chapter 2. You 
are asked to investigate this 
QR-factorization in Project 1  
on page 293.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



260 Chapter 5 Inner Product Spaces

  applying the gram-Schmidt 
Orthonormalization process

Apply the Gram-Schmidt orthonormalization process to the basis B for R2 below.

 v1 v2

B = {(1, 1), (0, 1)}

SOlUtiOn

The Gram-Schmidt orthonormalization process produces

w1 = v1 = (1, 1)

w2 = v2 −
v2 ∙ w1

w1 ∙ w1
w1 = (0, 1) −

1
2

(1, 1) = (−
1
2

, 
1
2).

The set B′ = {w1, w2} is an orthogonal basis for R2. By normalizing each vector in B′, 
you obtain

u1 =
w1

�w1�
=

1

√2
(1, 1) = (√2

2
, 
√2
2 )

u2 =
w2

�w2�
=

1

1�√2 (−1
2

, 
1
2) = √2(−1

2
, 

1
2) = (−√2

2
, 
√2
2 ).

So, B″ = {u1, u2} is an orthonormal basis for R2. See Figure 5.14. 

  applying the gram-Schmidt 
Orthonormalization process

Apply the Gram-Schmidt orthonormalization process to the basis B for R3 below.

 v1 v2 v3

B = {(1, 1, 0), (1, 2, 0), (0, 1, 2)}

SOlUtiOn

Applying the Gram-Schmidt orthonormalization process produces

w1 = v1 = (1, 1, 0)

w2 = v2 −
v2 ∙ w1

w1 ∙ w1
w1 = (1, 2, 0) −

3
2

(1, 1, 0) = (−
1
2

, 
1
2

, 0)
 w3 = v3 −

v3 ∙ w1

w1 ∙ w1
w1 −

v3 ∙ w2

w2 ∙ w2
w2

 = (0, 1, 2) −
1
2

(1, 1, 0) −
1�2
1�2 (−

1
2

, 
1
2

, 0)
 = (0, 0, 2).

The set B′ = {w1, w2, w3} is an orthogonal basis for R3. Normalizing each vector in  
B′ produces

u1 =
w1

�w1�
=

1

√2
(1, 1, 0) = (√2

2
, 
√2
2

, 0)
u2 =

w2

�w2�
=

1

1�√2 (−
1
2

, 
1
2

, 0) = (−√2
2

, 
√2
2

, 0)
u3 =

w3

�w3�
=

1
2

(0, 0, 2) = (0, 0, 1).

So, B″ = {u1, u2, u3} is an orthonormal basis for R3. 

figure 5.14

1
x

, ,−
2 22 2
2 22 2( () )

y

−1

u1u2

Orthonormal basis: B″ = {u1, u2}

(1, 1)(0, 1)

1−1
x

1

y

v1v2

Given basis: B = {v1, v2}

remarK
An orthonormal set derived  
by the Gram-Schmidt  
orthonormalization process 
depends on the order of 
the vectors in the basis. For 
instance, rework Example 6 
with the original basis ordered 
as {v2, v1} rather than {v1, v2}.
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Examples 6 and 7 apply the Gram-Schmidt orthonormalization process to bases for 
R2 and R3. The process works equally well for a subspace of an inner product space. 
The next example demonstrates.

  applying the gram-Schmidt
Orthonormalization process

See LarsonLinearAlgebra.com for an interactive version of this type of example.

The vectors

v1 = (0, 1, 0) and v2 = (1, 1, 1)

span a plane in R3. Find an orthonormal basis for this subspace.

SOlUtiOn

Applying the Gram-Schmidt orthonormalization process produces

w1 = v1 = (0, 1, 0)

w2 = v2 −
v2 ∙ w1

w1 ∙ w1
w1 = (1, 1, 1) −

1
1

(0, 1, 0) = (1, 0, 1)

Normalizing w1 and w2 produces the orthonormal set

u1 =
w1

�w1�
= (0, 1, 0)

u2 =
w2

�w2�
=

1

√2
(1, 0, 1) = (√2

2
, 0, 

√2
2 ).

See Figure 5.15. 

  applying the gram-Schmidt
Orthonormalization process (Calculus)

Apply the Gram-Schmidt orthonormalization process to the basis B = {1, x, x2} in P2, 
using the inner product

〈 p, q〉 = ∫1

−1
p(x)q(x) dx.

SOlUtiOn

Let B = {1, x, x2} = {v1, v2, v3}. Then you have

w1 = v1 = 1

w2 = v2 −
〈v2, w1〉
〈w1, w1〉

w1 = x −
0
2

(1) = x

w3 = v3 −
〈v3, w1〉
〈w1, w1〉

w1 −
〈v3, w2〉
〈w2, w2〉

w2 = x2 −
2�3
2

(1) −
0

2�3
(x) = x2 −

1
3

.

Now, by normalizing B′ = {w1, w2, w3}, you have

u1 =
w1

�w1�
=

1

√2
(1) =

1

√2

u2 =
w2

�w2�
=

1

√2�3
(x) =

√3

√2
x

u3 =
w3

�w3�
=

1

√8�45 (x2 −
1
3) =

√5

2√2
(3x2 − 1).

In Exercises 43–48, you are asked to verify these calculations. 

figure 5.15

y

x

(0, 1, 0)

2
2

2
2

z

u1

u2

, 0,( )

remarK
The polynomials u1, u2, and 
u3 in Example 9 are called the 
first three normalized legendre 
polynomials, after the French 
mathematician Adrien-Marie 
Legendre (1752–1833).
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The computations in the Gram-Schmidt orthonormalization process are sometimes  
simpler when you normalize each vector wi before you use it to determine the next 
vector. This alternative form of the Gram-Schmidt orthonormalization process has 
the steps listed below.

u1 =
w1

�w1�
=

v1

�v1�

u2 =
w2

�w2�
, where w2 = v2 − 〈v2, u1〉u1

u3 =
w3

�w3�
, where w3 = v3 − 〈v3, u1〉u1 − 〈v3, u2〉u2

 ⋮
un =

wn

�wn�
, where wn = vn − 〈vn, u1〉u1 − .  .  . − 〈vn, un−1〉un−1

  alternative form of the gram-Schmidt 
Orthonormalization process

Find an orthonormal basis for the solution space of the homogeneous linear system.

x1 + x2

2x1 + x2

+
+ 2x3 +

7x4 = 0
6x4 = 0

SOlUtiOn

The augmented matrix for this system reduces as shown below.

[1
2

1
1

0
2

7
6

0
0]  [1

0
0
1

2
−2

−1
8

0
0]

If you let x3 = s and x4 = t, then each solution of the system has the form

[
x1

x2

x3

x4

] = [
−2s + t
2s − 8t

s
t
] = s[

−2
2
1
0
] + t[

1
−8

0
1
].

So, one basis for the solution space is

B = {v1, v2} = {(−2, 2, 1, 0), (1, −8, 0, 1)}.

To find an orthonormal basis B′ = {u1, u2}, use the alternative form of the  
Gram-Schmidt orthonormalization process, as shown below.

 u1 =
v1

�v1�

 = (−
2
3

, 
2
3

, 
1
3

, 0)
 w2 = v2 − 〈v2, u1〉u1

 = (1, −8, 0, 1) − [(1, −8, 0, 1) ∙ (−2
3

, 
2
3

, 
1
3

, 0)](−
2
3

, 
2
3

, 
1
3

, 0)
 = (−3, −4, 2, 1)

 u2 =
w2

�w2�

 = (− 3

√30
, −

4

√30
, 

2

√30
, 

1

√30)  
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5.3 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

Orthogonal and Orthonormal Sets In Exercises  
1–12, (a) determine whether the set of vectors in Rn is  
orthogonal, (b) if the set is orthogonal, then determine 
whether it is also orthonormal, and (c) determine whether  
the set is a basis for Rn.

 1. {(2, −4), (2, 1)}  2. {(−3, 5), (4, 0)}
 3. {(3

5, 45), (−4
5, 35)}  4. {(2, 1), (1

3, −2
3)}

 5. {(4, −1, 1), (−1, 0, 4), (−4, −17, −1)}
 6. {(2, −4, 2), (0, 2, 4), (−10, −4, 2)}

 7. {(√2
3

, 0, −
√2
6 ), (0, 

2√5
5

, −
√5
5 ), (√5

5
, 0, 

1
2)}

 8. {(√2
2

, 0, 
√2
2 ), (−

√6
6

, 
√6
3

, 
√6
6 ), (√3

3
, 
√3
3

, −
√3
3 )}

 9. {(2, 5, −3), (4, 2, 6)}
10. {(−6, 3, 2, 1), (2, 0, 6, 0)}

11. {(√2
2

, 0, 0, 
√2
2 ), (0, 

√2
2

, 
√2
2

, 0), (−
1
2

, 
1
2

, −
1
2

, 
1
2)}

12. {(√10
10

, 0, 0, 
3√10

10 ), (0, 0, 1, 0), (0, 1, 0, 0),

 {(−
3√10

10
, 0, 0, 

√10
10 )}

normalizing an Orthogonal Set In Exercises 13–16, 
(a) show that the set of vectors in Rn is orthogonal, and 
(b) normalize the set to produce an orthonormal set.

13. {(−1, 3), (12, 4)} 14. {(2, −5), (10, 4)}
15. {(√3, √3, √3), (−√2, 0, √2)}
16. {( 6

13, − 2
13, 3

13), ( 2
13, 6

13, 0)}
17.  Complete Example 2 by verifying that {1, x, x2, x3} 

is an orthonormal basis for P3 with the inner product 
〈 p, q〉 = a0b0 + a1b1 + a2b2 + a3b3.

18.  Verify that {(sin θ, cos θ), (cos θ, −sin θ)} is an  
orthonormal basis for R2.

finding a Coordinate matrix In Exercises 19–24, find 
the coordinate matrix of w relative to the orthonormal 
basis B in Rn.

19. w = (1, 2), B = {(−
2√13

13
, 

3√13
13 ), (3√13

13
, 

2√13
13 )}

20. w = (4, −3), B = {(√3
3

, 
√6
3 ), (−

√6
3

, 
√3
3 )}

21. w = (2, −2, 1),

 B = {(√10
10

, 0, 
3√10

10 ), (0, 1, 0), (−
3√10

10
, 0, 

√10
10 )}

22. w = (3, −5, 11), B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

23. w = (5, 10, 15), B = {(3
5, 45, 0), (−4

5, 35, 0), (0, 0, 1)}
24. w = (2, −1, 4, 3),

 B = {( 5
13, 0, 12

13, 0), (0, 1, 0, 0), (−12
13, 0, 5

13, 0), (0, 0, 0, 1)}
applying the gram-Schmidt process In Exercises 
25–34, apply the Gram-Schmidt orthonormalization 
process to transform the given basis for Rn into an  
orthonormal basis. Use the vectors in the order in which 
they are given.

25. B = {(3, 4), (1, 0)} 26. B = {(−1, 2), (1, 0)}
27. B = {(0, 1), (2, 5)} 28. B = {(4, −3), (3, 2)}
29. B = {(2, 1, −2), (1, 2, 2), (2, −2, 1)}
30. B = {(1, 0, 0), (1, 1, 1), (1, 1, −1)}
31. B = {(4, −3, 0), (1, 2, 0), (0, 0, 4)}
32. B = {(0, 1, 2), (2, 0, 0), (1, 1, 1)}
33. B = {(0, 1, 1), (1, 1, 0), (1, 0, 1)}
34. B = {(3, 4, 0, 0), (−1, 1, 0, 0), (2, 1, 0, −1), (0, 1, 1, 0)}

applying the gram-Schmidt process In Exercises 
35–40, apply the Gram-Schmidt orthonormalization 
process to transform the given basis for a subspace of 
Rn into an orthonormal basis for the subspace. Use the 
vectors in the order in which they are given.

35. B = {(−8, 3, 5)} 36. B = {(2, −9, 6)}
37. B = {(3, 4, 0), (2, 0, 0)}
38. B = {(1, 3, 0), (3, 0, −3)}
39. B = {(1, 2, −1, 0), (2, 2, 0, 1), (1, 1, −1, 0)}
40. B = {(7, 24, 0, 0), (0, 0, 1, 1), (0, 0, 1, −2)}

41.  Use the inner product 〈u, v〉 = 2u1v1 + u2v2 in R2 
and the Gram-Schmidt orthonormalization process to  
transform {(2, −1), (−2, 10)} into an orthonormal basis.

42.  Writing Explain why the result of Exercise 41 is not 
an orthonormal basis when you use the Euclidean inner 
product on R2.

Calculus In Exercises 43–48, let B = {1, x, x2} be a 
basis for P2 with the inner product

〈 p, q〉 = ∫1

−1
p(x)q(x) dx.

Complete Example 9 by verifying the inner products.

43. 〈x, 1〉 = 0 44. 〈1, 1〉 = 2

45. 〈x2, 1〉 = 2
3 46. (x2, x〉 = 0

47. 〈x, x〉 = 2
3 48. 〈x2 − 1

3, x2 − 1
3〉 = 8

45
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264 Chapter 5 Inner Product Spaces

applying the alternative form of the gram-Schmidt 
process In Exercises 49–54, apply the alternative  
form of the Gram-Schmidt orthonormalization process 
to find an orthonormal basis for the solution space of  
the homogeneous linear system.

49. x1 − 2x2 + x3 = 0 50. x1 + 3x2 − 3x3 = 0

51.  x1 −  x2 +  x3 +  x4 = 0

  x1 −  2x2 +  x3 +  x4 = 0

52.  x1 +  x2 −  x3 −  x4 =  0

  2x1 +  x2 −  2x3 −  2x4 =  0

53.  2x1 +  x2 −  6x3 +  2x4 =  0

  x1 +  2x2 −  3x3 +  4x4 =  0

  x1 +  x2 −  3x3 +  2x4 =  0

54. − x1 +  x2 −  x3 +  x4 −  x5 =  0

  2x1 −  x2 +  2x3 −  x4 +  2x5 =  0

true or false? In Exercises 55 and 56, determine 
whether each statement is true or false. If a statement 
is true, give a reason or cite an appropriate statement 
from the text. If a statement is false, provide an example 
that shows the statement is not true in all cases or cite an 
appropriate statement from the text.

55. (a)  A set S of vectors in an inner product space V  
is orthogonal when every pair of vectors in S is 
orthogonal.

 (b)  An orthonormal basis derived by the Gram-Schmidt 
orthonormalization process does not depend on the 
order of the vectors in the basis.

56. (a)  A set S of vectors in an inner product space V is 
orthonormal when every vector is a unit vector and 
each pair of vectors is orthogonal.

 (b)  If a set of nonzero vectors S in an inner product 
space V is orthogonal, then S is linearly independent.

Orthonormal Sets in P2 In Exercises 57–62, let 
p(x) = a0 + a1x + a2x

2 and q(x) = b0 + b1x + b2x
2 

be vectors in P2 with 〈 p, q〉 = a0b0 + a1b1 + a2b2. 
Determine whether the polynomials form an  
orthonormal set, and if not, apply the Gram-Schmidt 
orthonormalization process to form an orthonormal set.

57. {1, x, x2} 58. {x2, 2x + x2, 1 + 2x + x2}

59. {−1 + x2, −1 + x} 60. {5x + 12x2

13
, 

12x − 5x2

13
, 1}

61. {1 + x2

√2
, 

−1 + x + x2

√3
}

62. {√2(−1 + x2), √2(2 + x + x2)}
63.  proof Let {u1, u2, .  .  . , un} be an orthonormal basis 

for Rn. Prove that 

 �v�2 = ∣v ∙ u1∣2 + ∣v ∙ u2∣2 + .  .  . + ∣v ∙ un∣2

  for any vector v in Rn. This equation is Parseval’s 
equality.

64.  guided proof Prove that if w is orthogonal to each 
vector in S = {v1, v2, .  .  . , vn}, then w is orthogonal to 
every linear combination of vectors in S.

  Getting Started: To prove that w is orthogonal to every 
linear combination of vectors in S, you need to show 
that their inner product is 0.

   (i)  Write v as a linear combination of vectors, with 
arbitrary scalars c1, .  .  . , cn, in S.

  (ii) Form the inner product of w and v.

 (iii)  Use the properties of inner products to rewrite the 
inner product 〈w, v〉 as a linear combination of the 
inner products 〈w, vi〉, i = 1, .  .  . , n.

 (iv)  Use the fact that w is orthogonal to each vector in S  
to lead to the conclusion that w is orthogonal to v.

65.  proof Let P be an n × n matrix. Prove that the three 
conditions are equivalent.

 (a) P−1 = PT. (Such a matrix is orthogonal.)

 (b)  The row vectors of P form an orthonormal basis for Rn.

 (c)  The column vectors of P form an orthonormal basis 
for Rn.

66.  proof Let W  be a subspace of Rn. Prove that the  
intersection of W  and W⊥ is {0}, where W⊥ is the  
subspace of Rn given by

 W⊥ = {v: w ∙ v = 0 for every w in W}.

fundamental Subspaces In Exercises 67 and 68, find 
bases for the four fundamental subspaces of the matrix 
A listed below.

N(A) = nullspace of A N(AT ) = nullspace of AT

R(A) = column space of A R(AT ) = column space of AT

Then show that N(A) = R(AT)⊥ and N(AT) = R(A)⊥.

67. [
1
0
1

1
2
3

−1
1
0] 68. [

0
0
0

1
−2
−1

−1
2
1]

69.  Let A be an m × n matrix and let N(A), N(AT), R(A), and 
R(AT) be the subspaces in Exercises 67 and 68.

 (a) Explain why R(AT) is the same as the row space of A.

 (b) Prove that N(A) ⊂ R(AT)⊥.

 (c) Prove that N(A) = R(AT)⊥.

 (d) Prove that N(AT) = R(A)⊥.

70.  CAPSTONE Let B be a basis for an inner 
product space V. Explain how to apply the 
Gram-Schmidt orthonormalization process to form 
an orthonormal basis B′ for V.

71. Find an orthonormal basis for R4 that includes the vectors

 v1 = ( 1

√2
, 0, 

1

√2
, 0) and v2 = (0, −

1

√2
, 0, 

1

√2).
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5.4 Mathematical Models and Least Squares Analysis

 Define the least squares problem.

  Find the orthogonal complement of a subspace and the projection 
of a vector onto a subspace.

 Find the four fundamental subspaces of a matrix.

 Solve a least squares problem.

 Use least squares for mathematical modeling.

The LeasT squares ProbLem

In this section, you will study inconsistent systems of linear equations and learn how  
to find the “best possible solution” of such a system. The necessity of “solving”  
inconsistent systems arises in the computation of least squares regression lines, as  
illustrated in Example 1.

  Least squares regression Line

Let (1, 0), (2, 1), and (3, 3) be three points in R2, as shown in Figure 5.16. How can 
you find the line y = c0 + c1x that “best fits” these points? One way is to note that if 
the three points were collinear, then the system of equations below would be consistent.

c0 +
c0 +
c0 +

c1 = 0

2c1 = 1

3c1 = 3

This system can be written in the matrix form Ax = b, where

A = [
1
1
1

1
2
3], b = [

0
1
3], and x = [c0

c1
].

The points are not collinear, however, so the system is inconsistent. Although it is 
impossible to find x such that Ax = b, you can look for an x that minimizes the norm 
of the error �Ax − b�. The solution x = [c0    c1]T of this minimization problem results 
in the least squares regression line y = c0 + c1x. 

In Section 2.6, you briefly studied the least squares regression line and how to  
calculate it using matrices. Now you will combine the ideas of orthogonality and  
projection to develop this concept in more generality. To begin, consider the linear  
system Ax = b, where A is an m × n matrix and b is a column vector in Rm. You know 
how to use Gaussian elimination with back-substitution to solve for x when the system 
is consistent. When the system is inconsistent, however, it is still useful to find the “best 
possible” solution; that is, the vector x for which the difference between Ax and b is 
smallest. One way to define “best possible” is to require that the norm of Ax − b be 
minimized. This definition is the heart of the least squares problem.

Figure 5.16

1

2

3

4

x

y

2 3 41

Least squares Problem

Given an m × n matrix A and a vector b in Rm, the least squares problem is to 
find x in Rn such that �Ax − b�2 is minimized.

remarK
The term least squares comes 
from the fact that minimizing 
�Ax − b� is equivalent to  
minimizing �Ax − b�2, which  
is a sum of squares.
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266 Chapter 5 Inner Product Spaces

orThogonaL subsPaCes

To solve the least squares problem, you first need to develop the concept of orthogonal 
subspaces. Two subspaces of Rn are orthogonal when the vectors in each subspace are 
orthogonal to the vectors in the other subspace.

  orthogonal subspaces

The subspaces

S1 = span{[1
0
1], [

1
1
0]} and S2 = span{[−1

1
1]}

are orthogonal because the dot product of any vector in S1 and any vector in S2 is zero.
 

Notice in Example 2 that the zero vector is the only vector common to both S1

and S2. This is true in general. If S1 and S2 are orthogonal subspaces of Rn, then their 
intersection consists of only the zero vector. You are asked to prove this in Exercise 45.

Given a subspace S of Rn, the set of all vectors orthogonal to every vector in S is 
the orthogonal complement of S, as stated in the next definition.

The orthogonal complement of the trivial subspace {0} is all of Rn, and, conversely, 
the orthogonal complement of Rn is the trivial subspace {0}. In Example 2, the subspace 
S1 is the orthogonal complement of S2, and the subspace S2 is the orthogonal complement 
of S1. The orthogonal complement of a subspace of Rn is itself a subspace of Rn (see 
Exercise 46). You can find the orthogonal complement of a subspace of Rn by finding 
the nullspace of a matrix, as illustrated in Example 3.

Definition of orthogonal subspaces

The subspaces S1 and S2 of Rn are orthogonal when v1 ∙ v2 = 0 for all v1 in S1 
and all v2 in S2.

Definition of orthogonal Complement

If S is a subspace of Rn, then the orthogonal complement of S is the set 
S⊥ = {u ∈ Rn: v ∙ u = 0 for all vectors v ∈ S}.

Linear
aLgebra
aPPLieD

The least squares problem has a wide variety of real-life 
applications. To illustrate, Examples 9 and 10 and Exercises 
39, 40, and 41 are all least squares analysis problems, 
and they involve such diverse subject matter as world 
population, astronomy, master’s degrees awarded, 
company revenues, and galloping speeds of animals. In 
each of these applications, you are given a set of data and 
you are asked to come up with mathematical model(s) for 
the data. For example, in Exercise 40, you are given the 
annual revenues from 2008 through 2013 for General 
Dynamics Corporation. You are asked to find the least 
squares regression quadratic and cubic polynomials for 
the data, to predict the revenue for the year 2018, and to 
decide which of the models appears to be more accurate 
for predicting future revenues.

Loskutnikov/Shutterstock.com
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Finding the orthogonal Complement

Find the orthogonal complement of the subspace S of R4 spanned by the two column 
vectors v1 and v2 of the matrix A.

A = [
1
2
1
0

0
0
0
1
]

 v1 v2

soLuTion

A vector u ∈ R4 is in the orthogonal complement of S when its dot product with each 
of the columns of A, v1 and v2, is zero. So, the orthogonal complement of S consists of 
all the vectors u such that ATu = 0.

 ATu = 0

 [1
0

2
0

1
0

0
1][

x1

x2

x3

x4

] = [0
0]

That is, the orthogonal complement of S is the nullspace of the matrix AT:

S⊥ = N(AT ).

Using the techniques for solving homogeneous linear systems, you can find that a basis 
for the orthogonal complement consists of the vectors

u1 = [−2    1    0    0]T and u2 = [−1    0    1    0]T. 

Notice that R4 in Example 3 is split into two subspaces, S = span{v1, v2} and 
S⊥ = span{u1, u2}. In fact, the four vectors v1, v2, u1, and u2 form a basis for R4. Each 
vector in R4 can be uniquely written as a sum of a vector from S and a vector from S⊥. 
The next definition generalizes this concept.

  Direct sum

a. From Example 2, R3 is the direct sum of the subspaces

S1 = span{[1
0
1], [

1
1
0]} and S2 = span{[−1

1
1]}.

b. From Example 3, you can see that R4 = S ⊕ S⊥, where

S = span{[
1
2
1
0
], [

0
0
0
1
]} and S⊥ = span{[

−2
1
0
0
], [

−1
0
1
0
]}. 

Definition of Direct sum

Let S1 and S2 be two subspaces of Rn. If each vector x ∈ Rn can be uniquely  
written as a sum of a vector s1 from S1 and a vector s2 from S2, x = s1 + s2, then 
Rn is the direct sum of S1 and S2 and you can write Rn = S1 ⊕S2.
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The next theorem lists some important facts about orthogonal complements and 
direct sums.

ProoF

1.  If S = Rn or S = {0}, then Property 1 is trivial. So let {v1, v2, .  .  . , vt} be a basis  
for S, 0 < t < n. Let A be the n × t matrix whose columns are the basis vectors vi. 
Then S = R(A) (the column space of A), which implies that S⊥ = N(AT ), where AT  
is a t × n matrix of rank t (see Section 5.3, Exercise 69). The dimension of N(AT ) is 
n − t, so you have shown that

dim(S) + dim(S⊥) = t + (n − t) = n.

2.  If S = Rn or S = {0}, then Property 2 is trivial. So let {v1, v2, .  .  . , vt} 
be a basis for S and let {vt+1, vt+2, .  .  . , vn} be a basis for S⊥. The set 
{v1, v2, .  .  . , vt, vt+1, .  .  . , vn} is linearly independent and forms a basis for Rn. 
(Verify this.) Let x ∈ Rn, x = c1v1 + .  .  . + ctvt + ct+1vt+1 + .  .  . + cnvn. If 
you write v = c1v1 + .  .  . + ctvt and w = ct+1vt+1 + .  .  . + cnvn. then you have 
expressed an arbitrary vector x as the sum of a vector from S and a vector from S⊥, 
x = v + w.

To show the uniqueness of this representation, assume x = v + w = v^ + w^   
(where v^  is in S and w^  is in S⊥). This implies that v^ − v = w − w^ . The two  
vectors v^ − v and w − w^  are in both S and S⊥, and S ∩ S⊥ = {0}. So, you must 
have v^ = v and w = w^ .

3.  Let v ∈ S. Then v ∙ u = 0 for all u ∈ S⊥, which implies that v ∈ (S⊥)⊥. On the 
other hand, let v ∈ (S⊥)⊥. Then v ∈ Rn = S ⊕ S⊥, so you can write v as the unique 
sum of a vector s from S and a vector w from S⊥, v = s + w. The vector w is in S⊥, 
so it is orthogonal to every vector in S, and also to v. So,

0 = w ∙ v = w ∙ (s + w) = w ∙ s + w ∙ w = w ∙ w.

 This implies that w = 0 and v = s + w = s ∈ S. 

You studied the projection of one vector onto another in Section 5.2. This is now 
generalized to projections of a vector v onto a subspace S. Rn = S ⊕ S⊥, so every  
vector v in Rn can be uniquely written as a sum of a vector from S and a vector from S⊥:

v = v1 + v2, v1 ∈ S, v2 ∈ S⊥.

The vector v1 is the projection of v onto the subspace S, and is denoted by v1 = projSv. 
So, v2 = v − v1 = v − projSv, which implies that the vector v − projSv is orthogonal 
to the subspace S.

Given a subspace S of Rn, you can apply the Gram-Schmidt orthonormalization 
process to find an orthonormal basis for S. You can then find the projection of a vector 
v onto S using the next theorem. (You are asked to prove this theorem in Exercise 47.)

Theorem 5.13 Properties of orthogonal subspaces

Let S be a subspace of Rn. Then the properties listed below are true.

1. dim(S) + dim(S⊥) = n
2. Rn = S ⊕ S⊥

3. (S⊥)⊥ = S

Theorem 5.14 Projection onto a subspace

If {u1, u2, .  .  . , ut} is an orthonormal basis for the subspace S of Rn, and v ∈ Rn, 
then

projSv = (v ∙ u1)u1 + (v ∙ u2)u2 + .  .  . + (v ∙ ut)ut.
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Projection onto a subspace

Find the projection of the vector v = [
1
1
3] onto the subspace S of R3 spanned by the vectors

w1 = [
0
3
1] and w2 = [

2
0
0].

soLuTion

By normalizing w1 and w2 you obtain an orthonormal basis for S.

{u1, u2} = { 1

√10
w1, 

1
2

w2} = {[
0

3

√10
1

√10
], [

1
0
0]}

Use Theorem 5.14 to find the projection of v onto S.

projSv = (v ∙ u1)u1 + (v ∙ u2)u2 =
6

√10[
0

3

√10
1

√10
] + 1[

1
0
0] = [

1
9
5
3
5
]

Figure 5.17 illustrates the projection of v onto the plane S. 

Theorem 5.9 states that among all the scalar multiples of a vector u, the orthogonal  
projection of v onto u is the one closest to v. Example 5 suggests that this property  
is also true for projections onto subspaces. That is, among all the vectors in the  
subspace S, the vector projSv is the closest vector to v. Figure 5.18 illustrates these 
two results.

ProoF

Let u ∈ S, u ≠ projSv. By adding and subtracting the same quantity projSv to and from 
the vector v − u, you obtain

v − u = (v − projSv) + (projSv − u).

Observe that (projSv − u) is in S and (v − projSv) is orthogonal to S. So, (v − projSv) 
and (projSv − u) are orthogonal vectors, and you can use the Pythagorean Theorem 
(Theorem 5.6) to obtain

�v − u�2 = �v − projSv�2 + �projSv − u)�2.

u ≠ projSv, so �projSv − u�2 is positive, and you have

�v − projSv� < �v − u�. 

Figure 5.18

S

v

projsv

v −  projsv

v

uprojuv

v −  projuv

Figure 5.17

y

x

v

S

z

projsv

w1

w2

2

1

1

2

3

2 3 4

Theorem 5.15 orthogonal Projection and Distance

Let S be a subspace of Rn and let v ∈ Rn. Then, for all u ∈ S, u ≠ projSv,

�v − projSv� < �v − u�.
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FunDamenTaL subsPaCes oF a maTrix

Recall that if A is an m × n matrix, then the column space of A is a subspace of Rm  
consisting of all vectors of the form Ax, x ∈ Rn. The four fundamental subspaces of 
the matrix A are listed below (see Exercises 67 and 68 in Section 5.3).

N(A) = nullspace of A N(AT ) = nullspace of AT

R(A) = column space of A R(AT ) = column space of AT

These subspaces play a crucial role in the solution of the least squares  problem.

  Fundamental subspaces

Find the four fundamental subspaces of the matrix

A = [
1
0
0
0

2
0
0
0

0
1
0
0
].

soLuTion

The column space of A is simply the span of the first and third columns, because the 
second column is a scalar multiple of the first column. The column space of AT is equal 
to the row space of A, which is spanned by the first two rows. The nullspace of A is a 
solution space of the homogeneous system Ax = 0. Finally, the nullspace of AT is a 
solution space of the homogeneous system whose coefficient matrix is AT. A summary 
of these results is shown below.

R(A) = span{[
1
0
0
0
], [

0
1
0
0
]} R(AT ) = span{[1

2
0], [

0
0
1]}

N(A) = span{[−2
1
0]} N(AT ) = span{[

0
0
1
0
], [

0
0
0
1
]} 

In Example 6, observe that R(A) and N(AT ) are orthogonal subspaces of R4, and  
R(AT ) and N(A) are orthogonal subspaces of R3. These and other properties of the four 
fundamental subspaces are stated in the next theorem.

ProoF

To prove Property 1, let v ∈ R(A) and u ∈ N(AT). The column space of A is equal to 
the row space of AT, so ATu = 0 implies u ∙ v = 0. Property 2 follows from applying 
Property 1 to AT.

To prove Property 3, observe that R(A)⊥ = N(AT ) and Rm = R(A) ⊕ R(A)⊥. 
So, Rm = R(A) ⊕ N(AT ). A similar argument applied to R(AT ) proves Property 4. 

Theorem 5.16 Fundamental subspaces of a matrix

If A is an m × n matrix, then

1. R(A) and N(AT ) are orthogonal subspaces of Rm.
2. R(AT ) and N(A) are orthogonal subspaces of Rn.
3. R(A) ⊕ N(AT ) = Rm.
4. R(AT ) ⊕ N(A) = Rn.
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soLVing The LeasT squares ProbLem

You have now developed all the tools needed to solve the least squares problem. Recall 
that you are attempting to find a vector x that minimizes �Ax − b�, where A is an 
m × n matrix and b is a vector in Rm. Let S be the column space of A: S = R(A).  
Assume that b is not in S, because otherwise the system Ax = b would be consistent. 
You are looking for a vector Ax in S that is as close as possible to b, as illustrated in 
Figure 5.19.

From Theorem 5.15, you know that the desired vector is the projection of b onto S.
So, Ax = projSb and Ax − b = projSb − b is orthogonal to S = R(A). However, this 
implies that Ax − b is in R(A)⊥, which equals N(AT ). This is the crucial observation: 
Ax − b is in the nullspace of AT. So, you have 

 AT(Ax − b) = 0

ATAx − ATb = 0

 ATAx = ATb.

The solution of the least squares problem comes down to solving the n × n linear 
system of equations ATAx = ATb. These equations are the normal equations of the 
least squares problem Ax = b.

  Finding the Least squares solution

See LarsonLinearAlgebra.com for an interactive version of this type of example.

Find the solution of the least squares problem

 Ax = b

 [
1
1
1

1
2
3] [c0

c1
] = [

0
1
3]

from Example 1.

soLuTion

Begin by finding the matrix products below.

 ATA = [1
1

1
2

1
3][

1
1
1

1
2
3] = [3

6
6

14]

 ATb = [1
1

1
2

1
3][

0
1
3] = [ 4

11]
The normal equations are represented by the system

 ATAx = ATb

 [3
6

6
14][

c0

c1
] = [ 4

11].

The solution of this system of equations is 

x = [−
5
3

3
2
]

which implies that the least squares regression 
line for the data is y = −5

3 + 3
2x, as shown in 

the figure. 

Figure 5.19
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For an m × n matrix A, the normal equations form an n × n system of linear  
equations. This system is always consistent, but it may have infinitely many solutions. 
It can be shown, however, that there is a unique solution when the rank of A is n.

The next example illustrates how to solve the projection problem from Example 5 
using normal equations.

  orthogonal Projection onto a subspace

Find the orthogonal projection of the vector

b = [
1
1
3]

onto the column space S of the matrix

A = [
0
3
1

2
0
0].

soLuTion

To find the orthogonal projection of b onto S, first solve the least squares problem

Ax = b.

As in Example 7, find the matrix products ATA and ATb.

 ATA = [0
2

3
0

1
0][

0
3
1

2
0
0]

 = [10
0

0
4]

 ATb = [0
2

3
0

1
0][

1
1
3]

 = [6
2]

The normal equations are represented by the system

 ATAx = ATb

 [10
0

0
4][

x1

x2
] = [6

2].

The solution of these equations is 

x = [x1

x2
] = [

3
5

1
2
].

Finally, the projection of b onto S is

Ax = [
0
3
1

2
0
0] [

3
5

1
2
] = [

1
9
5

3
5

]
which agrees with the solution obtained in Example 5. 
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maThemaTiCaL moDeLing

Least squares problems play a fundamental role in mathematical modeling of real-life 
phenomena. The next example shows how to model the world population using a least 
squares quadratic polynomial.

  World Population

The table shows the world population (in billions) for six different years. (Source: U.S. 
Census Bureau)

Year 1985 1990 1995 2000 2005 2010

Population, y 4.9 5.3 5.7 6.1 6.5 6.9

Let x = 5 represent the year 1985. Find the least squares regression quadratic  
polynomial y = c0 + c1x + c2x2 for the data and use the model to estimate the  
population for the year 2020.

soLuTion

By substituting the data points (5, 4.9), (10, 5.3), (15, 5.7), (20, 6.1), (25, 6.5), and 
(30, 6.9) into the quadratic polynomial y = c0 + c1x + c2x2, you obtain the system of 
linear equations below.

 c0 +  5c1 +  25c2 = 4.9

 c0 +  10c1 +  100c2 = 5.3

c0 + 15c1 + 225c2 = 5.7

c0 + 20c1 + 400c2 = 6.1

c0 + 25c1 + 625c2 = 6.5

c0 + 30c1 + 900c2 = 6.9

This produces the least squares problem

 Ax = b

 [
1
1
1
1
1
1

5
10
15
20
25
30

25
100
225
400
625
900

][c0

c1

c2
] = [

4.9
5.3
5.7
6.1
6.5
6.9
]

The normal equations are represented by the system

 ATAx = ATb

 [
6

105
2275

105  
2275  

55,125  

2275
55,125

1,421,875][
c0

c1

c2
] = [

35.4
654.5

14,647.5]
and their solution is x = [

c0

c1

c2
] = [

4.5
0.08

0].

Note that c2 = 0. So, the least squares polynomial is the linear polynomial 
y = 4.5 + 0.08x. Evaluating this polynomial at x = 40 gives the estimate of the world 
population for the year 2020: y = 4.5 + 0.08(40) = 7.7 billion. 
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Least squares models can arise in many other contexts. Section 5.5 explores some 
applications of least squares models to approximations of functions. The next example 
uses data from Section 1.3 to find a nonlinear relationship between the period of a planet 
and its mean distance from the Sun.

  application to astronomy

The table shows the mean distances x and the periods y of the six planets that are closest 
to the Sun. The mean distances are in astronomical units and the periods are in years. 
Find a model for the data.

Planet Mercury Venus Earth Mars Jupiter Saturn

Distance, x 0.387 0.723 1.000 1.524  5.203  9.537

Period, y 0.241 0.615 1.000 1.881 11.862 29.457

soLuTion

When you plot the data as given, they do not lie in a straight line. By taking the  
natural logarithm of each coordinate, however, you obtain points of the form (ln x, ln y), 
as shown below.

Planet Mercury Venus Earth Mars Jupiter Saturn

ln x −0.949 −0.324 0.0 0.421 1.649 2.255

ln y −1.423 −0.486 0.0 0.632 2.473 3.383

A plot of the transformed points suggests that the least squares regression line 
would be a good fit.

Mercury

Mars

1

2

3

ln x

ln y

2 3Venus Earth

Jupiter

Saturn

ln y =    ln x3
2

Use the techniques of this section on the system

 c0 − 0.949c1 =  −1.423

 c0 − 0.324c1 =  −0.486

 c0  =  0.0

 c0 + 0.421c1 =  0.632

 c0 + 1.649c1 =  2.473

 c0 + 2.255c1 =  3.383

to verify that the equation of the line is

ln y = 3
2 ln x or y = x3�2. 

TeChnoLogy
You can use a graphing utility 
or software program to verify 
the result of Example 10. For 
instance, using the data in  
the first table, a graphing  
utility gives a power regression 
model of y ≈ 1.00029x1.49972. 
The Technology guide at 
CengageBrain.com can help 
you use technology to model 
data.
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5.4 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

Least squares regression Line In Exercises 1–4, 
determine whether the points are collinear. If so, find the 
line y = c0 + c1x that fits the points.

 1. (0, 1), (1, 3), (2, 5)  2. (0, 0), (3, 1), (4, 2)
 3. (−2, 0), (0, 2), (2, 2)  4. (−1, 5), (1, −1), (1, −4)

orthogonal subspaces In Exercises 5–8, determine 
whether the subspaces are orthogonal.

 5. S1 = span{[ 3
2

−2], [
0
1
0]}  S2 = span{[ 2

−3
0]}

 6. S1 = span{[−3
0
1]}  S2 = span{[2

1
6], [

0
1
0]}

 7. S1 = span{[
1
1
1
1
]}  S2 = span{[

−1
1

−1
1
], [

0
2

−2
0
]}

 8. S1 = span{[
0
0
2
1
], [

0
0
1

−2
]}  S2 = span{[

3
2
0
0
], [

0
1

−2
2
]}

Finding the orthogonal Complement and Direct 
sum In Exercises 9–14, (a) find the orthogonal  
complement S⊥, and (b) find the direct sum S ⊕ S⊥.

 9. S = span{[0
1
0], [

2
0
1]} 10. S = span{[ 0

−2
1]}

11. S = span{[
0
1

−1
1
]}

12. S = span{[
0
1

−1
1

−1
], [

0
1
0
2

−1
], [

2
0
1
0
2
]}

13. S is the subspace of R3 consisting of the xz-plane.

14.  S is the subspace of R5 consisting of all vectors whose 
third and fourth components are zero.

15.  Find the orthogonal complement of the solution of 
Exercise 11(a).

16.  Find the orthogonal complement of the solution of 
Exercise 12(a).

Projection onto a subspace In Exercises 17–20, find 
the projection of the vector v onto the subspace S.

17. S = span{[
0
0

−1
1
], [

0
1
1
1
]},  v = [

1
0
1
1
]

18. S = span{[
−1

2
0
0
], [

0
0
1
0
], [

0
0
0
1
]},  v = [

1
1
1
1
]

19. S = span{[1
0
1], [

0
1
1]},  v = [

2
3
4]

20. S = span{[
1
1
1
1
], [

0
1

−1
0
], [

0
1
1
0
]},  v = [

1
2
3
4
]

Fundamental subspaces In Exercises 21–24, find 
bases for the four fundamental subspaces of the matrix A.

21. A = [1
0

2
1

3
0] 22. A = [

0
1
1

−1
2
1

1
0
1]

23. A = [
1
0
1
1

0
1
1
2

0
1
1
2
] 24. A = [

1
0
1
1

0
−1

1
0

−1
1
0
1
]

Finding the Least squares solution In Exercises 
25–28, find the least squares solution of the system Ax = b.

25. A = [
2
1
1

1
2
1]  b = [

2
0

−3]
26. A = [

1
1
0
1

−1
1
1
0

1
1
1
1
]  b = [

2
1
0
2
]

27. A = [
1
1
0
1

0
1
1
1

1
1
1
0
]  b = [

4
−1

0
1
]

28. A = [
0
1
2
1
0

2
1
1
1
2

1
−1

0
1

−1
]  b = [

1
0
1

−1
0
]
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orthogonal Projection onto a subspace In Exercises 
29 and 30, use the method of Example 8 to find the 
orthogonal projection of b = [2 −2 1]T onto the  
column space of the matrix A.

29. A = [
1
0
1

2
1
1] 30. A = [

0
1
1

2
1
3]

Finding the Least squares regression Line In 
Exercises 31–34, find the least squares regression line 
for the data points. Graph the points and the line on the 
same set of axes.

31. (−1, 1), (1, 0), (3, −3)
32. (1, 1), (2, 3), (4, 5)
33. (−2, 1), (−1, 2), (0, 1), (1, 2), (2, 1)
34. (−2, 0), (−1, 2), (0, 3), (1, 5), (2, 6)

Finding the Least squares quadratic Polynomial In 
Exercises 35–38, find the least squares regression  
quadratic polynomial for the data points.

35. (0, 0), (2, 2), (3, 6), (4, 12)
36. (0, 2), (1, 32), (2, 52), (3, 4)
37. (−2, 0), (−1, 0), (0, 1), (1, 2), (2, 5)
38. (−2, 6), (−1, 5), (0, 72), (1, 2), (2, −1)

39.  master’s Degrees The table shows the numbers 
of master’s degrees y (in thousands) conferred in the 
United States from 2009 through 2012. Find the least 
squares regression line for the data. Then use the model 
to predict the number of degrees conferred in 2019. Let t  
represent the year, with t = 9 corresponding to 2009. 
(Source: U.S. National Center for Education Statistics)

 
Year 2009 2010 2011 2012

Master’s 
Degrees, y 662.1 693.0 730.6 754.2

40.  revenue The table shows the revenues y (in billions 
of dollars) for General Dynamics Corporation from 2008 
through 2013. Find the least squares regression quadratic 
and cubic polynomials for the data. Then use each model 
to predict the revenue in 2018. Let t represent the year, 
with t = 8 corresponding to 2008. Which model appears 
to be more accurate for predicting future revenues? 
Explain. (Source: General Dynamics Corporation)

 
Year 2008 2009 2010

Revenue, y 29.3 32.0 32.5

 
Year 2011 2012 2013

Revenue, y 32.7 31.7 31.2

41.  galloping speeds of animals Four-legged animals 
run with two different types of motion: trotting and  
galloping. An animal that is trotting has at least one foot 
on the ground at all times, whereas an animal that is 
galloping has all four feet off the ground at some point 
in its stride. The number of strides per minute at which 
an animal breaks from a trot to a gallop depends on the 
weight of the animal. Use the table and the method of 
Example 10 to find an equation that relates an animal’s 
weight x (in pounds) and its lowest galloping speed y 
(in strides per minute).

 
Weight, x 25 35 50

Galloping Speed, y 191.5 182.7 173.8

 
Weight, x 75 500 1000

Galloping Speed, y 164.2 125.9 114.2

42.  CAPSTONE Explain how orthogonality,  
orthogonal complements, the projection of a  
vector, and fundamental subspaces are used to 
find the solution of a least squares problem.

True or False? In Exercises 43 and 44, determine 
whether each statement is true or false. If a statement 
is true, give a reason or cite an appropriate statement 
from the text. If a statement is false, provide an example 
that shows the statement is not true in all cases or cite an 
appropriate statement from the text.

43. (a) The orthogonal complement of Rn is the empty set.

 (b)  If each vector v ∈ Rn can be uniquely written as a 
sum of a vector s1 from S1 and a vector s2 from S2, 
then Rn is the direct sum of S1 and S2.

44. (a)  If A is an m × n matrix, then R(A) and N(AT) are 
orthogonal subspaces of Rn.

 (b)  The set of all vectors orthogonal to every vector in 
a subspace S is the orthogonal complement of S.

 (c)  Given an m × n matrix A and a vector b in Rm, the 
least squares problem is to find x in Rn such that 
�Ax = b�2 is minimized.

45.  Proof Prove that if S1 and S2 are orthogonal subspaces 
of Rn, then their intersection consists of only the zero 
vector.

46.  Proof Prove that the orthogonal complement of a 
subspace of Rn is itself a subspace of Rn.

47. Proof Prove Theorem 5.14.

48.  Proof Prove that if S1 and S2 are subspaces of Rn and if

 Rn = S1 ⊕ S2

 then

 S1 ∩ S2 = {0}.
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5.5 Applications of inner Product spaces

 Find the cross product of two vectors in R3.

  Find the linear or quadratic least squares approximation of 
a function.

 Find the nth-order Fourier approximation of a function.

THE Cross ProDuCT oF TWo VECTors in R3

Here you will look at a vector product that yields a vector in R3 orthogonal to two 
vectors. This vector product is called the cross product, and it is most conveniently 
defined and calculated with vectors written in standard unit vector form

v = (v1, v2, v3) = v1i + v2 j + v3k.

A convenient way to remember the formula for the cross product u × v is to use 
the determinant form below.

u × v = ∣ i
u1

v1

j
u2

v2

k
u3

v3∣  Components of u

 Components of v

Technically this is not a determinant because it represents a vector and not a real 
number. Nevertheless, it is useful because it can help you remember the cross product 
formula. Using cofactor expansion in the first row produces 

 u × v = ∣u2

v2

u3

v3∣i − ∣u1

v1

u3

v3∣j + ∣u1

v1

u2

v2∣k
 = (u2v3 − u3v2)i − (u1v3 − u3v1)j + (u1v2 − u2v1)k

which yields the formula in the definition. Be sure to note that the j-component is 
preceded by a minus sign.

Definition of the Cross Product of Two Vectors

Let u = u1i + u2 j + u3k and v = v1i + v2 j + v3k be vectors in R3. The cross 
product of u and v is the vector

u × v = (u2v3 − u3v2)i − (u1v3 − u3v1)j + (u1v2 − u2v1)k.

linEAr
AlgEBrA
APPliED

In physics, the cross product can be used to measure 
torque—the moment M of a force F about a point A, as 
shown in the figure below. When the point of application 
of the force is B, the moment of F about A is

M = AB
\

× F

where AB
\

 represents the 
vector whose initial point is 
A and whose terminal point 
is B. The magnitude of the 
moment M measures the 
tendency of AB

\

 to rotate 
counterclockwise about 
an axis directed along the 
vector M.

rEMArK
The cross product is defined 
only for vectors in R3. The 
cross product of two vectors in 
Rn, n ≠ 3, is not defined here.

F

M

AB

B

A

mark cinotti/Shutterstock.com
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Finding the Cross Product of Two Vectors

Let u = i − 2j + k and v = 3i + j − 2k. Find each cross product.

a. u × v b. v × u c. v × v

soluTion

a.  u × v = ∣ i
1
3

j
−2

1

k
1

−2∣
 = ∣−2

1
1

−2∣i − ∣13 1
−2∣j + ∣13 −2

1∣k
 = 3i + 5j + 7k

b.  v × u = ∣ i
3
1

j
1

−2

k
−2

1∣
 = ∣ 1

−2
−2

1∣i − ∣31 −2
1∣j + ∣31 1

−2∣k
 = −3i − 5j − 7k

Note that this result is the negative of that in part (a).

c.  v × v = ∣ i
3
3

j
1
1

k
−2
−2∣

 = ∣11 −2
−2∣i − ∣33 −2

−2∣j + ∣33 1
1∣k

 = 0i + 0j + 0k = 0 

The results obtained in Example 1 suggest some interesting algebraic properties of 
the cross product. For instance,

u × v = −(v × u) and v × v = 0.

Theorem 5.17 states these properties along with several others.

ProoF

The proof of the first property is given here. The proofs of the other properties are left 
to you. (See Exercises 55–59.) Let u and v be

u = u1i + u2 j + u3k

and

v = v1i + v2 j + v3k.

THEorEM 5.17 Algebraic Properties of the Cross Product

If u, v, and w are vectors in R3 and c is a scalar, then the properties listed below 
are true.

1. u × v = −(v × u)
2. u × (v + w) = (u × v) + (u × w)
3. c(u × v) = cu × v = u × cv
4. u × 0 = 0 × u = 0
5. u × u = 0
6. u ∙ (v × w) = (u × v) ∙ w

TECHnology
Many graphing utilities and  
software programs can find a 
cross product. For instance, if 
you use a graphing utility to 
verify the result of Example 1(b), 
then you may see something 
similar to the screen below.

3VECTOR:U
e1=1
e2=-2
e3=1

3VECTOR:V

[-3 -5 -7]
cross(V,U)

e1=3
e2=1
e3=-2
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Figure 5.20

v

u

||v|| sin

θ

θ

Then u × v is

 u × v = ∣ i
u1

v1

j
u2

v2

k
u3

v3∣
 = (u2v3 − u3v2)i − (u1v3 − u3v1)j + (u1v2 − u2v1)k

and v × u is

 v × u = ∣ i
v1

u1

j
v2

u2

k
v3

u3∣
 = (v2u3 − v3u2)i − (v1u3 − v3u1)j + (v1u2 − v2u1)k
 = −(u2v3 − u3v2)i + (u1v3 − u3v1)j − (u1v2 − u2v1)k
 = −(v × u).  

Property 1 of Theorem 5.17 tells you that the vectors u × v and v × u have equal 
lengths but opposite directions. The geometric implication of this will be discussed 
after establishing some geometric properties of the cross product of two vectors.

ProoF

The proof of Property 4 is presented here. The proofs of the other properties are left to 
you. (See Exercises 63–65.) Let u and v represent adjacent sides of a parallelogram, as 
shown in Figure 5.20. By Property 2, the area of the parallelogram is

 Base Height
  

Area = �u� �v� sin θ = �u × v�. 

Property 1 states that the vector u × v is orthogonal to both u and v. This implies 
that u × v (and v × u) is orthogonal to the plane determined by u and v. One way to 
remember the orientation of the vectors u, v, and u × v is to compare them with the unit 
vectors i, j, and k, as shown below. The three vectors u, v, and u × v form a right-handed 
system, whereas the three vectors u, v, and v × u form a left-handed system.

i
u

j
v

k = i x j
 u x v

xy-plane

Right-Handed
Systems

This is the plane
determined by

u and v.

THEorEM 5.18 geometric Properties of the Cross Product

If u and v are nonzero vectors in R3, then the properties listed below are true.

1. u × v is orthogonal to both u and v.
2. The angle θ between u and v is found using �u × v� = �u� �v� sin θ.
3. u and v are parallel if and only if u × v = 0.
4. The parallelogram having u and v as adjacent sides has an area of �u × v�.
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  Finding a Vector orthogonal
to Two given Vectors

See LarsonLinearAlgebra.com for an interactive version of this type of example.

Find a unit vector orthogonal to both

u = i − 4j + k

and

v = 2i + 3j.

soluTion

From Property 1 of Theorem 5.18, you know that the cross product

u × v = ∣ i
1
2

j
−4

3

k
1
0∣ = −3i + 2j + 11k

is orthogonal to both u and v, as shown in Figure 5.21. Then, by dividing by the length 
of u × v,

�u × v� = √(−3)2 + 22 + 112 = √134

you obtain the unit vector

u × v
�u × v�

= −
3

√134
i +

2

√134
j +

11

√134
k

which is orthogonal to both u and v, because

(− 3

√134
, 

2

√134
, 

11

√134) ∙ (1, −4, 1) = 0

and

(− 3

√134
, 

2

√134
, 

11

√134) ∙ (2, 3, 0) = 0. 

 Finding the Area of a Parallelogram

Find the area of the parallelogram that has

u = −3i + 4j + k

and

v = −2j + 6k

as adjacent sides, as shown in Figure 5.22.

soluTion

From Property 4 of Theorem 5.18, you know that the area of this parallelogram is  
�u × v�. The cross product is

u × v = ∣ i
−3

0

j
4

−2

k
1
6∣ = 26i + 18j + 6k.

So, the area of the parallelogram is

�u × v� = √262 + 182 + 62 = √1036 ≈ 32.19 square units. 

Figure 5.21

yx

6

8

10

12

u

v

(2, 3, 0)

z

4 4

(1, −4, 1)

(−3, 2, 11)

u x v

Figure 5.22

y

x

3

1 1
2

3
4

5

7

7

6

4

5

6

8

z
v = −2j + 6k

u = −3i + 4j + k

  The area of the parallelogram is
||u x v||  =     1036.
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lEAsT squArEs APProxiMATions (CAlCulus)

Many problems in the physical sciences and engineering involve an approximation of  
a function f  by another function g. If f  is in C[a, b] (the inner product space of all  
continuous functions on [a, b]), then g is usually chosen from a subspace W  of C[a, b]. 
For example, to approximate the function

f(x) = ex, 0 ≤ x ≤ 1

you could choose one of the forms of g listed below.

1. g(x) = a0 + a1x, 0 ≤ x ≤ 1 Linear

2. g(x) = a0 + a1x + a2x2, 0 ≤ x ≤ 1 Quadratic

3. g(x) = a0 + a1 cos x + a2 sin x, 0 ≤ x ≤ 1 Trigonometric

Before discussing ways of finding the function g, you must define how one  
function can “best” approximate another function. One natural way would require the 
area bounded by the graphs of f  and g on the interval [a, b],

Area = ∫b

a

 ∣ f(x) − g(x)∣ dx

to be a minimum with respect to other functions in the subspace W, as shown below.

xa
b

f

g

y

Integrands involving absolute value are often difficult to evaluate, however, so it is 
more common to square the integrand to obtain

∫b

a

[ f(x) − g(x)]2 dx.

With this criterion, the function g is the least squares approximation of f  with respect 
to the inner product space W.

Note that if the subspace W  in this definition is the entire space C[a, b], then 
g(x) = f(x), which implies that I = 0.

Definition of least squares Approximation

Let f  be continuous on [a, b], and let W  be a subspace of C[a, b]. A function g in 
W  is the least squares approximation of f  with respect to W  when the value of

I = ∫b

a

[ f(x) − g(x)]2 dx

is a minimum with respect to all other functions in W.
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Finding a least squares Approximation

Find the least squares approximation g(x) = a0 + a1x of

f(x) = ex,  0 ≤ x ≤ 1.

soluTion

For this approximation, you need to find the constants a0 and a1 that minimize the value of

 I = ∫1

0
[ f(x) − g(x)]2 dx

 = ∫1

0
(ex − a0 − a1x)2 dx.

Evaluating this integral, you have

 I = ∫1

0
(ex − a0 − a1x)2 dx

 = ∫1

0
(e2x − 2a0ex − 2a1xex + a2

0 + 2a0a1x + a2
1x

2) dx

 = [1
2

e2x − 2a0e
x − 2a1e

x(x − 1) + a2
0x + a0a1x

2 + a2
1
x3

3 ]
1

0

 =
1
2

(e2 − 1) − 2a0(e − 1) − 2a1 + a0
2 + a0a1 +

1
3

a1
2.

Now, considering I to be a function of the variables a0 and a1, use calculus to determine 
the values of a0 and a1 that minimize I. Specifically, by setting the partial derivatives

 
∂I

∂a0
= 2a0 − 2e + 2 + a1

 
∂I

∂a1
= a0 +

2
3

a1 − 2

equal to zero, you obtain the two linear equations in a0 and a1 below.

 2a0 +  a1 = 2(e − 1)
 3a0 +  2a1 = 6

The solution of this system is

a0 = 4e − 10 ≈ 0.873 and a1 = 18 − 6e ≈ 1.690.

(Verify this.) So, the best linear approximation of f(x) = ex on the interval [0, 1] is

g(x) = 4e − 10 + (18 − 6e)x ≈ 0.873 + 1.690x.

Figure 5.23 shows the graphs of f  and g on [0, 1]. 

Of course, whether the approximation obtained in Example 4 is the best  
approximation depends on the definition of the best approximation. For instance, if 
the definition of the best approximation had been the Taylor polynomial of degree 1  
centered at 0.5, then the approximating function g would have been

 g(x) = f(0.5) + f ′(0.5)(x − 0.5)
 = e0.5 + e0.5(x − 0.5)
 ≈ 0.824 + 1.649x.

Moreover, the function g obtained in Example 4 is only the best linear approximation  
of f  (according to the least squares criterion). In Example 5 you will find the best  
quadratic approximation.

Figure 5.23

x
1

2

3

4

y f (x) = ex

g(x) ≈ 0.873 + 1.690x
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Finding a least squares Approximation

Find the least squares approximation g(x) = a0 + a1x + a2x2 of f(x) = ex, 0 ≤ x ≤ 1.

soluTion

For this approximation you need to find the values of a0, a1, and a2 that minimize the 
value of

 I = ∫1

0
[ f(x) − g(x)]2 dx

 = ∫1

0
(ex − a0 − a1x − a2x2)2 dx

 =
1
2

(e2 − 1) + 2a0(1 − e) + 2a2(2 − e)

  + a0
2 + a0a1 +

2
3

a0a2 +
1
2

a1a2 +
1
3

a1
2 +

1
5

a2
2 − 2a1.

Setting the partial derivatives of I (with respect to a0, a1, and a2) equal to zero produces 
the system of linear equations below.

6a0 +
6a0 +

20a0 +

3a1 +
4a1 +

15a1 +

2a2 =
3a2 =

12a2 =

6(e − 1)  
12            

60(e − 2)

(Verify this.) The solution of this system is

a0 = −105 + 39e ≈ 1.013

a1 = 588 − 216e ≈ 0.851

a2 = −570 + 210e ≈ 0.839.

(Verify this.) So, the approximating function g is g(x) ≈ 1.013 + 0.851x + 0.839x2.
Figure 5.24 shows the graphs of f  and g on [0, 1]. 

The integral I given in the definition of the least squares approximation can be 
expressed in vector form. To do this, use the inner product defined in Example 5 in 
Section 5.2:

〈 f, g〉 = ∫b

a

f(x)g(x) dx.

With this inner product you have

I = ∫b

a

[ f(x) − g(x)]2 dx = 〈 f − g, f − g〉 = � f − g�2.

This means that the least squares approximating function g is the function that  
minimizes � f − g�2 or, equivalently, minimizes � f − g�. In other words, the least 
squares approximation of a function f  is the function g (in the subspace W) closest to 
f  in terms of the inner product 〈 f, g〉. The next theorem gives you a way of determining  
the function g.

THEorEM 5.19 least squares Approximation

Let f  be continuous on [a, b], and let W be a finite-dimensional subspace of C[a, b]. 
The least squares approximating function of f  with respect to W is

g = 〈 f, w1〉w1 + 〈 f, w2〉w2 + .  .  . + 〈 f, wn〉wn

where B = {w1, w2, .  .  . , wn} is an orthonormal basis for W.

Figure 5.24

x
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2

3

4

y

f (x) = ex

g(x) ≈ 1.013 + 0.851x + 0.839x2
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Figure 5.25
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g

f
2

1

y

−1

π π

ProoF

To show that g is the least squares approximating function of f, prove that the inequality 
� f − g� ≤ � f − w� is true for any vector w in W. Writing f − g as

f − g = f − 〈 f, w1〉w1 − 〈 f, w2〉w2 − .  .  . − 〈 f, wn〉wn

shows that f − g is orthogonal to each wi, which in turn implies that it is orthogonal to 
each vector in W. In particular, f − g is orthogonal to g − w. This allows you to apply 
the Pythagorean Theorem to the vector sum f − w = ( f − g) + (g − w) to conclude 
that � f − w�2 = � f − g�2 + �g − w�2. So, it follows that � f − g�2 ≤ � f − w�2, which 
then implies that � f − g� ≤ � f − w�. 

Now observe how Theorem 5.19 can be used to produce the least squares  
approximation obtained in Example 4. First apply the Gram-Schmidt orthonormalization 
process to the standard basis {1, x} to obtain the orthonormal basis B = {1, √3(2x − 1)}. 
(Verify this.) Then, by Theorem 5.19, the least squares approximation of ex in the subspace 
of all linear functions is 

 g(x) = 〈ex, 1〉(1) + 〈ex, √3(2x − 1)〉√3(2x − 1)

 = ∫1

0
ex dx + √3(2x − 1)∫1

0
√3ex(2x − 1) dx

 = ∫1

0
ex dx + 3(2x − 1)∫1

0
ex(2x − 1) dx

 = 4e − 10 + (18 − 6e)x

which agrees with the result obtained in Example 4.

 Finding a least squares Approximation

Find the least squares approximation of f(x) = sin x, 0 ≤ x ≤ π, with respect to the 
subspace W  of polynomial functions of degree 2 or less.

soluTion

To use Theorem 5.19, apply the Gram-Schmidt orthonormalization process to the  
standard basis for W, {1, x, x2}, to obtain the orthonormal basis

B = {w1, w2, w3} = { 1

√π
, 
√3

π√π
(2x − π), √5

π2√π
(6x2 − 6πx + π2)}.

(Verify this.) The least squares approximating function g is

g(x) = 〈 f, w1〉w1 + 〈 f, w2〉w2 + 〈 f, w3〉w3

and you have

〈 f, w1〉 =
1

√π∫
π

0
sin x dx =

2

√π

〈 f, w2〉 =
√3

π√π∫
π

0
sin x(2x − π) dx = 0

〈 f, w3〉 =
√5

π2√π∫
π

0
sin x(6x2 − 6πx + π2) dx =

2√5

π2√π
(π2 − 12).

So, g is

g(x) =
2
π +

10(π2 − 12)
π5 (6x2 − 6πx + π2) ≈ −0.4177x2 + 1.3122x − 0.0505.

Figure 5.25 shows the graphs of f  and g. 
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FouriEr APProxiMATions (CAlCulus)

You will now look at a special type of least squares approximation called a Fourier 
approximation. For this approximation, consider functions of the form

g(x) =
a0

2
+ a1 cos x + .  .  . + an cos nx + b1 sin x + .  .  . + bn sin nx

in the subspace W  of 

C[0, 2π]

spanned by the basis

S = {1, cos x, cos 2x, .  .  . , cos nx, sin x, sin 2x, .  .  . , sin nx}.

These 2n + 1 vectors are orthogonal in the inner product space C[0, 2π] because

 〈 f, g〉 = ∫2π

0
f(x)g(x) dx

 = 0, f ≠ g

as demonstrated in Example 3 in Section 5.3. Moreover, by normalizing each function 
in this basis, you obtain the orthonormal basis

 B = {w0, w1, .  .  . , wn, wn+1, .  .  . , w2n}

 = { 1

√2π
, 

1

√π
 cos x, .  .  . , 

1

√π
 cos nx, 

1

√π
  sin x, .  .  . , 

1

√π
 sin nx}.

With this orthonormal basis, you can apply Theorem 5.19 to write

g(x) = 〈 f, w0〉w0 + 〈 f, w1〉w1 + .  .  . + 〈 f, w2n〉w2n.

The coefficients

a0, a1, .  .  . , an, b1, .  .  . , bn

for g(x) in the equation

g(x) =
a0

2
+ a1 cos x + .  .  . + an cos nx + b1 sin x + .  .  . + bn sin nx

are found using the integrals below.

a0 = 〈 f, w0〉
2

√2π
=

2

√2π∫
2π

0
f(x) 1

√2π
dx =

1
π∫

2π

0
f(x) dx

a1 = 〈 f, w1〉
1

√π
=

1

√π∫
2π

0
f(x) 1

√π
 cos x dx =

1
π∫

2π

0
f(x) cos x dx

 ⋮
an = 〈 f, wn〉

1

√π
=

1

√π∫
2π

0
f(x) 1

√π
 cos nx dx =

1
π∫

2π

0
f(x) cos nx dx

b1 = 〈 f, wn+1〉
1

√π
=

1

√π∫
2π

0
f(x) 1

√π
 sin x dx =

1
π∫

2π

0
f(x) sin x dx

 ⋮
bn = 〈 f, w2n〉

1

√π
=

1

√π∫
2π

0
f(x) 1

√π
 sin nx dx =

1
π∫

2π

0
f(x) sin nx dx

The function g(x) is the nth-order Fourier approximation of f  on the interval [0, 2π]. 
Like Fourier coefficients, this function is named after the French mathematician  
Jean-Baptiste Joseph Fourier. This brings you to Theorem 5.20.
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 Finding a Fourier Approximation

Find the third-order Fourier approximation of f(x) = x, 0 ≤ x ≤ 2π.

soluTion

Using Theorem 5.20, you have

g(x) =
a0

2
+ a1 cos x + a2 cos 2x + a3 cos 3x + b1 sin x + b2 sin 2x + b3 sin 3x

where

a0 =
1
π∫

2π

0
x dx =

1
π2π2 = 2π

aj =
1
π∫

2π

0
x cos jx dx = [ 1

πj2 cos jx +
x
πj

 sin jx]
2π

0
= 0

bj =
1
π∫

2π

0
x sin jx dx = [ 1

πj2 sin jx −
x
πj

 cos jx]
2π

0
= −

2
j
.

This implies that a0 = 2π, a1 = 0, a2 = 0, a3 = 0, b1 = −2, b2 = −2
2 = −1, and 

b3 = −2
3. So, you have

 g(x) =
2π
2

− 2 sin x − sin 2x −
2
3

 sin 3x

 = π − 2 sin x −  sin 2x −
2
3

 sin 3x.

The figure at the right compares the graphs  
of f  and g.

 

THEorEM 5.20 Fourier Approximation

On the interval [0, 2π], the least squares approximation of a continuous function 
f  with respect to the vector space spanned by

{1, cos x, .  .  . , cos nx, sin x, .  .  . , sin nx}

is

g(x) =
a0

2
+ a1 cos x + .  .  . + an cos nx + b1 sin x + .  .  . + bn sin nx

where the Fourier coefficients a0, a1, .  .  . , an, b1, .  .  . , bn are

a0 =
1
π∫

2π

0
f(x) dx

aj =
1
π∫

2π

0
f(x) cos jx dx,  j = 1, 2, .  .  . , n

bj =
1
π∫

2π

0
f(x) sin jx dx,  j = 1, 2, .  .  . , n.

x
2

2

g

Third-Order Fourier Approximation

y
f (x) = x

ππ

π

π
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In Example 7, the pattern for the Fourier coefficients is a0 = 2π,
a1 = a2 = .  .  . = an = 0, and

b1 = −
2
1

, b2 = −
2
2

, .  .  . , bn = −
2
n

.

The nth-order Fourier approximation of f(x) = x is

g(x) = π − 2(sin x +
1
2

 sin 2x +
1
3

 sin 3x + .  .  . +
1
n

 sin nx).

As n increases, the Fourier approximation improves. For example, the figures below 
show the fourth- and fifth-order Fourier approximations of f(x) = x, 0 ≤ x ≤ 2π.

x
2

2

g

Fourth-Order Fourier Approximation

y
f (x) = x

ππ

π

π

 

x
2

2

g

Fifth-Order Fourier Approximation

y
f (x) = x

π π

π

π

In advanced courses it is shown that as n →∞, the approximation error � f − g� 
approaches zero. The infinite series for g(x) is a Fourier series.

 Finding a Fourier Approximation

Find the fourth-order Fourier approximation of f(x) = ∣x − π∣, 0 ≤ x ≤ 2π.

soluTion

Using Theorem 5.20, find the Fourier coefficients as shown below.

 a0 =
1
π∫

2π

0
∣x − π∣ dx = π

 aj =
1
π∫

2π

0
∣x − π∣ cos jx dx

 =
2
π∫

π

0
(π − x) cos jx dx

 =
2
πj2 (1 − cos jπ)

 bj =
1
π∫

2π

0
∣x − π∣ sin jx dx

 = 0

So, a0 = π, a1 = 4
π, a2 = 0, a3 = 4
(9π), a4 = 0, b1 = 0, b2 = 0, b3 = 0, and 
b4 = 0, which means that the fourth-order Fourier approximation of f  is

g(x) =
π
2

+
4
π  cos x +

4
9π  cos 3x.

Figure 5.26 compares the graphs of f  and g. Figure 5.26

x
2

2

y

f (x) =  x −  

2
4 4

9g(x) =    +    cos x +      cos 3x

π

π

π

π

π

π
π

π

||
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5.5 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

Finding the Cross Product In Exercises 1–6, find the 
cross product of the unit vectors [where i = (1, 0, 0), 
j = (0, 1, 0), and k = (0, 0, 1)]. Sketch your result.

 1. j × i  2. i × j

 3. j × k  4. k × j

 5. i × k  6. k × i

Finding the Cross Product In Exercises 7–14, find  
(a) u × v, (b) v × u, and (c) v × v.

 7. u = i − j, v = j + k

 8. u = 2i + k, v = i + 3k

 9. u = i + 2j − k, v = i + j + 2k

10. u = i − j − k, v = 2i + 2j + 2k

11. u = (−1, −1, 1), v = (−1, 1, −1)
12. u = (3, −3, −3), v = (3, −3, 3)
13. u = (3, −2, 4), v = (1, 5, −3)
14. u = (−2, 9, −3), v = (4, 6, −5)

Finding the Cross Product In Exercises 15–26, find 
u × v and show that it is orthogonal to both u and v.

15. u = (0, 1, −2), v = (1, −1, 0)
16. u = (−1, 1, 2), v = (0, 1, −1)
17. u = (12, −3, 1), v = (−2, 5, 1)
18. u = (−2, 1, 1), v = (4, 2, 0)
19. u = (2, −3, 1), v = (1, −2, 1)
20. u = (4, 1, 0), v = (3, 2, −2)
21. u = j + 6k, v = 2i − k

22. u = 2i − j + k, v = 3i − j

23. u = i + j + k, v = 2i + j − k

24. u = i − 2j + k, v = −i + 3j − 2k

25. u = 3i + 2j + 4k, v = 4i + 5j + 6k

26. u = −5i + 19j − 12k, v = 5i − 19j + 12k

Finding the Cross Product In Exercises 27–34, use a 
graphing utility to find u × v, and then show that it is 
orthogonal to both u and v.

27. u = (1, 2, −1), v = (2, 1, 2)
28. u = (1, 2, −3), v = (−1, 1, 2)
29. u = (0, 1, −1), v = (1, 2, 0)
30. u = (2, 0, −1), v = (−1, 0, −4)
31. u = −2i + j − k, v = −i + 2j − k

32. u = 3i − j + k, v = 2i + j − k

33. u = 2i + j − k, v = i − j + 2k

34. u = 4i + 2j, v = i − 4k

using the Cross Product In Exercises 35–42, find a 
unit vector orthogonal to both u and v.

35. u = (−4, 3, −2) 36. u = (2, −1, 3)
 v = (−1, 1, 0)  v = (1, 0, −2)
37. u = 3i + j 38. u = i + 2j

 v = j + k  v = i − 3k

39. u = −3i + 2j − 5k 40. u = 7i − 14j + 5k

 v = 1
2 i − 3

4 j + 1
10 k  v = 14i + 28j − 15k

41. u = −i − j + k 42. u = i − 2j + 2k

 v = i − j − k  v = 2i − j − 2k

Finding the Area of a Parallelogram In Exercises 
43–46, find the area of the parallelogram that has the 
vectors as adjacent sides.

43. u = j, v = j + k

44. u = i − j + k, v = i + k

45. u = (3, 2, −1), v = (1, 2, 3)
46. u = (2, −1, 0), v = (−1, 2, 0)

geometric Application of the Cross Product In 
Exercises 47 and 48, verify that the points are the vertices  
of a parallelogram, and then find its area.

47. (1, 1, 1), (2, 3, 4), (6, 5, 2), (7, 7, 5)
48. (1, −2, 0), (4, 0, 3), (−1, 0, 0), (2, 2, 3)

Finding the Area of a Triangle In Exercises 49 and 50, 
find the area of the triangle with the given vertices. Use 
the fact that the area A of the triangle having u and v as 
adjacent sides is A = 1

2 �u × v�.
49. (3, 5, 7), (5, 5, 0), (−4, 0, 4)
50. (2, −3, 4), (0, 1, 2), (−1, 2, 0)

Triple scalar Product In Exercises 51–54, find 
u ∙ (v × w). This quantity is called the triple scalar 
product of u, v, and w.

51. u = i, v = j, w = k

52. u = −i, v = −j, w = k

53. u = (3, 3, 3), v = (1, 2, 0), w = (0, −1, 0)
54. u = (2, 0, 1), v = (0, 3, 0), w = (0, 0, 1)

55. Proof Prove that u × (v + w) = (u × v) + (u × w).
56. Proof Prove that c(u × v) = cu × v = u × cv.

57. Proof Prove that u × 0 = 0 × u = 0.

58. Proof Prove that u × u = 0.

59. Proof Prove that u ∙ (v × w) = (u × v) ∙ w.

60. Proof Prove Lagrange’s Identity:

 �u × v�2 = �u�2 �v�2 − (u ∙ v)2.
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61.  Volume of a Parallelepiped Show that the volume 
V of a parallelepiped having u, v, and w as adjacent 
edges is V = ∣u ∙ (v × w)∣.

62.  Finding the Volume of a Parallelepiped Use 
the result of Exercise 61 to find the volume of each  
parallelepiped.

 (a) u = i + j (b) u = i + j

  v = j + k  v = j + k

  w = i + 2k  w = i + k

  

x

y

(0, 1, 1)
(1, 0, 2)

(1, 1, 0)

w

u

v

z

1

2

  

x

y

(0, 1, 1)

(1, 0, 1)

(1, 1, 0)

v
u

w

z

2

1

 (c) u = (0, 2, 2) (d) u = (1, 2, −1)
  v = (0, 0, −2)  v = (−1, 2, 2)
  w = (3, 0, 2)  w = (2, 0, 1)
  

2

3

2

(0, 2, 2)

(0, 0, −2)

(3, 0, 2)

w

u

v

y

x

z  

x

y

2
(2, 0, 1)

(−1, 2, 2)

(1, 2, −1)

2

w

z

u

1
2

v

63. Proof Prove that u × v is orthogonal to both u and v.

64.  Proof Prove that the angle θ between u and v is found 
using �u × v� = �u� �v� sin θ.

65.  Proof Prove that u and v are parallel if and only if 
u × v = 0.

66. Proof

 (a) Prove that

  u × (v × w) = (u ∙ w)v − (u ∙ v)w.

 (b) Find an example for which

  u × (v × w) ≠ (u × v) × w.

Finding a least squares Approximation In Exercises 
67–72, (a) find the least squares approximation 
g(x) = a0 + a1x of the function f, and (b) use a graphing  
utility to graph f  and g in the same viewing window.

67. f(x) = x2, 0 ≤ x ≤ 1

68. f(x) = √x, 1 ≤ x ≤ 4

69. f(x) = e2x, 0 ≤ x ≤ 1

70. f(x) = e−2x, 0 ≤ x ≤ 1

71. f(x) = cos x, 0 ≤ x ≤ π
72. f(x) = sin x, 0 ≤ x ≤ π
2

Finding a least squares Approximation In Exercises 
73–76, (a) find the least squares approximation 
g(x) = a0 + a1x + a2x

2 of the function f, and (b) use a 
graphing utility to graph f  and g in the same viewing 
window.

73. f(x) = x3, 0 ≤ x ≤ 1 74. f(x) = √x, 1 ≤ x ≤ 4

75. f(x) = sin x, −π
2 ≤ x ≤ π
2

76. f(x) = cos x, −π
2 ≤ x ≤ π
2

Finding a Fourier Approximation In Exercises 77–88, 
find the Fourier approximation with the specified order 
of the function on the interval [0, 2π].
77. f(x) = π − x, third order

78. f(x) = π − x, fourth order

79. f(x) = (x − π)2, third order

80. f(x) = (x − π)2, fourth order

81. f(x) = e−x, first order

82. f(x) = e−x, second order

83. f(x) = e−2x, first order

84. f(x) = e−2x, second order

85. f(x) = 1 + x, third order

86. f(x) = 1 + x, fourth order

87. f(x) = 2 sin x cos x, fourth order

88. f(x) = sin2 x, fourth order

89.  Use the results of Exercises 77 and 78 to find the  
nth-order Fourier approximation of f(x) = π − x on 
the interval [0, 2π].

90.  Use the results of Exercises 79 and 80 to find the  
nth-order Fourier approximation of f(x) = (x − π)2  
on the interval [0, 2π].

91.  Use the results of Exercises 81 and 82 to find the  
nth-order Fourier approximation of f(x) = e−x on the 
interval [0, 2π].

92. CAPSTONE
(a)  Explain how to find the cross product of two  

vectors in R3.

(b)  Explain how to find the least squares approximation  
of a function f ∈ C[a, b] with respect to a subspace  
W  of C[a, b].

(c)  Explain how to find the nth-order Fourier  
approximation on the interval [0, 2π] of a continuous 
function f  with respect to the vector space spanned 
by {1, cos x, .  .  . , cos nx, sin x, .  .  . , sin nx}.

93.  Use your school’s library, the Internet, or some other 
reference source to find real-life applications of  
approximations of functions.
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5 Review Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

Finding Lengths, Dot Product, and Distance In 
Exercises 1–8, find (a) �u�, (b) �v�, (c) u ∙ v, and (d) d(u, v).
 1. u = (1, 4), v = (2, 1)
 2. u = (−1, 2), v = (2, 3)
 3. u = (2, 1, 1), v = (3, 2, −1)
 4. u = (−3, 2, −2), v = (1, 3, 5)
 5. u = (1, −2, 0, 1), v = (1, 1, −1, 0)
 6. u = (1, −2, 2, 0), v = (2, −1, 0, 2)
 7. u = (0, 1, −1, 1, 2), v = (0, 1, −2, 1, 1)
 8. u = (1, −1, 0, 1, 1), v = (0, 1, −2, 2, 1)

Finding Length and a Unit Vector In Exercises 9–12, 
find �v� and find a unit vector in the direction of v.

 9. v = (5, 3, −2) 10. v = (−1, −4, 1)
11. v = (−1, 1, 2) 12. v = (0, 2, −1)

13. Consider the vector v = (8, 8, 6). Find u such that

 (a) u has the same direction as v and one-half its length.

 (b)  u has the direction opposite that of v and one-fourth 
its length.

 (c)  u has the direction opposite that of v and twice its 
length.

14. For what values of c is �c(2, 2, −1)� = 3?

Finding the Angle Between Two Vectors In Exercises 
15–20, find the angle θ between the two vectors.

15. u = (3, 3), v = (−2, 2)
16. u = (1, −1), v = (0, 1)

17. u = (cos 
3π
4

, sin 
3π
4 ), v = (cos 

2π
3

, sin 
2π
3 )

18. u = (cos 
π
6

, sin 
π
6), v = (cos 

5π
6

, sin 
5π
6 )

19. u = (10, −5, 15), v = (−2, 1, −3)
20. u = (0, 4, 0, −1), v = (1, 1, 3, −3)

Finding Orthogonal Vectors In Exercises 21–24, 
determine all vectors v that are orthogonal to u.

21. u = (0, −4, 3)
22. u = (1, −2, 1)
23. u = (2, −1, 1, 2)
24. u = (0, 1, 2, −1)

25.  For u = (4, −3
2, −1) and v = (1

2, 3, 1), (a) find the inner 
product represented by 〈u, v〉 = u1v1 + 2u2v2 + 3u3v3, 
and (b) use this inner product to find the distance 
between u and v.

26.  For u = (0, 3, 13) and v = (4
3, 1, −3), (a) find the inner 

product represented by 〈u, v〉 = 2u1v1 + u2v2 + 2u3v3 
and (b) use this inner product to find the distance 
between u and v.

27.  Verify the triangle inequality and the Cauchy-Schwarz 
Inequality for u and v from Exercise 25. (Use the inner 
product given in Exercise 25.)

28.  Verify the triangle inequality and the Cauchy-Schwarz 
Inequality for u and v from Exercise 26. (Use the inner 
product given in Exercise 26.)

Calculus In Exercises 29 and 30, (a) find the 
inner product, (b) determine whether the vectors 
are orthogonal, and (c) verify the Cauchy-Schwarz 
Inequality for the vectors.

29. f(x) = x, g(x) =
1

x2 + 1
, 〈 f, g〉 = ∫1

−1
f(x)g(x) dx

30. f(x) = x, g(x) = 4x2, 〈 f, g〉 = ∫1

0
f(x)g(x) dx

Finding an Orthogonal Projection In Exercises 31–36, 
find projvu.

31. u = (2, 4), v = (1, −5)
32. u = (2, 3), v = (0, 4)
33. u = (2, 5), v = (0, 5)
34. u = (2, −1), v = (7, 6)
35. u = (0, −1, 2), v = (3, 2, 4)
36. u = (−1, 3, 1), v = (4, 0, 5)

Applying the Gram-Schmidt Process In Exercises 
37–40, apply the Gram-Schmidt orthonormalization 
process to transform the given basis for Rn into an 
orthonormal basis. Use the Euclidean inner product for Rn  
and use the vectors in the order in which they are given.

37. B = {(1, 1), (0, 2)}
38. B = {(3, 4), (1, 2)}
39. B = {(0, 3, 4), (1, 0, 0), (1, 1, 0)}
40. B = {(0, 0, 2), (0, 1, 1), (1, 1, 1)}

41.  Let B = {(0, 2, −2), (1, 0, −2)} be a basis for a 
subspace of R3, and consider x = (−1, 4, −2), a vector 
in the subspace.

 (a)  Write x as a linear combination of the vectors in B. 
That is, find the coordinates of x relative to B.

 (b)  Apply the Gram-Schmidt orthonormalization 
process to transform B into an orthonormal set B′.

 (c)  Write x as a linear combination of the vectors in B′. 
That is, find the coordinates of x relative to B′.
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42.  Repeat Exercise 41 for B = {(−1, 2, 2), (1, 0, 0)} and 
x = (−3, 4, 4).

Calculus In Exercises 43–46, let f  and g be functions 
in the vector space C[a, b] with inner product

〈 f, g〉 = ∫b

a
f(x)g(x) dx.

43.  Show that f(x) = sin x and g(x) = cos x are orthogonal 
in C[0, π].

44.  Show that f(x) = √1 − x2 and g(x) = 2x√1 − x2 are 
orthogonal in C[−1, 1].

45. Let f(x) = x and g(x) = x3 be vectors in C[0, 1].
 (a) Find 〈 f, g〉.
 (b) Find �g�.
 (c) Find d( f, g).
 (d) Orthonormalize the set B = { f, g}.
46.  Let f(x) = x + 2 and g(x) = 15x − 8 be vectors in 

C[0, 1].
 (a) Find 〈 f, g〉.
 (b) Find 〈−4f, g〉.
 (c) Find � f �.
 (d) Orthonormalize the set B = { f, g}.

47.  Find an orthonormal basis for the subspace of Euclidean 
3-space below.

 W = {(x1, x2, x3): x1 + x2 + x3 = 0}
48.  Find an orthonormal basis for the solution space of the 

homogeneous system of linear equations.

  x +  y −  z +  w =  0

  2x −  y +  z +  2w =  0

49. Proof Prove that if u, v, and w are vectors in Rn, then

 (u + v) ∙ w = u ∙ w + v ∙ w.

50. Proof Prove that if u and v are vectors in Rn, then

 �u + v�2 + �u − v�2 = 2�u�2 + 2�v�2.

51.  Proof Prove that if u and v are vectors in an inner 
product space such that �u� ≤ 1 and �v� ≤ 1, then

 ∣〈u, v〉∣ ≤ 1.

52.  Proof Prove that if u and v are vectors in an inner 
product space V, then

 ∣�u� − �v�∣ ≤ �u ± v�.
53.  Proof Let V be an m-dimensional subspace of Rn 

such that m < n. Prove that any vector u in Rn can be 
uniquely written in the form u = v + w, where v is in 
V and w is orthogonal to every vector in V.

54.  Let V be the two-dimensional subspace of R4 spanned 
by (0, 1, 0, 1) and (0, 2, 0, 0). Write the vector 
u = (1, 1, 1, 1) in the form u = v + w, where v is in V 
and w is orthogonal to every vector in V.

55.  Proof Let {u1, u2, .  .  . , um} be an orthonormal subset 
of Rn, and let v be any vector in Rn. Prove that

 �v�2 ≥ ∑
m

i=1
(v ∙ ui)2.

 (This inequality is called Bessel’s Inequality.)

56.  Proof Let {x1, x2, .  .  . , xn} be a set of real numbers. 
Use the Cauchy-Schwarz Inequality to prove that

 (x1 + x2 + .  .  . + xn)2 ≤ n(x2
1 + x2

2 + .  .  . + x2
n).

57.  Proof Let u and v be vectors in an inner product  
space V. Prove that �u + v� = �u − v� if and only if u 
and v are orthogonal.

58.  Writing Let {u1, u2, .  .  . , un} be a dependent set of 
vectors in an inner product space V. Describe the result 
of applying the Gram-Schmidt orthonormalization 
process to this set.

59.  Find the orthogonal complement S⊥ of the subspace S 
of R3 spanned by the two column vectors of the matrix

 A = [
1
2
0

2
1

−1].

60.  Find the projection of the vector v = [1 0 −2]T 
onto the subspace

 S = span{[ 0
−1

1], [
0
1
1]}.

61.  Find bases for the four fundamental subspaces of the 
matrix

 A = [
0
0
1

1
−3

0

0
0
1].

62.  Find the least squares regression line for the set of data 
points

 {(−2, 2), (−1, 1), (0, 1), (1, 3)}.
 Graph the points and the line on the same set of axes.

63.  Revenue The table shows the revenues y (in billions 
of dollars) for Google, Incorporated from 2006 through 
2013. Find the least squares regression cubic polynomial 
for the data. Then use the model to predict the revenue in 
2018. Let t represent the year, with t = 6 corresponding 
to 2006. (Source: Google, Incorporated)

 
Year 2006 2007 2008 2009

Revenue, y 10.6 16.6 21.8 23.7

 Year 2010 2011 2012 2013

Revenue, y 29.3 37.9 50.2 59.8
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292 Chapter 5 Inner Product Spaces

64.  Petroleum Production The table shows the North 
American petroleum productions y (in millions of barrels 
per day) from 2006 through 2013. Find the least squares 
regression linear and quadratic polynomials for the data. 
Then use the model to predict the petroleum production in 
2018. Let t represent the year, with t = 6 corresponding 
to 2006. Which model appears to be more accurate 
for predicting future petroleum productions? Explain. 
(Source: U.S. Energy Information Administration)

 
Year 2006 2007 2008 2009

Petroleum 
Production, y 15.3 15.4 15.1 15.4

 
Year 2010 2011 2012 2013

Petroleum 
Production, y 16.1 16.7 17.9 19.3

Finding the Cross Product In Exercises 65–68, find 
u × v and show that it is orthogonal to both u and v.

65. u = (1, 1, 0), v = (0, 3, 0)
66. u = (1, −1, 1), v = (0, 1, 1)
67. u = j + 6k, v = i − 2j + k

68. u = 2i − k, v = i + j − k

Finding the Volume of a Parallelepiped In Exercises 
69–72, find the volume V of the parallelepiped that 
has u, v, and w as adjacent edges using the formula 
V = ∣u ∙ (v × w)∣.
69. u = (1, 0, 0) 70. u = (1, 2, 1)
 v = (0, 0, 1)  v = (−1, −1, 0)
 w = (0, 1, 0)  w = (3, 4, −1)
 

x

y
1

1

2

2

2

(0, 0, 1)

wu
v

z

(0, 1, 0)

(1, 0, 0)

  z

yx

2

1

3
3

2

(−1, −1, 0)

(3, 4, −1)
w

v

(1, 2, 1)
u

71. u = −2i + j 72. u = i + j + 3k

 v = 3i − 2j + k  v = 3j + 3k

 w = 2i − 3j − 2k  w = 3i + 3k

 
z

y

x

2

4 3
2

u

(−2, 1, 0)

(3, −2, 1)
v

w

(2, −3, −2)

 

x

y

4

2
2 3

3

(1, 1, 3)

z

w u
v (0, 3, 3)

(3, 0, 3)

73. Find the area of the parallelogram that has

 u = (1, 3, 0) and v = (−1, 0, 2)
 as adjacent sides.

74. Proof Prove that

�u × v� = �u� �v�
 if and only if u and v are orthogonal.

Finding a Least Squares Approximation In Exercises 
75–78, (a) find the least squares approximation 
g(x) = a0 + a1x of the function f, and (b) use a graphing 
utility to graph f  and g in the same viewing window.

75. f(x) = x3, −1 ≤ x ≤ 1

76. f(x) = x3, 0 ≤ x ≤ 2

77. f(x) = sin 2x, 0 ≤ x ≤ π�2

78. f(x) = sin x cos x, 0 ≤ x ≤ π

Finding a Least Squares Approximation In Exercises 
79 and 80, (a) find the least squares approximation 
g(x) = a0 + a1x + a2x

2 of the function f, and (b) use a 
graphing utility to graph f  and g in the same viewing 
window.

79. f(x) = √x,  0 ≤ x ≤ 1 80. f(x) =
1
x
,  1 ≤ x ≤ 2

Finding a Fourier Approximation In Exercises 81 and 
82, find the Fourier approximation with the specified 
order of the function on the interval [−π, π].
81. f(x) = x2, first order

82. f(x) = x, second order

True or False? In Exercises 83 and 84, determine 
whether each statement is true or false. If a statement 
is true, give a reason or cite an appropriate statement 
from the text. If a statement is false, provide an example 
that shows the statement is not true in all cases or cite an 
appropriate statement from the text.

83. (a)  The cross product of two nonzero vectors in R3 
yields a vector orthogonal to the two vectors that 
produced it.

 (b)  The cross product of two nonzero vectors in R3 is  
commutative.

 (c)  The least squares approximation of a function f  is 
the function g (in the subspace W) closest to f  in 
terms of the inner product 〈 f, g〉.

84. (a)  The vectors u × v and v × u in R3 have equal 
lengths but opposite directions.

 (b)  If u and v are two nonzero vectors in R3, then u and 
v are parallel if and only if u × v = 0.

 (c)  A special type of least squares approximation, the  
Fourier approximation, is spanned by the basis  
S = {1, cos x, cos 2x, .  .  . , cos nx, sin x, 
sin 2x, .  .  . , sin nx}.
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5 Projects

1 The QR-Factorization
The Gram-Schmidt orthonormalization process leads to an important factorization of 
matrices called the QR-factorization. If A is an m × n matrix of rank n, then A can 
be expressed as the product A = QR of an m × n matrix Q and an n × n matrix R,
where Q has orthonormal columns and R is upper triangular.

The columns of A can be considered a basis for a subspace of Rm, and the columns 
of Q are the result of applying the Gram-Schmidt orthonormalization process to this 
set of column vectors.

Recall that Example 7, Section 5.3, used the Gram-Schmidt orthonormalization 
process on the column vectors v1, v2 and v3 of the matrix

A = [
1
1
0

1
2
0

0
1
2]

to produce an orthonormal basis for R3, which is labeled here as q1, q2, q3.

q1 = (√2�2, √2�2, 0),  q2 = (−√2�2, √2�2, 0),  q3 = (0, 0, 1)

These vectors form the columns of the matrix Q.

Q = [
√2�2
√2�2

0

−√2�2
√2�2

0

0
0
1]

The upper triangular matrix R is

R = [
v1 ∙ q1

        0
        0

v2 ∙ q1

v2 ∙ q2

        0

v3 ∙ q1

v3 ∙ q2

v3 ∙ q3
] = [

√2
0
0

3√2�2
√2�2

0

√2�2
√2�2

2]
Verify that A = QR.

In general, if A is an m × n matrix of rank n with columns v1, v2, .  .  . , vn, then 
the QR-factorization of A is

 A = QR

[v1 v2 .  .  . vn] = [q1 q2 .  .  . qn] [
v1 ∙ q1

0

⋮
0

v2 ∙ q1

v2 ∙ q2

⋮
0

.  .  .

.  .  .

.  .  .

vn ∙ q1

vn ∙ q2

⋮    
vn ∙ qn

]
where the columns q1, q2, .  .  . , qn, of the m × n matrix Q are the orthonormal 
vectors that result from the Gram-Schmidt orthonormalization process.

1. Find the QR-factorization of each matrix.

(a) A = [
1
0
1

1
1
0]  (b) A = [

1
0
1
1

0
0
1
2
]  (c) A = [

1
1
1
1

0
2
2
0

−1
0
0
0
]

2.  Let A = QR be the QR-factorization of the m × n matrix A of rank n. Show how 
the least squares problem can be solved using the QR-factorization.

3.  Use the result of part 2 to solve the least squares problem Ax = b when A is the 
matrix from part 1(a) and b = [−1 1 −1]T.

REMARK
The QR-factorization of a 
matrix forms the basis for 
many algorithms of linear 
algebra. Algorithms for the 
computation of eigenvalues 
(see Chapter 7) are based 
on this factorization, as are 
algorithms for computing the 
least squares regression line 
for a set of data points. It should 
also be mentioned that, in 
practice, techniques other 
than the Gram-Schmidt 
orthonormalization process 
are used to compute the 
QR-factorization of a matrix.

Maridav/Shutterstock.com
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2 Orthogonal Matrices and Change of Basis
Let B = {v1, v2, .  .  . , vn} be an ordered basis for the vector space V. Recall that  
the coordinate matrix of a vector x = c1v1 + c2v2 + .  .  . + cnvn in V is the  
column vector

[x]B = [
c1

c2

⋮
cn

].

If B′ is another basis for V, then the transition matrix P from B′ to B changes a 
coordinate matrix relative to B′ into a coordinate matrix relative to B,

P[x]B′ = [x]B.

The question you will explore now is whether there are transition matrices P 
that preserve the length of the coordinate matrix—that is, given P[x]B′ = [x]B, does 
�[x]B′� = �[x]B�?

For example, consider the transition matrix from Example 5 in Section 4.7,

P = [3
2

−2
−1]

relative to the bases for R2,

B = {(−3, 2), (4, −2)} and B′ = {(−1, 2), (2, −2)}

If x = (−1, 2), then [x]B′ = [1    0]T and [x]B = P[x]B′ = [3    2]T. (Verify this.) So, 
using the Euclidean norm for R2,

�[x]B′� = 1 ≠ √13 = �[x]B�.

You will see in this project that if the transition matrix P is orthogonal, then the 
norm of the coordinate vector will remain unchanged. You may recall working with 
orthogonal matrices in Section 3.3 (Exercises 73–82) and Section 5.3 (Exercise 65).

1. Show that the matrix P defined previously is not orthogonal.

2. Show that for any real number θ, the matrix 

 [cos θ
sin θ

−sin θ
cos θ]

 is orthogonal.

3.  Show that a matrix is orthogonal if and only if its columns are pairwise  
orthogonal.

4. Prove that the inverse of an orthogonal matrix is orthogonal.

5.  Is the sum of orthogonal matrices orthogonal? Is the product of orthogonal  
matrices orthogonal? Illustrate your answers with appropriate examples.

6.  Prove that if P is an n × n orthogonal matrix, then �Px� = �x� for all vectors x  
in Rn.

7. Verify the result of part 6 using the bases B = {(1, 0), (0, 1)} and

 B′ = {(−
2

√5
, 

1

√5), ( 1

√5
, 

2

√5)}.

Definition of Orthogonal Matrix

The square matrix P is orthogonal when it is invertible and P−1 = PT.
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 Cumulative Test for Chapters 4 and 5 295

4 and 5 Cumulative Test See CalcChat.com for worked-out solutions  
to odd-numbered exercises.

Take this test to review the material in Chapters 4 and 5. After you are finished, 
check your work against the answers in the back of the book.

 1. Consider the vectors v = (1, −2) and w = (2, −5). Find and sketch each vector.

 (a) v + w  (b) 3v  (c) 2v − 4w

 2.  Write w = (7, 2, 4) as a linear combination of the vectors v1, v2 and v3 (if possible).

 v1 = (2, 1, 0), v2 = (1, −1, 0), v3 = (0, 0, 6)
 3.  Write the third column of the matrix as a linear combination of the first two 

columns (if possible).

 [
1
4
7

0
2
5

−2
−2

1]
 4.  Use a software program or a graphing utility to write v as a linear combination of 

u1, u2, u3, u4, u5, and u6. Then verify your solution.

 v = (10, 30, −13, 14, −7, 27)
 u1 = (1, 2, −3, 4, −1, 2)
 u2 = (1, −2, 1, −1, 2, 1)
 u3 = (0, 2, −1, 2, −1, −1)
 u4 = (1, 0, 3, −4, 1, 2)
 u5 = (1, −2, 1, −1, 2, −3)
 u6 = (3, 2, 1, −2, 3, 0)
 5. Prove that the set of all singular 3 × 3 matrices is not a vector space.

 6. Determine whether the set is a subspace of R4.

 {(x, x + y, y, y): x, y ∈ R}
 7. Determine whether the set is a subspace of R3.

 {(x, xy, y): x, y ∈ R}
 8. Determine whether the columns of matrix A span R4.

 A = [
1
1
0
1

2
3
0
0

−1
0
1
0

0
2

−1
1
]

 9. (a) Explain what it means to say that a set of vectors is linearly independent.

 (b) Determine whether the set S is linearly dependent or independent.

  S = {(1, 0, 1, 0), (0, 3, 0, 1), (1, 1, 2, 2), (3, 4, 1, −2)}
10. (a) Define a basis for a vector space.

 (b)  Determine whether the set {v1, v2} shown in the figure at the left is a basis  
for R2.

 (c) Determine whether the set below is a basis for R3.

  {(1, 2, 1), (0, 1, 2), (2, 1, −3)}
11. Find a basis for the solution space of Ax = 0 when

 A = [
1

−2
0
1

1
−2

0
1

0
0
1
0

0
0
1
0
].

Figure for 10(b)

−1 1

−1

1

x

v1v2

y
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12. Find the coordinates [v]B of the vector v = (1, 2, −3) relative to the basis

 B = {(0, 1, 1), (1, 1, 1), (1, 0, 1)}.
13. Find the transition matrix from the basis B = {(2, 1, 0), (1, 0, 0), (0, 1, 1)} to the basis

 B′ = {(1, 1, 2), (1, 1, 1), (0, 1, 2)}.
14. Let u = (1, 2, 0) and v = (1, −3, 2).
 (a) Find �u�.
 (b) Find the distance between u and v.

 (c) Find u ∙ v.

 (d) Find the angle θ between u and v.

15. Find the inner product of f(x) = x2 and g(x) = x + 2 from C[0, 1] using

 〈 f, g〉 = ∫1

0
f(x)g(x) dx.

16.  Apply the Gram-Schmidt orthonormalization process to transform the set of 
vectors into an orthonormal basis for R3.

 {(2, 0, 0), (1, 1, 1), (0, 1, 2)}
17.  Let u = (1, 2) and v = (−3, 2). Find projvu, and graph u, v, and projvu on the 

same set of coordinate axes.

18. Find the four fundamental subspaces of the matrix

 A = [
0

−1
1

1
0
1

1
0
1

0
1
1].

19. Find the orthogonal complement S⊥ of the set

 S = span{[1
0
1], [

−1
1
0]}.

20.  Consider a set of n linearly independent vectors S = {x1, x2, .  .  . , xn}. Prove that 
if a vector y is not in span(S), then the set S1 = {x1, x2, .  .  . , xn, y} is linearly 
independent.

21.  Find the least squares regression line for the points {(1, 1), (2, 0), (5, −5)}. Graph 
the points and the line.

22. The two matrices A and B are row-equivalent.

 A = [
2
1

−1
4

−4
−2

2
−8

0
−1

1
1

1
1
3

−1

7
9

−5
6

11
12
16

−2
] B = [

1
0
0
0

−2
0
0
0

0
1
0
0

0
0
1
0

3
−5

1
0

2
−3

7
0
]

 (a) Find the rank of A.

 (b) Find a basis for the row space of A.

 (c) Find a basis for the column space of A.

 (d) Find a basis for the nullspace of A.

 (e) Is the last column of A in the span of the first three columns?

 (f) Are the first three columns of A linearly independent?

 (g) Is the last column of A in the span of columns 1, 3, and 4?

 (h) Are columns 1, 3, and 4 linearly dependent?

23.  Let S1 and S2 be two-dimensional subspaces of R3. Is it possible that 
S1 ∩ S2 = {(0, 0, 0)}? Explain.

24.  Let V be a vector space of dimension n. Prove that any set of less than n vectors 
cannot span V.
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298 Chapter 6 Linear Transformations

6.1 introduction to Linear Transformations

 Find the image and preimage of a function.

Show that a function is a linear transformation, and find a linear 
transformation.

imaGes anD preimaGes of funCTions

In this chapter, you will learn about functions that map a vector space V into a vector 
space W. This type of function is denoted by

T: V → W.

The standard function terminology is used for such functions. For instance, V is 
the domain of T, and W  is the codomain of T. If v is in V and w is in W  such that 
T(v) = w, then w is the image of v under T. The set of all images of vectors in V is 
the range of T, and the set of all v in V such that T(v) = w is the preimage of w. (See 
below.)

W: CodomainT: V → W

T

v

w

Range

V: Domain

 a function from R 2 into R 2

See LarsonLinearAlgebra.com for an interactive version of this type of example.

For any vector v = (v1, v2) in R2, define T: R2 → R2 by

T(v1, v2) = (v1 − v2, v1 + 2v2).

a. Find the image of v = (−1, 2).
b. Find the image of v = (0, 0).
c. Find the preimage of w = (−1, 11).

soLuTion

a. For v = (−1, 2), you have

T(−1, 2) = (−1 − 2, −1 + 2(2)) = (−3, 3).

b. If v = (0, 0), then

T(0, 0) = (0 − 0, 0 + 2(0)) = (0, 0).

c. If T(v) = (v1 − v2, v1 + 2v2) = (−1, 11), then

v1 −
v1 +

v2 =
2v2 =

−1
11.

  This system of equations has the unique solution v1 = 3 and v2 = 4. So, the 
preimage of (−1, 11) is the set in R2 consisting of the single vector (3, 4).

remarK
For a vector

v = (v1, v2, .  .  . , vn)

in Rn, it would be more 
correct to use double 
parentheses to denote T(v) 
as T(v) = T ((v1, v2, .  .  . , vn)). 
For convenience, however, 
drop one set of parentheses 
to produce 

T(v) = T (v1, v2, .  .  . , vn).
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Linear TransformaTions

This chapter centers on functions that map one vector space into another and preserve 
the operations of vector addition and scalar multiplication. Such functions are called 
linear transformations.

A linear transformation is operation preserving because the same result occurs 
whether you perform the operations of addition and scalar multiplication before or after  
applying the linear transformation. Although the same symbols denote the vector  
operations in both V and W, you should note that the operations may be different,  
as shown in the diagram below.

 
Addition 

in V

 
Addition 

in W

 
Scalar 

multiplication
in V

 
Scalar 

multiplication
in W

 T(u + v) = T(u) + T(v) T(cu) =  cT(u)

  Verifying a Linear Transformation 
from R2 into R2

Show that the function in Example 1 is a linear transformation from R2 into R2.

T(v1, v2) = (v1 − v2, v1 + 2v2)

soLuTion

To show that the function T  is a linear transformation, you must show that it preserves 
vector addition and scalar multiplication. To do this, let v = (v1, v2) and u = (u1, u2) be 
vectors in R2 and let c be any real number. Then, using the properties of vector addition 
and scalar multiplication, you have the two statements below.

1. u + v = (u1, u2) + (v1, v2) = (u1 + v1, u2 + v2), so you have

 T(u + v) = T(u1 + v1, u2 + v2)
 = ((u1 + v1) − (u2 + v2), (u1 + v1) + 2(u2 + v2))
 = ((u1 − u2) + (v1 − v2), (u1 + 2u2) + (v1 + 2v2))
 = (u1 − u2, u1 + 2u2) + (v1 − v2, v1 + 2v2)
 = T(u) + T(v).

2. cu = c(u1, u2) = (cu1, cu2), so you have

 T(cu) = T(cu1, cu2)
 = (cu1 − cu2, cu1 + 2cu2)
 = c(u1 − u2, u1 + 2u2)
 = cT(u).

So, T  is a linear transformation. 

Definition of a Linear Transformation

Let V and W  be vector spaces. The function

T: V → W

is a linear transformation of V into W when the two properties below are true for 
all u and v in V and for any scalar c.

1. T(u + v) = T(u) + T(v)
2. T(cu) = cT(u)

remarK
A linear transformation 
T: V → V  from a vector space 
into itself (as in Example 2) is 
called a linear operator.
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Many common functions are not linear transformations, as demonstrated in 
Example 3.

  some functions That are 
not Linear Transformations

a.  f(x) = sin x is not a linear transformation from R into R because, in general, 
sin(x1 + x2) ≠ sin x1 + sin x2. For example,

sin[(π�2) + (π�3)] ≠ sin(π�2) + sin(π�3).

b.  f(x) = x2 is not a linear transformation from R into R because, in general, 
(x1 + x2)2 ≠ x2

1 + x2
2. For example, (1 + 2)2 ≠ 12 + 22.

c. f(x) = x + 1 is not a linear transformation from R into R because

f(x1 + x2) = x1 + x2 + 1

whereas

f(x1) + f(x2) = (x1 + 1) + (x2 + 1) = x1 + x2 + 2.

So f(x1 + x2) ≠ f(x1) + f(x2). 

Two simple linear transformations are the zero transformation and the identity 
transformation, which are defined below.

1. T(v) = 0, for all v Zero transformation (T: V → W)

2. T(v) = v, for all v Identity transformation (T: V → V)

You are asked to prove that these are linear transformations in Exercise 77.
Note that the linear transformation in Example 1 has the property that the zero  

vector maps to itself. That is, T(0) = 0, as shown in Example 1(b). This property is 
true for all linear transformations, as stated in the first property of the theorem below.

proof

To prove the first property, note that 0v = 0. Then it follows that

T(0) = T(0v) = 0T(v) = 0.

The second property follows from −v = (−1)v, which implies that

T(−v) = T [(−1)v] = (−1)T(v) = −T(v).

The third property follows from u − v = u + (−v), which implies that

T(u − v) = T [u + (−1)v] = T(u) + (−1)T(v) = T(u) − T(v).

The proof of the fourth property is left to you. 

Property 4 of Theorem 6.1 suggests that a linear transformation T: V → W is  
determined completely by its action on a basis for V. In other words, if {v1, v2, .  .  . , vn} 
is a basis for the vector space V and if T(v1), T(v2), .  .  . , T(vn) are given, then T(v) can 
be determined for any v in V. Example 4 demonstrates the use of this property.

THeorem 6.1 properties of Linear Transformations

Let T  be a linear transformation from V into W, where u and v are in V. Then the 
properties listed below are true.

1. T(0) = 0
2. T(−v) = −T(v)
3. T(u − v) = T(u) − T(v)
4. If v = c1v1 + c2v2 + .  .  . + cnvn, then

T(v) = T(c1v1 + c2v2 + .  .  . + cnvn) = c1T(v1) + c2T(v2) + .  .  . + cnT(vn).

remarK
The function in Example 3(c)  
suggests two uses of the 
term linear. The function 
f(x) = x + 1 is a linear function 
because its graph is a line. It 
is not a linear transformation 
from the vector space R into R, 
however, because it does not 
preserve vector addition  
or scalar multiplication.

remarK
One advantage of Theorem 6.1  
is that it provides a quick way 
to identify functions that are 
not linear transformations. 
That is, all four conditions of 
the theorem must be true of 
a linear transformation, so it 
follows that if any one of the 
properties is not satisfied for  
a function T, then the function 
is not a linear transformation.  
For example, the function 

T (x1, x2) = (x1 + 1, x2)

is not a linear transformation  
from R2 into R2 because 
T(0, 0) ≠ (0, 0).
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Linear Transformations and Bases

Let T: R3 → R3 be a linear transformation such that

T(1, 0, 0) = (2, −1, 4)
T(0, 1, 0) = (1, 5, −2)
T(0, 0, 1) = (0, 3, 1).

Find T(2, 3, −2).

soLuTion

(2, 3, −2) = 2(1, 0, 0) + 3(0, 1, 0) − 2(0, 0, 1), so use Property 4 of Theorem 6.1 to 
write

 T(2, 3, −2) = 2T(1, 0, 0) + 3T(0, 1, 0) − 2T(0, 0, 1)
 = 2(2, −1, 4) + 3(1, 5, −2) − 2(0, 3, 1)
 = (7, 7, 0).  

In the next example, a matrix defines a linear transformation from R2 into R3.  
The vector v = (v1, v2) is in the matrix form

v = [v1

v2
]

so it can be multiplied on the left by a matrix of size 3 × 2.

 a Linear Transformation Defined by a matrix

Define the function T: R2 → R3 as

T(v) = Av = [
3
2

−1

0
1

−2][v1

v2
].

a. Find T(v) when v = (2, −1).
b. Show that T  is a linear transformation from R2 into R3.

soLuTion

a. v = (2, −1), so you have

T(v) = Av = [
3
2

−1

0
1

−2][ 2
−1] = [

6
3
0]

  

 which means that T(2, −1) = (6, 3, 0).
b.  Begin by observing that T  maps a vector in R2 to a vector in R3. To show that T   

is a linear transformation, use properties given in Theorem 2.3. For any vectors u 
and v in R2, the distributive property of matrix multiplication over addition produces

T(u + v) = A(u + v) = Au + Av = T(u) + T(v).

  Similarly, for any vector u in R2 and any scalar c, the commutative property of scalar 
multiplication with matrix multiplication produces

T(cu) = A(cu) = c(Au) = cT(u). 

Vector 
in R3

Vector 
in R2
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Example 5 illustrates an important result regarding the representation of linear 
transformations from Rn into Rm. This result is presented in two stages. Theorem 6.2 
below states that every m × n matrix represents a linear transformation from Rn into 
Rm. Then, in Section 6.3, you will see the converse—that every linear transformation 
from Rn into Rm can be represented by an m × n matrix.

Note that the solution of Example 5(b) makes no reference specifically to the 
matrix A that defines T . So, this solution serves as a general proof that the function 
defined by any m × n matrix is a linear transformation from Rn into Rm.

Be sure you see that an m × n matrix A defines a linear transformation from Rn  
into Rm:

Av = [
a11

a21

⋮
am1

a12

a22

⋮
am2

.  .  .

.  .  .

.  .  .

a1n

a2n

⋮
amn

] [
v1

v2

⋮
vn

] = [
a11v1 +
a21v1 +

⋮        
am1v1 +

a12v2 +
a22v2 +

⋮        
am2v2 +

.  .  . +

.  .  . +

.  .  . +

a1nvn

a2nvn

⋮   
amnvn

].

  

 Linear Transformations Given by matrices

Consider the linear transformation T: Rn → Rm defined by T(v) = Av. Find the  
dimensions of Rn and Rm for the linear transformation represented by each matrix.

a. A = [
0
2
4

1
3
2

−1
0
1] b. A = [

2
−5

0

−3
0

−2]
c. A = [1

3
0
1

−1
0

2
0]

soLuTion

a. The size of this matrix is 3 × 3, so it defines a linear transformation from R3 into R3.

Av = [
0
2
4

1
3
2

−1
0
1] [

v1

v2

v3
] =  [

u1

u2

u3
]

  

b. The size of this matrix is 3 × 2, so it defines a linear transformation from R2 into R3.

c. The size of this matrix is 2 × 4, so it defines a linear transformation from R4 into R2.
 

THeorem 6.2 Linear Transformation Given by a matrix

Let A be an m × n matrix. The function T  defined by

T(v) = Av

is a linear transformation from Rn into Rm. In order to conform to matrix  
multiplication with an m × n matrix, n × 1 matrices represent the vectors in Rn 
and m × 1 matrices represent the vectors in Rm.

Vector 
in Rm

Vector 
in Rn

Vector 
in R3

Vector
in R3

remarK
The m × n zero matrix  
corresponds to the zero  
transformation from Rn into 
Rm, and the n × n identity 
matrix In corresponds to the 
identity transformation from  
Rn into Rn.
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The next example discusses a common type of linear transformation from R2 into R2.

 rotation in R2

Show that the linear transformation T: R2 → R2 represented by the matrix

A = [cos θ
sin θ

−sin θ
cos θ]

has the property that it rotates every vector in R2 counterclockwise about the origin 
through the angle θ.

soLuTion

From Theorem 6.2, you know that T  is a linear transformation. To show that it rotates 
every vector in R2 counterclockwise through the angle θ, let v = (x, y) be a vector  
in R2. Using polar coordinates, you can write v as

 v = (x, y)
 = (r cos α, r sin α)

where r is the length of v and α is the angle from the positive x-axis counterclockwise 
to the vector v. Now, applying the linear transformation T  to v produces

 T(v) = Av

 = [cos θ
sin θ

−sin θ
cos θ] [x

y]
 = [cos θ

sin θ
−sin θ

cos θ] [r cos α
r sin α]

 = [r cos θ cos α − r sin θ sin α
r sin θ cos α + r cos θ sin α]

 = [r cos(θ + α)
r sin(θ + α)].

Verify that the vector T(v) has the same length as v. Furthermore, the angle from the 
positive x-axis to T(v) is 

θ + α

so T(v) is the vector that results from rotating the vector v counterclockwise through 
the angle θ, as shown below.

Rotation in R2
x

y

T(x, y)

(x, y)

θ

α

 

The linear transformation in Example 7 is a rotation in R2. Rotations in R2  
preserve both vector length and the angle between two vectors. That is, �T(u)� = �u�, 
�T(v)� = �v�, and the angle between T(u) and T(v) is equal to the angle between u  
and v.
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a projection in R3

The linear transformation T: R3 → R3 represented by

A = [
1
0
0

0
1
0

0
0
0]

is a projection in R3. If v = (x, y, z) is a vector in R3, then T(v) = (x, y, 0). In other 
words, T  maps every vector in R3 to its orthogonal projection in the xy-plane, as shown 
below.

x y

z

(x, y, z)

T (x, y, z) = (x, y, 0)

Projection onto xy-plane  

So far, only linear transformations from Rn into Rm or from Rn into Rn have 
been discussed. The remainder of this section considers some linear transformations 
involving vector spaces other than Rn.

 a Linear Transformation from Mm,n into Mn,m

Let T: Mm,n→ Mn,m be the function that maps an m × n matrix A to its transpose. That is,

T(A) = AT.

Show that T  is a linear transformation.

soLuTion

Let A and B be m × n matrices and let c be a scalar. From Theorem 2.6 you have

T(A + B) = (A + B)T = AT + BT = T(A) + T(B)

and

T(cA) = (cA)T = c(AT) = cT(A).

So, T  is a linear transformation from Mm,n into Mn,m. 

wrangler/Shutterstock.com

Linear
aLGeBra
appLieD

Many multivariate statistical methods can use linear 
transformations.  For instance, in a multiple regression 
analysis, there are two or more independent variables and 
a single dependent variable. A linear transformation is useful 
for finding weights to be assigned to the independent 
variables to predict the value of the dependent variable. 
Also, in a canonical correlation analysis, there are two or 
more independent variables and two or more dependent 
variables. Linear transformations can help find a linear 
combination of the independent variables to predict the 
value of a linear combination of the dependent variables.
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The Differential operator (Calculus)

Let C′[a, b] be the set of all functions whose derivatives are continuous on [a, b]. Show 
that the differential operator Dx defines a linear transformation from C′[a, b] into C[a, b].

soLuTion

Using operator notation, you can write

Dx( f ) =
d
dx

[ f]

where f  is in C′[a, b]. To show that Dx is a linear transformation, you must use calculus. 
Specifically, the derivative of the sum of two differentiable functions is equal to the sum 
of their derivatives, so you have

Dx( f + g) =
d
dx

[ f + g] =
d
dx

[ f ] +
d
dx

[g] = Dx( f ) + Dx(g)

where g is also in C′[a, b]. Similarly, the derivative of a scalar multiple cf  of a  
differentiable function is equal to the scalar multiple of the derivative, so you have

Dx(cf) =
d
dx

[cf ] = c( d
dx

[ f]) = cDx( f ).

The sum of two continuous functions is continuous, and the scalar multiple of a 
continuous function is continuous, so Dx is a linear transformation from C′[a, b] into 
C[a, b]. 

The linear transformation Dx in Example 10 is called the differential operator. 
For polynomials, the differential operator is a linear transformation from Pn into Pn−1 
because the derivative of a polynomial function of degree n ≥ 1 is a polynomial  
function of degree n − 1. That is,

Dx(a0 + a1x + .  .  . + anxn) = a1 + .  .  . + nanxn−1.

The next example describes a linear transformation from the vector space of  
polynomial functions P into the vector space of real numbers R.

  The Definite integral as a Linear 
Transformation (Calculus)

Consider T: P → R defined by

T(p) = ∫b

a

p(x) dx

where p is a polynomial function. Show that T  is a linear transformation from P,  
the vector space of polynomial functions, into R, the vector space of real numbers.

soLuTion

Using properties of definite integrals, you can write

T(p + q) = ∫b

a

[ p(x) + q(x)] dx = ∫b

a

p(x) dx + ∫b

a

q(x) dx = T(p) + T(q)

where q is a polynomial function, and

T(cp) = ∫b

a

[cp(x)] dx = c∫b

a

p(x) dx = cT(p)

where c is a scalar. So, T  is a linear transformation. 
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6.1 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

finding an image and a preimage In Exercises 1–8, 
use the function to find (a) the image of v and (b) the 
preimage of w.

 1. T(v1, v2) = (v1 + v2, v1 − v2),
 v = (3, −4),  w = (3, 19)
 2. T(v1, v2) = (v1, 2v2 − v1, v2),
 v = (0, 4),  w = (2, 4, 3)
 3. T(v1, v2, v3) = (2v1 + v2, 2v2 − 3v1, v1 − v3),
 v = (−4, 5, 1),  w = (4, 1, −1)
 4. T(v1, v2, v3) = (v2 − v1, v1 + v2, 2v1),
 v = (2, 3, 0),  w = (−11, −1, 10)
 5. T(v1, v2, v3) = (4v2 − v1, 4v1 + 5v2),
 v = (2, −3, −1),  w = (3, 9)
 6. T(v1, v2, v3) = (2v1 + v2, v1 − v2),
 v = (2, 1, 4),  w = (−1, 2)

 7. T(v1, v2) = (√2
2

v1 −
√2
2

v2, v1 + v2, 2v1 − v2),

 v = (1, 1),  w = (−5√2, −2, −16)

 8. T(v1, v2) = (√3
2

v1 −
1
2

v2, v1 − v2, v2),

 v = (2, 4),  w = (√3, 2, 0)
Linear Transformations In Exercises 9–22, determine 
whether the function is a linear transformation.

 9. T: R2 → R2, T(x, y) = (x, 1)
10. T: R2 → R2, T(x, y) = (x, y2)
11. T: R3 → R3, T(x, y, z) = (x + y, x − y, z)
12. T: R3 → R3, T(x, y, z) = (x + 1, y + 1, z + 1)
13. T: R2 → R3, T(x, y) = (√x, xy, √y)
14. T: R2 → R3, T(x, y) = (x2, xy, y2)
15. T: M2,2 → R, T(A) = ∣A∣
16. T: M2,2 → R, T(A) = a + b + c + d, where 

 A = [a
c

b
d].

17. T: M2,2 → R, T(A) = a − b − c − d, where 

 A = [a
c

b
d].

18. T: M2,2 → R, T(A) = b2, where A = [a
c

b
d].

19. T: M3,3 → M3,3, T(A) = [
0
0
1

0
1
0

1
0
0]A

20. T: M3,3 → M3,3, T(A) = [
3
0
0

0
2
0

0
0

−10]A

21. T: P2 → P2, T(a0 + a1x + a2x
2) =

 (a0 + a1 + a2) + (a1 + a2)x + a2x
2

22. T: P2 → P2, T(a0 + a1x + a2x
2) = a1 + 2a2x

23.  Let T  be a linear transformation from R2 into R2 
such that T(1, 0) = (1, 1) and T(0, 1) = (−1, 1). Find 
T(1, 4) and T(−2, 1).

24.  Let T  be a linear transformation from R2 into R2 
such that T(1, 2) = (1, 0) and T(−1, 1) = (0, 1). Find 
T(2, 0) and T(0, 3).

Linear Transformation and Bases In Exercises  
25–28, let T: R3 → R3 be a linear transformation such 
that T(1, 0, 0) = (2, 4, −1), T(0, 1, 0) = (1, 3, −2), and 
T(0, 0, 1) = (0, −2, 2). Find the specified image.

25. T(1, −3, 0) 26. T(2, −1, 0)
27. T(2, −4, 1) 28. T(−2, 4, −1)

Linear Transformation and Bases In Exercises 29–32, 
let T: R3 → R3 be a linear transformation such that 
T(1, 1, 1) = (2, 0, −1), T(0, −1, 2) = (−3, 2, −1), and 
T(1, 0, 1) = (1, 1, 0). Find the specified image.

29. T(4, 2, 0) 30. T(0, 2, −1)
31. T(2, −1, 1) 32. T(−2, 1, 0)

Linear Transformation Given by a matrix In Exercises 
33–38, define the linear transformation T: Rn → Rm by 
T(v) = Av. Find the dimensions of Rn and Rm.

33. A = [ 0
−1

−1
0] 34. A = [

1
−2
−2

2
4
2]

35. A = [
1
0
0
0

0
−1

0
0

0
0
1
0

0
0
0
2
]

36. A = [−1
0

2
0

1
2

3
−1

4
0]

37. A = [
0

−1
0

1
4
1

−2
5
3

1
0
1]

38. A = [
0
1
1

2
0
2

0
1
2

2
0
2

0
1
1]

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 6.1 Exercises 307

39.  For the linear transformation from Exercise 33, find  
(a) T(1, 1), (b) the preimage of (1, 1), and (c) the  
preimage of (0, 0).

40.  Writing For the linear transformation from Exercise 
34, find (a) T(2, 4) and (b) the preimage of (−1, 2, 2).  
(c) Then explain why the vector (1, 1, 1) has no preimage  
under this transformation.

41.  For the linear transformation from Exercise 35, find  
(a) T(2, 1, 2, 1) and (b) the preimage of (−1, −1, −1, −1).

42.  For the linear transformation from Exercise 36, find  
(a) T(1, 0, −1, 3, 0) and (b) the preimage of (−1, 8).

43.  For the linear transformation from Exercise 37, find  
(a) T(1, 0, 2, 3) and (b) the preimage of (0, 0, 0).

44.  For the linear transformation from Exercise 38, find  
(a) T(0, 1, 0, 1, 0) (b) the preimage of (0, 0, 0), and  
(c) the preimage of (1, −1, 2).

45.  Let T  be a linear transformation from R2 into R2 such that  
T(x, y) = (x cos θ − y sin θ,  x sin θ + y cos θ). Find 
(a) T(4, 4) for θ = 45°, (b) T(4, 4) for θ = 30°, and  
(c) T(5, 0) for θ = 120°.

46.  For the linear transformation from Exercise 45, let 
θ = 45° and find the preimage of v = (1, 1).

47.  Find the inverse of the matrix A in Example 7. What linear  
transformation from R2 into R2 does A−1 represent?

48. For the linear transformation T: R2 → R2 given by

 A = [a
b

−b
a]

 find a and b such that T(12, 5) = (13, 0).

projection in R3 In Exercises 49 and 50, let the matrix 
A represent the linear transformation T: R3 → R3. 
Describe the orthogonal projection to which T maps 
every vector in R3.

49. A = [
1
0
0

0
0
0

0
0
1] 50. A = [

0
0
0

0
1
0

0
0
1]

Linear Transformation Given by a matrix In Exercises 
51–54, determine whether the function involving the 
n × n matrix A is a linear transformation.

51. T: Mn,n → Mn,n, T(A) = A−1

52.  T: Mn,n → Mn,n, T(A) = AX − XA, where X is a fixed 
n × m matrix

53.  T: Mn,n → Mn,m, T(A) = AB, where B is a fixed n × m 
matrix

54. T: Mn,n→R, T(A) = a11 ∙ a22 ∙ .  .  . ∙ ann, where A = [aij]

55.  Let T  be a linear transformation from P2 into P2 such  
that T(1) = x, T(x) = 1 + x, and T(x2) = 1 + x + x2. 
Find T(2 − 6x + x2).

56.  Let T  be a linear transformation from M2,2 into M2,2 
such that 

 T([1
0

0
0]) = [1

0
−1

2], T([0
0

1
0]) = [0

1
2
1],

 T([0
1

0
0]) = [1

0
2
1], T([0

0
0
1]) = [3

1
−1

0].

 Find T([ 1
−1

3
4]).

Calculus In Exercises 57–60, let Dx be the linear  
transformation from C′[a, b] into C[a, b] from  
Example 10. Determine whether each statement is true 
or false. Explain.

57. Dx(ex2 + 2x) = Dx(ex2) + 2Dx(x)
58. Dx(x2 − ln x) = Dx(x2) − Dx(ln x)
59. Dx(sin 3x) = 3Dx(sin x)

60. Dx(cos 
x
2) =

1
2

Dx(cos x)

Calculus In Exercises 61–64, for the linear  
transformation from Example 10, find the preimage of 
each function.

61. Dx( f ) = 4x + 3 62. Dx( f ) = ex

63. Dx( f ) = sin x 64. Dx( f ) =
1
x

65.  Calculus Let T  be a linear transformation from P into 
R such that

T(p) = ∫1

0
 p(x) dx.

 Find (a) T(−2 + 3x2), (b) T(x3 − x5), and (c) T(−6 + 4x).
66.  Calculus Let T  be the linear transformation from 

P2 into R using the integral in Exercise 65. Find the  
preimage of 1. That is, find the polynomial function(s) 
of degree 2 or less such that T(p) = 1.

True or false? In Exercises 67 and 68, determine 
whether each statement is true or false. If a statement 
is true, give a reason or cite an appropriate statement 
from the text. If a statement is false, provide an example 
that shows the statement is not true in all cases or cite an 
appropriate statement from the text.

67. (a)  The function f(x) = cos x is a linear transformation 
from R into R.

 (b)  For polynomials, the differential operator Dx is a 
linear transformation from Pn into Pn−1.

68. (a)  The function g(x) = x3 is a linear transformation 
from R into R.

 (b)  Any linear function of the form f(x) = ax + b is a 
linear transformation from R into R.
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69.  Writing Let T: R2 → R2 such that T(1, 0) = (1, 0) and 
T(0, 1) = (0, 0).

 (a) Determine T(x, y) for (x, y) in R2.

 (b) Give a geometric description of T.

70.  Writing Let T: R2 → R2 such that T(1, 0) = (0, 1) and 
T(0, 1) = (1, 0).

 (a) Determine T(x, y) for (x, y) in R2.

 (b) Give a geometric description of T.

71.  proof Let T  be the function that maps R2 into R2 such 
that T(u) = projvu, where v = (1, 1).

 (a) Find T(x, y). (b) Find T(5, 0).
 (c)  Prove that T  is a linear transformation from R2  

into R2.

72.  Writing Find T(3, 4) and T(T(3, 4)) from Exercise 71 
and give geometric descriptions of the results.

73.  Show that T  from Exercise 71 is represented by the 
matrix

 A = [
1
2
1
2

1
2
1
2
].

74.  CAPSTONE Explain how to determine  
whether a function T: V → W  is a linear  
transformation.

75.  proof Use the concept of a fixed point of a linear 
transformation T: V → V. A vector u is a fixed point 
when T(u) = u.

 (a)  Prove that 0 is a fixed point of any linear  
transformation T: V → V.

 (b)  Prove that the set of fixed points of a linear  
transformation T: V → V is a subspace of V.

 (c)  Determine all fixed points of the linear transformation  
T: R2 → R2 represented by T(x, y) = (x, 2y).

 (d)  Determine all fixed points of the linear transformation  
T: R2 → R2 represented by T(x, y) = (y, x).

76.  A translation in R2 is a function of the form 
T(x, y) = (x − h, y − k), where at least one of the  
constants h and k is nonzero.

 (a)  Show that a translation in R2 is not a linear  
transformation.

 (b)  For the translation T(x, y) = (x − 2, y + 1),  
determine the images of (0, 0), (2, −1), and (5, 4).

 (c) Show that a translation in R2 has no fixed points.

77.  proof Prove that (a) the zero transformation and (b) 
the identity transformation are linear transformations.

78.  Let S = {v1, v2, v3} be a set of linearly independent 
vectors in R3. Find a linear transformation T  from R3 
into R3 such that the set {T(v1), T(v2), T(v3)} is linearly 
dependent.

79.  proof Let S = {v1, v2, .  .  . , vn} be a set of linearly  
dependent vectors in V, and let T  be a linear  
transformation from V into V. Prove that the set

 {T(v1), T(v2), .  .  . , T(vn)}
 is linearly dependent.

80.  proof Let V be an inner product space. For a fixed 
vector v0 in V, define T: V → R by T(v) = 〈v, v0〉. Prove 
that T  is a linear transformation.

81.  proof Define T: Mn,n → R by

 T(A) = a11 + a22 + .  .  . + ann

 (the trace of A). Prove that T  is a linear transformation.

82.  Let V be an inner product space with a subspace W   
having B = {w1, w2, .  .  . , wn} as an orthonormal basis. 
Show that the function T: V → W  represented by

 T(v) = 〈v, w1〉w1 + 〈v, w2〉w2 + .  .  . + 〈v, wn〉wn

  is a linear transformation. T  is called the orthogonal  
projection of V onto W.

83.  Guided proof Let {v1, v2, .  .  . , vn} be a basis for 
a vector space V. Prove that if a linear transformation 
T: V → V satisfies T(vi) = 0 for i = 1, 2, .  .  . , n, then 
T  is the zero transformation.

  Getting Started: To prove that T  is the zero  
transformation, you need to show that T(v) = 0 for 
every vector v in V.

  (i)  Let v be an arbitrary vector in V such that 

  v = c1v1 + c2v2 + .  .  . + cnvn.

  (ii)  Use the definition and properties of linear  
transformations to rewrite T(v) as a linear  
combination of T(vi).

 (iii)  Use the fact that T(vi) = 0 to conclude that 
T(v) = 0, making T  the zero transformation.

84.  Guided proof Prove that T: V → W  is a linear  
transformation if and only if

 T(au + bv) = aT(u) + bT(v)
 for all vectors u and v and all scalars a and b.

  Getting Started: This is an “if and only if” statement, 
so you need to prove the statement in both directions.  
To prove that T  is a linear transformation, you need 
to show that the function satisfies the definition of 
a linear transformation. In the other direction, let T  
be a linear transformation. Use the definition and 
properties of a linear transformation to prove that 
T(au + bv) = aT(u) + bT(v).

  (i)  Let T(au + bv) = aT(u) + bT(v). Show that T  
preserves the properties of vector addition and  
scalar multiplication by choosing appropriate  
values of a and b.

 (ii)  To prove the statement in the other direction, 
assume that T  is a linear transformation. Use the 
properties and definition of a linear transformation 
to show that T(au + bv) = aT(u) + bT(v).
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6.2 The Kernel and Range of a Linear Transformation

 Find the kernel of a linear transformation.

  Find a basis for the range, the rank, and the nullity of a linear  
transformation.

 Determine whether a linear transformation is one-to-one or onto.

 Determine whether vector spaces are isomorphic.

The Kernel of a linear TransformaTion

You know from Theorem 6.1 that for any linear transformation T: V → W, the zero vector 
in V maps to the zero vector in W. That is, T(0) = 0. The first question you will consider 
in this section is whether there are other vectors v such that T(v) = 0. The collection of all 
such elements is the kernel of T. Note that the symbol 0 represents the zero vector in both 
V and W, although these two zero vectors are often different.

Sometimes the kernel of a transformation can be found by inspection, as  
demonstrated in Examples 1, 2, and 3.

 finding the Kernel of a linear Transformation

Let T: M3,2 → M2,3 be the linear transformation that maps a 3 × 2 matrix A to its  
transpose. That is, T(A) = AT. Find the kernel of T.

soluTion

For this linear transformation, the 3 × 2 zero matrix is clearly the only matrix in M3,2 
whose transpose is the zero matrix in M2,3. So, the kernel of T  consists of a single  
element: the zero matrix in M3,2. 

  The Kernels of the Zero and 
identity Transformations

a.  The kernel of the zero transformation T: V → W consists of all of V because 
T(v) = 0 for every v in V. That is, ker(T) = V.

b.  The kernel of the identity transformation T: V → V consists of the single element 0. 
That is, ker(T) = {0}. 

  finding the Kernel of a linear Transformation

Find the kernel of the projection T: R3 → R3 represented by T(x, y, z) = (x, y, 0).

soluTion

This linear transformation projects the vector (x, y, z) in R3 to the vector (x, y, 0) in the 
xy-plane. The kernel consists of all vectors lying on the z-axis. That is,

ker(T) = {(0, 0, z): z is a real number}. (See Figure 6.1.) 

Definition of Kernel of a linear Transformation

Let T: V → W be a linear transformation. Then the set of all vectors v in V that 
satisfy T(v) = 0 is the kernel of T  and is denoted by ker(T).

figure 6.1

x y

(0, 0, 0)

z

(0, 0, z)

(x, y, 0)
T (x, y, z) =

The kernel of T is the set
of all vectors on the z-axis.
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Finding the kernels of the linear transformations in Examples 1, 2, and 3 is  
relatively easy. Sometimes, the kernel of a linear transformation is not so obvious, as 
illustrated in the next two examples.

  finding the Kernel of a linear Transformation

Find the kernel of the linear transformation T: R2 → R3 represented by

T(x1, x2) = (x1 − 2x2, 0, −x1).

soluTion

To find ker(T), you need to find all x = (x1, x2) in R2 such that

T(x1, x2) = (x1 − 2x2, 0, −x1) = (0, 0, 0).

This leads to the homogeneous system

x1

−x1

− 2x2 = 0
0 = 0

= 0

which has only the trivial solution (x1, x2) = (0, 0). So, you have

ker(T) = {(0, 0)} = {0}. 

  finding the Kernel of a linear Transformation

Find the kernel of the linear transformation T: R3 → R2 defined by T(x) = Ax, where

A = [ 1
−1

−1
2

−2
3].

soluTion

The kernel of T  is the set of all x = (x1, x2, x3) in R3 such that T(x1, x2, x3) = (0, 0). 
From this equation, you can write the homogeneous system

[ 1
−1

−1
2

−2
3][

x1

x2

x3
] = [0

0]  
x1 −

−x1 +
x2 − 2x3 = 0

2x2 + 3x3 = 0.

Writing the augmented matrix of this system in reduced row-echelon form produces

[1
0

0
1

−1
1

0
0]  

x1 =
x2 =

x3

−x3.

Using the parameter t = x3 produces the family of solutions

[
x1

x2

x3
] = [

t
−t

t] = t[
1

−1
1].

So, the kernel of T  is

ker(T) = {t(1, −1, 1): t is a real number} = span{(1, −1, 1)}. (See Figure 6.2.)

 

Note in Example 5 that the kernel of T  contains infinitely many vectors. Of 
course, the zero vector is in ker(T), but the kernel also contains such nonzero vectors 
as (1, −1, 1) and (2, −2, 2), as shown in Figure 6.2. The figure also shows that the  
kernel is a line passing through the origin, which implies that it is a subspace of R3.  
Theorem 6.3 on the next page states that the kernel of every linear transformation 
T: V → W is a subspace of V.

figure 6.2

y

x

1

1
2

3

2

3

z

2 3−2

(2, −2, 2)

(1, −1, 1)

Kernel:
t (1, −1, 1)
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proof

From Theorem 6.1, you know that ker(T) is a nonempty subset of V. So, by Theorem 4.5, 
you can show that ker(T) is a subspace of V by showing that it is closed under vector 
addition and scalar multiplication. To do so, let u and v be vectors in the kernel of T.
Then T(u + v) = T(u) + T(v) = 0 + 0 = 0, which implies that u + v is in the 
kernel. Moreover, if c is any scalar, then T(cu) = cT(u) = c0 = 0, which implies that 
cu is in the kernel. 

The next example shows how to find a basis for the kernel of a transformation 
defined by a matrix.

 finding a Basis for the Kernel

Define T: R5 → R4 by T(x) = Ax, where x is in R5 and

A = [
1
2

−1
0

2
1
0
0

0
3

−2
0

1
1
0
2

−1
0
1
8
].

Find a basis for ker(T) as a subspace of R5.

soluTion

Using the procedure shown in Example 5, write the augmented matrix [A   0] in reduced  
row-echelon form as shown below.

[
1
0
0
0

0
1
0
0

2
−1

0
0

0
0
1
0

−1
−2

4
0

0
0
0
0
]  

x1 =
x2 =
x4 =

−2x3 +
x3 +

−

x5

2x5

4x5

Letting x3 = s and x5 = t, you have

x = [
x1

x2

x3

x4

x5

] = [
−2s +

s +
s +

0s −
0s +

t
2t
0t
4t
t
] = s[

−2
1
1
0
0
] + t[

1
2
0

−4
1
].

So a basis for the kernel of T  is B = {(−2, 1, 1, 0, 0), (1, 2, 0, −4, 1)}. 

In the solution of Example 6, a basis for the kernel of T  was found by solving 
the homogeneous system represented by Ax = 0. This procedure is a familiar one—
it is the same procedure used to find the nullspace of A. In other words, the kernel 
of T  is the solution space of Ax = 0, as stated in the corollary to Theorem 6.3 
below.

Theorem 6.3 The Kernel is a subspace of V

The kernel of a linear transformation T: V → W is a subspace of the domain V.

Theorem 6.3 Corollary

Let T: Rn → Rm be the linear transformation T(x) = Ax. Then the kernel of T  is 
equal to the solution space of Ax = 0.

remarK
The kernel of T is sometimes 
called the nullspace of T.

DISCOVERY
1.  What is the rank of 

the matrix A in 
Example 6?

2.  Formulate a conjecture 
relating the dimension 
of the kernel, the rank, 
and the number of 
columns of A. 

3.  Verify your conjecture 
for the matrix in 
Example 5.
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The range of a linear TransformaTion

The kernel is one of two critical subspaces associated with a linear transformation. The 
other is the range of T, denoted by range(T). Recall from Section 6.1 that the range of 
T: V → W is the set of all vectors w in W  that are images of vectors in V. That is,

range(T) = {T(v): v is in V}.

proof

The range of T  is nonempty because T(0) = 0 implies that the range contains the  
zero vector. To show that it is closed under vector addition, let T(u) and T(v) be  
vectors in the range of T. The vectors u and v are in V, so it follows that u + v is also 
in V, and the sum

T(u) + T(v) = T(u + v)

is in the range of T.
To show closure under scalar multiplication, let T(u) be a vector in the range of  

T  and let c be a scalar. u is in V, so it follows that cu is also in V, and the scalar  
multiple cT(u) = T(cu) is in the range of T. 

Note that the kernel and range of a linear transformation T: V → W  are subspaces 
of V and W, respectively, as illustrated in Figure 6.3.

To find a basis for the range of a linear transformation T(x) = Ax, observe that 
the range consists of all vectors b such that the system Ax = b is consistent. Writing 
the system

[
a11

a21

⋮
am1

a12

a22

⋮
am2

.  .  .

.  .  .

.  .  .

a1n

a2n

⋮
amn

][
x1

x2

⋮
xn

] = [
b1

b2

⋮
bm

]
in the form

Ax = x1[
a11

a21

⋮
am1

] + x2[
a12

a22

⋮
am2

] + .  .  . + xn[
a1n

a2n

⋮
amn

] = [
b1

b2

⋮
bm

] = b

shows that b is in the range of T  if and only if b is a linear combination of the 
column vectors of A. So the column space of the matrix A is the same as the  
range of T.

In Examples 4 and 5 in Section 4.6, you saw two procedures for finding a basis for 
the column space of a matrix. The next example uses the procedure from Example 5  
in Section 4.6 to find a basis for the range of a linear transformation defined by  
a matrix.

Theorem 6.4 Corollary

Let T: Rn → Rm be the linear transformation T(x) = Ax. Then the column space 
of A is equal to the range of T.

Theorem 6.4 The range of T is a subspace of W

The range of a linear transformation T: V → W is a subspace of W.

figure 6.3

Range
T

0 W

V

KernelDomain
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  finding a Basis for the range
of a linear Transformation

See LarsonLinearAlgebra.com for an interactive version of this type of example.

For the linear transformation R5 → R4 from Example 6, find a basis for the range of T.

soluTion

Use the reduced row-echelon form of A from Example 6.

A = [
1
2

−1
0

2
1
0
0

0
3

−2
0

1
1
0
2

−1
0
1
8
] ⇒ [

1
0
0
0

0
1
0
0

2
−1

0
0

0
0
1
0

−1
−2

4
0
]

The leading 1’s appear in columns 1, 2, and 4 of the reduced matrix on the right, so the 
corresponding column vectors of A form a basis for the column space of A. A basis for 
the range of T  is B = {(1, 2, −1, 0), (2, 1, 0, 0), (1, 1, 0, 2)}. 

The next definition gives the dimensions of the kernel and range of a linear 
transformation.

In Examples 6 and 7, the rank and nullity of T  are related to the dimension of the 
domain as shown below.

rank(T) + nullity(T) = 3 + 2 = 5 = dimension of domain

This relationship is true for any linear transformation from a finite-dimensional vector 
space, as stated in the next theorem.

proof

The proof provided here covers the case in which T is represented by an m × n matrix 
A. The general case will follow in the next section, where you will see that any linear 
transformation from an n-dimensional space into an m-dimensional space can be 
represented by a matrix. To prove this theorem, assume that the matrix A has a rank 
of r. Then you have

rank(T) = dim(range of T) = dim(column space) = rank(A) = r.

From Theorem 4.17, however, you know that

nullity(T) = dim(kernel of T) = dim(solution space of Ax = 0) = n − r.

So, it follows that rank(T) + nullity(T) = r + (n − r) = n. 

Theorem 6.5 sum of rank and nullity

Let T: V → W  be a linear transformation from an n-dimensional vector space V 
into a vector space W. Then the sum of the dimensions of the range and kernel is 
equal to the dimension of the domain. That is,

rank(T) + nullity(T) = n or dim(range) + dim(kernel) = dim(domain).

remarK
If T is given by a matrix A, then 
the rank of T is equal to the 
rank of A, and the nullity of T 
is equal to the nullity of A, as 
defined in Section 4.6.

Definition of rank and nullity of a linear Transformation

Let T: V → W be a linear transformation. The dimension of the kernel of T  is 
called the nullity of T  and is denoted by nullity(T). The dimension of the range 
of T  is called the rank of T  and is denoted by rank(T).
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  finding the rank and nullity
of a linear Transformation

Find the rank and nullity of the linear transformation T: R3 → R3 defined by the matrix

A = [
1
0
0

0
1
0

−2
1
0].

soluTion

A is in reduced row-echelon form and has two nonzero rows, so it has a rank of 2. This 
means that the rank of T  is also 2, and the nullity is dim(domain) − rank = 3 − 2 = 1.

One way to visualize the relationship between the rank and the nullity of a linear 
transformation provided by a matrix in row-echelon form is to observe that the number 
of leading 1’s determines the rank, and the number of free variables (columns without 
leading 1’s) determines the nullity. Their sum must be the total number of columns in the 
matrix, which is the dimension of the domain. In Example 8, the first two columns have 
leading 1’s, indicating that the rank is 2. The third column corresponds to a free 
variable, indicating that the nullity is 1.

  finding the rank and nullity
of a linear Transformation

Let T: R5 → R7 be a linear transformation.

a. Find the dimension of the kernel of T  when the dimension of the range is 2.

b. Find the rank of T  when the nullity of T  is 4.

c. Find the rank of T  when ker(T) = {0}.

soluTion

a. By Theorem 6.5, with n = 5, you have

 dim(kernel) = n − dim(range) = 5 − 2 = 3.

b. Again by Theorem 6.5, you have

 rank(T) = n − nullity(T) = 5 − 4 = 1.

c. In this case, the nullity of T  is 0. So

 rank(T) = n − nullity(T) = 5 − 0 = 5. 

linear
algeBra
applieD

A control system, such as the one shown for a dairy factory, 
processes an input signal xk and produces an output signal 
xk+1. Without external feedback, the difference equation 
xk+1 = Axk , a linear transformation where xi is an n × 1 
vector and A is an n × n matrix, can model the relationship 
between the input and output signals. Typically, however, 
a control system has external feedback, so the relationship 
becomes xk+1 = Axk + Buk , where B is an n × m matrix 
and uk is an m × 1 input, or control, vector. A system is 
controllable when it can reach any desired final state from 
its initial state in n or fewer steps. If A and B are matrices 
in a model of a controllable system, then the rank of the 
controllability matrix

[B   AB   A2B  .  .  .  An−1B]

is equal to n.
Mark Yuill/Shutterstock.com
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one-To-one anD onTo linear TransformaTions

This section began with a question: Which vectors in the domain of a linear  
transformation are mapped to the zero vector? Theorem 6.6 (below) states that if the 
zero vector is the only vector v such that T(v) = 0, then T  is one-to-one. A function 
T: V → W is one-to-one when the preimage of every w in the range consists of a single 
vector, as shown below. This is equivalent to saying that T  is one-to-one if and only if, 
for all u and v in V, T(u) = T(v) implies u = v.

T

V

W

One-to-one

T

V

W

Not one-to-one

proof

First assume that T  is one-to-one. Then T(v) = 0 can have only one solution: v = 0. In 
that case, ker(T) = {0}. Conversely, assume that ker(T) = {0} and T(u) = T(v). You 
know that T  is a linear transformation, so it follows that

T(u − v) = T(u) − T(v) = 0.

This implies that the vector u − v lies in the kernel of T  and must equal 0. So, u = v, 
which means that T  is one-to-one. 

  one-to-one and not one-to-one 
linear Transformations

a.  The linear transformation T: Mm,n → Mn,m represented by T(A) = AT is one-to-one 
because its kernel consists of only the m × n zero matrix.

b.  The zero transformation T: R3 → R3 is not one-to-one because its kernel is all  
of R3. 

Theorem 6.6 one-to-one linear Transformations

Let T: V → W be a linear transformation. Then T  is one-to-one if and only if 
ker(T) = {0}.
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316 Chapter 6 Linear Transformations

A function T: V → W  is onto when every element in W  has a preimage in V. In 
other words, T  is onto when W  is equal to the range of T. The proof of the related  
theorem below is left as an exercise. (See Exercise 69.)

For vector spaces of equal dimensions, you can combine the results of Theorems 6.5, 
6.6, and 6.7 to obtain the next theorem relating the concepts of one-to-one and onto.

proof

If T  is one-to-one, then by Theorem 6.6 ker(T) = {0}, and dim(ker(T)) = 0. In that 
case, Theorem 6.5 produces

dim(range of T) = n − dim(ker(T)) = n = dim(W).

Consequently, by Theorem 6.7, T  is onto. Similarly, if T  is onto, then

dim(range of T) = dim(W) = n

which by Theorem 6.5 implies that dim(ker(T)) = 0. By Theorem 6.6, T  is  
one-to-one. 

The next example brings together several concepts related to the kernel and range 
of a linear transformation.

  summarizing several results

Consider the linear transformation T: Rn → Rm represented by T(x) = Ax. Find the  
nullity and rank of T, and determine whether T  is one-to-one, onto, or neither.

a. A = [
1
0
0

2
1
0

0
1
1] b. A = [

1
0
0

2
1
0]

c. A = [1
0

2
1

0
−1] d. A = [

1
0
0

2
1
0

0
1
0]

soluTion

Note that each matrix is already in row-echelon form, so its rank can be determined by 
inspection.
   Dim(range) Dim(kernel) 
 T: Rn → Rm Dim(domain) Rank(T) Nullity(T) One-to-One Onto

a. T: R3 → R3 3 3 0 Yes Yes

b. T: R2 → R3 2 2 0 Yes No

c. T: R3 → R2 3 2 1 No Yes

d. T: R3 → R3 3 2 1 No No 

Theorem 6.8 one-to-one and onto linear Transformations

Let T: V → W be a linear transformation with vector spaces V and W, both of  
dimension n. Then T  is one-to-one if and only if it is onto.

Theorem 6.7 onto linear Transformations

Let T: V → W  be a linear transformation, where W  is finite dimensional. Then T  
is onto if and only if the rank of T  is equal to the dimension of W.
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isomorphisms of VeCTor spaCes

Distinct vector spaces such as R3 and M3,1 can be thought of as being “essentially  
the same”—at least with respect to the operations of vector addition and scalar 
multiplication. Such spaces are isomorphic to each other. (The Greek word isos  
means “equal.”)

Isomorphic vector spaces are of the same finite dimension, and vector spaces of the 
same finite dimension are isomorphic, as stated in the next theorem.

proof

Assume V is isomorphic to W, where V has dimension n. By the definition of  
isomorphic spaces, you know there exists a linear transformation T: V → W that is  
one-to-one and onto. T  is one-to-one, so it follows that dim(kernel) = 0, which also 
implies that

dim(range) = dim(domain) = n.

In addition, T  is onto, so you can conclude that dim(range) = dim(W) = n.
To prove the theorem in the other direction, assume V and W  both have dimension 

n. Let B = {v1, v2, .  .  . , vn} be a basis for V, and let B′ = {w1, w2, .  .  . , wn} be a basis 
for W. Then an arbitrary vector in V can be represented as

v = c1v1 + c2v2 + .  .  . + cnvn

and you can define a linear transformation T: V → W  as shown below.

T(v) = c1w1 + c2w2 + .  .  . + cnwn

Verify that this linear transformation is both one-to-one and onto. So, V and W  are 
isomorphic. 

Example 12 lists some vector spaces that are isomorphic to R4.

  isomorphic Vector spaces

The vector spaces below are isomorphic to each other.
a. R4 = 4-space
b. M4,1 = space of all 4 × 1 matrices
c. M2,2 = space of all 2 × 2 matrices
d. P3 = space of all polynomials of degree 3 or less
e. V = {(x1, x2, x3, x4, 0): xi is a real number} (subspace of R5) 

Example 12 tells you that the elements in these spaces behave in the same way as  
an arbitrary vector v = (v1, v2, v3, v4).

Theorem 6.9 isomorphic spaces and Dimension

Two finite-dimensional vector spaces V and W  are isomorphic if and only if they 
are of the same dimension.

Definition of isomorphism

A linear transformation T: V → W that is one-to-one and onto is called an  
isomorphism. Moreover, if V and W  are vector spaces such that there exists an 
isomorphism from V to W, then V and W  are isomorphic to each other.

remarK
Your study of vector spaces 
has included much greater  
coverage to Rn than to other 
vector spaces. This preference 
for Rn stems from its notational  
convenience and from the  
geometric models available  
for R2 and R3.
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318 Chapter 6 Linear Transformations

6.2 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

finding the Kernel of a linear Transformation  
In Exercises 1–10, find the kernel of the linear  
transformation.

 1. T: R3 → R3, T(x, y, z) = (0, 0, 0)
 2. T: R3 → R3, T(x, y, z) = (x, 0, z)
 3. T: R4 → R4, T(x, y, z, w) = (y, x, w, z)
 4. T: R3 → R3, T(x, y, z) = (−z, −y, −x)
 5.  T: P3 → R, 

T(a0 + a1x + a2x
2 + a3x

3) = a1 + a2

 6. T: P2 → R, T(a0 + a1x + a2x
2) = a0

 7. T: P2 → P1, T(a0 + a1x + a2x
2) = a1 + 2a2x

 8. T: P3 → P2,

 T(a0 + a1x + a2x
2 + a3x

3) = a1 + 2a2x + 3a3x
2

 9. T: R2 → R2, T(x, y) = (x + 2y, y − x)
10. T: R2 → R2, T(x, y) = (x − y, y − x)

finding the Kernel and range In Exercises 11–18, 
define the linear transformation T by T(x) = Ax. Find  
(a) the kernel of T and (b) the range of T.

11. A = [1
3

2
4] 12. A = [ 1

−3
2

−6]
13. A = [1

0
−1

1
2
2] 14. A = [1

0
−2

2
1
1]

15. A = [
1

−1
2

3
−3

2] 16. A = [
1

−1
0

1
2
1]

17. A = [
1
3

−4
−1

2
1

−3
−2

−1
2

−1
1

4
−1
−3

1
]

18. A = [
−1

2
2

3
3
1

2
5
2

1
0
1

4
0
0]

finding the Kernel, nullity, range, and rank In 
Exercises 19–32, define the linear transformation T by 
T(x) = Ax. Find (a) ker(T), (b) nullity(T), (c) range(T),  
and (d) rank(T).

19. A = [−1
1

1
1] 20. A = [ 3

−9
2

−6]

21. A = [
5
1
1

−3
1

−1] 22. A = [
4
0
2

1
0

−3]
23. A = [

9
10
3

10

3
10
1

10
] 24. A = [

1
26

− 5
26

− 5
26
25
26
]

25. A = [
1
0
1

0
1
0

1
0
1] 26. A = [

1
0
0

0
0
0

0
0
1]

27. A = [
4
9

−4
9
2
9

−4
9
4
9

−2
9

2
9

−2
9
1
9

] 28. A = [−
1
3
2
3

−1
3

2
3
1
3
2
3

−1
3
2
3

−1
3

]
29. A = [0

4
−2

0
3

11]
30. A = [1

0
1
0

0
1

0
1]

31. A = [
2
1
3
6

2
1
3
6

−3
1

−5
−2

1
1
0
4

13
−1
14
16

]
32. A = [

3
4
2

−2
3

−3

6
8
4

−1
10

−4

15
−14

20]
finding the nullity and Describing the Kernel and 
range In Exercises 33–40, let T: R3 → R3 be a linear 
transformation. Find the nullity of T and give a geometric  
description of the kernel and range of T.

33. rank(T) = 2 34. rank(T) = 1

35. rank(T) = 0 36. rank(T) = 3

37.  T  is the counterclockwise rotation of 45° about the  
z-axis:

 T(x, y, z) = (√2
2

x −
√2
2

y, 
√2
2

x +
√2
2

y, z)
38. T  is the reflection through the yz-coordinate plane:

 T(x, y, z) = (−x, y, z)
39. T  is the projection onto the vector v = (1, 2, 2):

 T(x, y, z) =
x + 2y + 2z

9
(1, 2, 2)

40. T  is the projection onto the xy-coordinate plane:

 T(x, y, z) = (x, y, 0)

finding the nullity of a linear Transformation In 
Exercises 41–46, find the nullity of T.

41. T: R4 → R2, rank(T) = 2

42. T: R4 → R4, rank(T) = 0

43. T: P5 → P2, rank(T) = 3

44. T: P3 → P1, rank(T) = 2

45. T: M2,4 → M4,2, rank(T) = 4

46. T: M3,3 → M2,3, rank(T) = 6
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Verifying That T is one-to-one and onto In Exercises 
47–50, verify that the matrix defines a linear function T 
that is one-to-one and onto.

47. A = [−2
0

0
2] 48. A = [1

0
0

−1]

49. A = [
1
0
0

0
0
1

0
1
0] 50. A = [

1
−1

0

2
2
4

3
4
1]

Determining Whether T is one-to-one, onto, or 
neither In Exercises 51–54, determine whether the  
linear transformation is one-to-one, onto, or neither.

51. T  in Exercise 3 52. T  in Exercise 10

53. T: R2 → R3, T(x) = Ax, where A is given in Exercise 21

54. T: R5 → R3, T(x) = Ax, where A is given in Exercise 18

55.  Identify the zero element and standard basis for each of 
the isomorphic vector spaces in Example 12.

56. Which vector spaces are isomorphic to R6?

 (a) M2,3 (b) P6 (c) C[0, 6]
 (d) M6,1 (e) P5 (f) C′[−3, 3]
 (g) {(x1, x2, x3, 0, x5, x6, x7): xi is a real number}
57.  Calculus Define T: P4 → P3 by T(p) = p′. What is 

the kernel of T?

58. Calculus Define T: P2 → R by

 T(p) = ∫1

0
 p(x) dx.

 What is the kernel of T?

59.  Let T: R3 → R3 be the linear transformation that projects 
u onto v = (2, −1, 1).

 (a) Find the rank and nullity of T.

 (b) Find a basis for the kernel of T.

60.  CAPSTONE Let T: R4 → R3 be the linear 
transformation represented by T(x) = Ax, where

 A = [
1
0
0

−2
1
0

1
2
0

0
3
1].

(a) Find the dimension of the domain.

(b) Find the dimension of the range.

(c) Find the dimension of the kernel.

(d) Is T  one-to-one? Explain.

(e) Is T  onto? Explain.

(f) Is T  an isomorphism? Explain.

61.  For the transformation T: Rn → Rn represented by 
T(x) = Ax, what can be said about the rank of T  when 
(a) det(A) ≠ 0 and (b) det(A) = 0?

62.  Writing Let T: Rm → Rn be a linear transformation.  
Explain the differences between the concepts of  
one-to-one and onto. What can you say about m and n 
when T  is onto? What can you say about m and n when 
T  is one-to-one?

63.  Define T: Mn,n → Mn,n by T(A) = A − AT. Show that 
the kernel of T  is the set of n × n symmetric matrices.

64.  Determine a relationship among m, n, j, and k such that 
Mm,n is isomorphic to Mj,k.

True or false? In Exercises 65 and 66, determine 
whether each statement is true or false. If a statement 
is true, give a reason or cite an appropriate statement 
from the text. If a statement is false, provide an example 
that shows the statement is not true in all cases or cite an 
appropriate statement from the text.

65. (a)  The set of all vectors mapped from a vector  
space V into another vector space W  by a linear 
transformation T  is the kernel of T.

 (b)  The range of a linear transformation from a vector 
space V into a vector space W  is a subspace of V.

 (c)  The vector spaces R3 and M3,1 are isomorphic to 
each other.

66. (a)  The dimension of a linear transformation T from a 
vector space V into a vector space W is the rank of T.

 (b)  A linear transformation T  from V  into W  is  
one-to-one when the preimage of every w in the 
range consists of a single vector v.

 (c)  The vector spaces R2 and P1 are isomorphic to each 
other.

67.  guided proof Let B be an invertible n × n matrix. 
Prove that the linear transformation T: Mn,n → Mn,n  
represented by T(A) = AB is an isomorphism.

  Getting Started: To show that the linear transformation 
is an isomorphism, you need to show that T  is both onto 
and one-to-one.

  (i)  T  is a linear transformation with vector spaces of 
equal dimension, so by Theorem 6.8, you only 
need to show that T  is one-to-one.

  (ii)  To show that T  is one-to-one, you need to  
determine the kernel of T  and show that it is {0} 
(Theorem 6.6). Use the fact that B is an invertible 
n × n matrix and that T(A) = AB.

 (iii) Conclude that T  is an isomorphism.

68.  proof Let T: V → W be a linear transformation. Prove 
that T  is one-to-one if and only if the rank of T  equals 
the dimension of V.

69. proof Prove Theorem 6.7.

70.  proof Let T: V → W  be a linear transformation, 
and let U be a subspace of W. Prove that the set 
T−1(U) = {v ∈ V: T(v) ∈ U} is a subspace of V. What 
is T−1(U) when U = {0}?
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320 Chapter 6 Linear Transformations

6.3 Matrices for Linear Transformations

 Find the standard matrix for a linear transformation.

  Find the standard matrix for the composition of linear transformations 
and find the inverse of an invertible linear transformation.

  Find the matrix for a linear transformation relative to a  
nonstandard basis.

The STandard MaTrix for a Linear 
TranSforMaTion

Which representation of T: R3 → R3 is better:

T(x1, x2, x3) = (2x1 + x2 − x3, −x1 + 3x2 − 2x3, 3x2 + 4x3)

or

T(x) = Ax = [
2

−1
0

1
3
3

−1
−2

4][
x1

x2

x3
]?

The second representation is better than the first for at least three reasons: it is simpler to 
write, simpler to read, and easier to enter into a calculator or math software. Later, you 
will see that matrix representation of linear transformations also has some theoretical  
advantages. In this section, you will see that for linear transformations involving  
finite-dimensional vector spaces, matrix representation is always possible.

The key to representing a linear transformation T: V → W by a matrix is to determine  
how it acts on a basis for V. Once you know the image of every vector in the basis, 
you can use the properties of linear transformations to determine T(v) for any v in V.

Recall that the standard basis for Rn, written in column vector notation, is 

 B = {e1, e2, .  .  . , en}

 = {[
1
0

⋮
0
], [

0
1

⋮
0
], .  .  . , [

0
0

⋮
1
]}.

TheoreM 6.10 Standard Matrix for a Linear Transformation

Let T: Rn → Rm be a linear transformation such that, for the standard basis  
vectors ei of Rn,

T(e1) = [
a11

a21

⋮
am1

], T(e2) = [
a12

a22

⋮
am2

], .  .  . , T(en) = [
a1n

a2n

⋮
amn

].

Then the m × n matrix whose n columns correspond to T(ei)

A = [
a11

a21

⋮
am1

a12

a22

⋮
am2

.  .  .

.  .  .

.  .  .

a1n

a2n

⋮
amn

]
is such that T(v) = Av for every v in Rn. A is called the standard matrix for T.
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proof

To show that T(v) = Av for any v in Rn, you can write

v = [v1   v2  .  .  .  vn]T = v1e1 + v2e2 + .  .  . + vnen.

T  is a linear transformation, so you have

T(v) = T(v1e1 + v2e2 + .  .  . + vnen)
 = T(v1e1) + T(v2e2) + .  .  . + T(vnen)
 = v1T(e1) + v2T(e2) + .  .  . + vnT(en).

On the other hand, the matrix product Av is

 Av = [
a11

a21

⋮
am1

a12

a22

⋮
am2

.  .  .

.  .  .

.  .  .

a1n

a2n

⋮
amn

] [
v1

v2

⋮
vn

]
 = [

a11v1

a21v1

⋮
am1v1

+
+

+

a12v2

a22v2

⋮
am2v2

+ .  .  . +
+ .  .  . +

+ .  .  . +

a1nvn

a2nvn

⋮
amnvn

]
 = v1[

a11

a21

⋮
am1

] + v2[
a12

a22

⋮
am2

] + .  .  . + vn[
a1n

a2n

⋮
amn

]
 = v1T(e1) + v2T(e2) + .  .  . + vnT(en).

So, T(v) = Av for each v in Rn. 

  finding the Standard Matrix
for a Linear Transformation

See LarsonLinearAlgebra.com for an interactive version of this type of example.

Find the standard matrix for the linear transformation T: R3 → R2 defined by

T(x, y, z) = (x − 2y, 2x + y).

SoLuTion

Begin by finding the images of e1, e2, and e3.

 Vector Notation Matrix Notation

T(e1) = T(1, 0, 0) = (1, 2) T(e1) = T([
1
0
0]) = [1

2]

T(e2) = T(0, 1, 0) = (−2, 1) T(e2) = T([
0
1
0]) = [−2

1]

T(e3) = T(0, 0, 1) = (0, 0) T(e3) = T([
0
0
1]) = [0

0]
By Theorem 6.10, the columns of A consist of T(e1), T(e2), and T(e3), and you have

A = [T(e1)   T(e2)   T(e3)] = [1
2

−2
1

0
0]. 

reMarK
As a check, note that

 A[
x
y
z] = [1

2
−2

1
0
0][

x
y
z]

 = [ x −
2x +

2y
y]

which is equivalent to

T(x, y, z) = (x − 2y, 2x + y).
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322 Chapter 6 Linear Transformations

A little practice will enable you to determine the standard matrix for a linear 
transformation, such as the one in Example 1, by inspection. For example, to find the 
standard matrix for the linear transformation

T(x1, x2, x3) = (x1 − 2x2 + 5x3, 2x1 + 3x3, 4x1 + x2 − 2x3)

use the coefficients of x1, x2, and x3 to form the rows of A, as shown below.

A = [
1
2
4

−2
0
1

5
3

−2]  
1x1 − 2x2 + 5x3

2x1 + 0x2 + 3x3

4x1 + 1x2 − 2x3

  finding the Standard Matrix
for a Linear Transformation

The linear transformation T: R2 → R2 projects 
each point in R2 onto the x-axis, as shown at the 
right. Find the standard matrix for T.

SoLuTion

This linear transformation is represented by

T(x, y) = (x, 0).

So, the standard matrix for T  is

 A = [T(1, 0)   T(0, 1)]

 = [1
0

0
0].  

The standard matrix for the zero transformation from Rn into Rm is the m × n zero 
matrix, and the standard matrix for the identity transformation from Rn into Rn is In.

x

y

Projection onto the x -axis
(x, 0)

(x, y)

T(x, y) = (x, 0)

Linear
aLGeBra
appLied

Ladder networks are useful tools for electrical engineers 
involved in circuit design. In a ladder network, the output 
voltage V and current I of one circuit are the input voltage 
and current of the circuit next to it. In the ladder network 
shown below, linear transformations can relate the input and 
output of an individual circuit (enclosed in a dashed box). 
Using Kirchhoff’s Voltage and Current Laws and Ohm’s Law,

[V2

I2] = [ 1
−1�R1

0
1][

V1

I1]
and

[V3

I3
] = [1

0
−R2

1][
V2

I2
].

A composition can relate the input and output of the entire 
ladder network, that is, V1 and I1 to V3 and I3. Discussion on 
the composition of linear transformations begins on the 
next page.

R1

R2

I3I2I2I1

V1 V2 V3

any_keen/Shutterstock.com
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CoMpoSiTion of Linear TranSforMaTionS

The composition, T, of T1: R
n → Rm with T2: R

m → Rp is

T(v) = T2(T1(v))

where v is a vector in Rn. This composition is denoted by

T = T2 ∘ T1.

The domain of T  is the domain of T1. Moreover, the composition is not defined unless 
the range of T1 lies within the domain of T2, as shown below.

v

u

w

T

Rm

Rp

Rn T1

T2

The next theorem emphasizes the usefulness of matrices for representing linear  
transformations. This theorem not only states that the composition of two linear  
transformations is a linear transformation, but also says that the standard matrix for  
the composition is the product of the standard matrices for the two original linear  
transformations.

proof

To show that T  is a linear transformation, let u and v be vectors in Rn and let c be any 
scalar. T1 and T2 are linear transformations, so you can write

 T(u + v) = T2(T1(u + v))
 = T2(T1(u) + T1(v))
 = T2(T1(u)) + T2(T1(v))
 = T(u) + T(v)

 T(cv) = T2(T1(cv))
 = T2(cT1(v))
 = cT2(T1(v))
 = cT(v).

Now, to show that A2A1 is the standard matrix for T, use the associative property of 
matrix multiplication to write

T(v) = T2(T1(v)) = T2(A1v) = A2(A1v) = (A2A1)v. 

TheoreM 6.11 Composition of Linear Transformations

Let T1: R
n → Rm and T2: R

m → Rp be linear transformations with standard  
matrices A1 and A2, respectively. The composition T: Rn → Rp, defined by 
T(v) = T2(T1(v)), is a linear transformation. Moreover, the standard matrix A  
for T  is the matrix product

A = A2A1.
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Theorem 6.11 can be generalized to cover the composition of n linear transformations. 
That is, if the standard matrices of T1, T2, .  .  . , Tn are A1, A2, .  .  . , An, respectively, 
then the standard matrix for the composition T(v) = Tn(Tn−1

.  .  . (T2(T1(v))) 
.  .  . ) is 

represented by A = AnAn−1 .  .  . A2A1.
Matrix multiplication is not commutative, so order is important when forming the 

compositions of linear transformations. In general, the composition T2 ∘ T1 is not the 
same as T1 ∘ T2, as demonstrated in the next example.

 The Standard Matrix for a Composition

Let T1 and T2 be linear transformations from R3 into R3 such that

T1(x, y, z) = (2x + y, 0, x + z) and T2(x, y, z) = (x − y, z, y).

Find the standard matrices for the compositions T = T2 ∘ T1 and T ′ = T1 ∘ T2.

SoLuTion

The standard matrices for T1 and T2 are

A1 = [
2
0
1

1
0
0

0
0
1] and A2 = [

1
0
0

−1
0
1

0
1
0].

By Theorem 6.11, the standard matrix for T  is

 A = A2A1

 = [
1
0
0

−1
0
1

0
1
0][

2
0
1

1
0
0

0
0
1]

 = [
2
1
0

1
0
0

0
1
0]

and the standard matrix for T ′ is

 A′ = A1A2

 = [
2
0
1

1
0
0

0
0
1][

1
0
0

−1
0
1

0
1
0]

 = [
2
0
1

−2
0
0

1
0
0].  

Another benefit of matrix representation is that it can represent the inverse of a  
linear transformation. Before seeing how this works, consider the next definition.

Not every linear transformation has an inverse. If the transformation T1 is  
invertible, however, then the inverse is unique and is denoted by T1

−1.

definition of inverse Linear Transformation

If T1: R
n → Rn and T2: R

n → Rn are linear transformations such that for every v  
in Rn,

T2(T1(v)) = v and T1(T2(v)) = v

then T2 is the inverse of T1, and T1 is said to be invertible.
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Just as the inverse of a function of a real variable can be thought of as undoing what 
the function did, the inverse of a linear transformation T can be thought of as undoing the 
mapping done by T. For example, if T is a linear transformation from R3 into R3 such that

T(1, 4, −5) = (2, 3, 1)

and if T−1 exists, then T−1 maps (2, 3, 1) back to its preimage under T. That is,

T−1(2, 3, 1) = (1, 4, −5).

The next theorem states that a linear transformation is invertible if and only if it is an 
isomorphism (one-to-one and onto). You are asked to prove this theorem in Exercise 56.

 finding the inverse of a Linear Transformation

Consider the linear transformation T: R3 → R3 defined by

T(x1, x2, x3) = (2x1 + 3x2 + x3, 3x1 + 3x2 + x3, 2x1 + 4x2 + x3).

Show that T  is invertible, and find its inverse.

SoLuTion

The standard matrix for T  is

A = [
2
3
2

3
3
4

1
1
1].

Using the method presented in Section 2.3 or a graphing calculator, you can find that 
A is invertible, and its inverse is

A−1 = [
−1
−1

6

1
0

−2

0
1

−3].

So, T  is invertible and the standard matrix for T−1 is A−1. 

Using the standard matrix for the inverse, you can find the rule for T−1 by  
computing the image of an arbitrary vector x = (x1, x2, x3).

 A−1x = [
−1
−1

6

1
0

−2

0
1

−3][
x1

x2

x3
]

 = [
−x1

−x1

6x1

+

−

x2

2x2

+
−

x3

3x3
]

Or,

T−1(x1, x2, x3) = (−x1 + x2, −x1 + x3, 6x1 − 2x2 − 3x3).

TheoreM 6.12 existence of an inverse Transformation

Let T: Rn → Rn be a linear transformation with standard matrix A. Then the  
conditions listed below are equivalent.

1. T  is invertible.
2. T  is an isomorphism.
3. A is invertible.

If T  is invertible with standard matrix A, then the standard matrix for T−1 is A−1.

reMarK
Several other conditions are 
equivalent to the three listed in 
Theorem 6.12; see the summary 
of equivalent conditions for 
square matrices in Section 4.6.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



326 Chapter 6 Linear Transformations

nonSTandard BaSeS and GeneraL VeCTor SpaCeS

You will now consider the more general problem of finding a matrix for a linear  
transformation T: V → W, where B and B′ are ordered bases for V and W, respectively. 
Recall that the coordinate matrix of v relative to B is denoted by [v]B. To represent the 
linear transformation T, multiply A by a coordinate matrix relative to B to obtain a 
coordinate matrix relative to B′. That is, [T(v)]B′ = A[v]B. The matrix A is called the 
matrix of T relative to the bases B and B′.

To find the matrix A, you will use a procedure similar to the one used to find the 
standard matrix for T. That is, the images of the vectors in B are written as coordinate 
matrices relative to the basis B′. These coordinate matrices form the columns of A.

  finding a Matrix relative 
to nonstandard Bases

Let T: R2 → R2 be a linear transformation defined by T(x1, x2) = (x1 + x2, 2x1 − x2). 
Find the matrix for T  relative to the bases

 v1 v2 w1 w2

B = {(1, 2), (−1, 1)} and B′ = {(1, 0), (0, 1)}.

SoLuTion

By the definition of T, you have

T(v1) = T(1, 2) = (3, 0) = 3w1 + 0w2

T(v2) = T(−1, 1) = (0, −3) = 0w1 − 3w2.

The coordinate matrices for T(v1) and T(v2) relative to B′ are

[T(v1)]B′ = [3
0] and [T(v2)]B′ = [ 0

−3].

Form the matrix for T  relative to B and B′ by using these coordinate matrices as  
columns to produce

A = [3
0

0
−3]. 

Transformation Matrix for nonstandard Bases

Let V and W  be finite-dimensional vector spaces with bases B and B′,  
respectively, where

B = {v1, v2, .  .  . , vn}.

If T: V → W is a linear transformation such that

[T(v1)]B′ = [
a11

a21

⋮
am1

], [T(v2)]B′ = [
a12

a22

⋮
am2

], .  .  . , [T(vn)]B′ = [
a1n

a2n

⋮
amn

]
then the m × n matrix whose n columns correspond to [T(vi)]B′

A = [
a11

a21

⋮
am1

a12

a22

⋮
am2

.  .  .

.  .  .

.  .  .

a1n

a2n

⋮
amn

]
is such that [T(v)]B′ = A[v]B for every v in V.
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  using a Matrix to represent 
a Linear Transformation

For the linear transformation T: R2 → R2 in Example 5, use the matrix A to find T(v), 
where v = (2, 1).

SoLuTion

Using the basis B = {(1, 2), (−1, 1)}, you find that v = (2, 1) = 1(1, 2) − 1(−1, 1), 
which implies

[v]B = [1   −1]T.

So, [T(v)]B′ is

A[v]B = [3
0

0
−3][

1
−1] = [3

3].

Finally, B′ = {(1, 0), (0, 1)}, so it follows that

T(v) = 3(1, 0) + 3(0, 1) = (3, 3).

Check this result by directly calculating T(v) using the definition of T  in  
Example 5: T(2, 1) = (2 + 1, 2(2) − 1) = (3, 3). 

For the special case where V = W  and B = B′, the matrix A is called the matrix 
of T relative to the basis B. In this case, the matrix of the identity transformation is 
simply In. To see this, let B = {v1, v2, .  .  . , vn}. The identity transformation maps 
each vi to itself, so you have [T(v1)]B = [1  0 .  .  . 0]T, [T(v2)]B = [0  1 .  .  . 0]T, .  .  . , 
[T(vn)]B = [0  0 .  .  . 1]T, and it follows that A = In.

In the next example, you will construct a matrix representing the differential  
operator discussed in Example 10 in Section 6.1.

 a Matrix for the differential operator (Calculus)

Let Dx: P2 → P1 be the differential operator that maps a polynomial p of degree 2 or less 
onto its derivative p′. Find the matrix for Dx using the bases

B = {1, x, x2} and B′ = {1, x}.

SoLuTion

The derivatives of the basis vectors are

Dx(1) =
Dx(x) =

Dx(x2) =

0 
1 
2x

= 0(1) + 0(x)
= 1(1) + 0(x)
= 0(1) + 2(x).

So, the coordinate matrices relative to B′ are

[Dx(1)]B′ = [0
0], [Dx(x)]B′ = [1

0], [Dx(x2)]B′ = [0
2]

and the matrix for Dx is

A = [0
0

1
0

0
2].

Note that this matrix does produce the derivative of a quadratic polynomial  
p(x) = a + bx + cx2.

Ap = [0
0

1
0

0
2][

a
b
c] = [ b

2c] ⇒ b + 2cx = Dx [a + bx + cx2] 
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6.3 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

The Standard Matrix for a Linear Transformation  
In Exercises 1–6, find the standard matrix for the linear  
transformation T.

 1. T(x, y) = (x + 2y, x − 2y)
 2. T(x, y) = (2x − 3y, x − y, y − 4x)
 3. T(x, y, z) = (x + y, x − y, z − x)
 4. T(x, y) = (5x + y, 0, 4x − 5y)
 5. T(x, y, z) = (3x − 2z, 2y − z)
 6. T(x1, x2, x3, x4) = (0, 0, 0, 0)

finding the image of a Vector In Exercises 7–10, use 
the standard matrix for the linear transformation T to 
find the image of the vector v.

 7. T(x, y, z) = (2x + y, 3y − z), v = (0, 1, −1)
 8. T(x, y) = (x + y, x − y, 2x, 2y), v = (3, −3)
 9. T(x, y) = (x − 3y, 2x + y, y), v = (−2, 4)
10. T(x1, x2, x3, x4) = (x1 − x3, x2 − x4, x3 − x1, x2 + x4),
 v = (1, 2, 3, −2)

finding the Standard Matrix and the image In 
Exercises 11–22, (a) find the standard matrix A for the 
linear transformation T, (b) use A to find the image of 
the vector v, and (c) sketch the graph of v and its image.

11.  T  is the reflection in the origin in R2: T(x, y) = (−x, −y), 
v = (3, 4).

12.  T  is the reflection in the line y = x in R2: T(x, y) = (y, x), 
v = (3, 4).

13.  T  is the reflection in the y-axis in R2: T(x, y) = (−x, y), 
v = (2, −3).

14.  T  is the reflection in the x-axis in R2: T(x, y) = (x, −y), 
v = (4, −1).

15.  T  is the counterclockwise rotation of 45° in R2, 
v = (2, 2).

16.  T  is the counterclockwise rotation of 120° in R2, 
v = (2, 2).

17.  T  is the clockwise rotation (θ is negative) of 60° in R2, 
v = (1, 2).

18.  T  is the clockwise rotation (θ is negative) of 30° in R2, 
v = (2, 1).

19.  T  is the reflection in the xy-coordinate plane in 
R3: T(x, y, z) = (x, y, −z), v = (3, 2, 2).

20.  T  is the reflection in the yz-coordinate plane in 
R3: T(x, y, z) = (−x, y, z), v = (2, 3, 4).

21.  T  is the projection onto the vector w = (3, 1) in 
R2: T(v) = projwv, v = (1, 4).

22.  T  is the reflection in the vector w = (3, 1) in 
R2: T(v) = 2 projwv − v, v = (1, 4).

finding the Standard Matrix and the image In 
Exercises 23–26, (a) find the standard matrix A for the 
linear transformation T and (b) use A to find the image  
of the vector v. Use a software program or a graphing 
utility to verify your result.

23.  T(x, y, z) = (2x + 3y − z, 3x − 2z, 2x − y + z), 
v = (1, 2, −1)

24.  T(x, y, z) = (x + 2y − 3z, 3x − 5y, y − 3z), 
v = (3, 13, 4)

25.  T(x1, x2, x3, x4) = (x1 − x2, x3, x1 + 2x2 − x4, x4), 
v = (1, 0, 1, −1)

26.  T(x1, x2, x3, x4) = (x1 + 2x2, x2 − x1, 2x3 − x4, x1), 
v = (0, 1, −1, 1)

finding Standard Matrices for Compositions In 
Exercises 27–30, find the standard matrices A and A′ for 
T = T2 ∘ T1 and T′ = T1 ∘ T2.

27. T1: R
2 → R2, T1(x, y) = (x − 2y, 2x + 3y)

 T2: R
2 → R2, T2(x, y) = (y, 0)

28. T1: R
3 → R3, T1(x, y, z) = (x, y, z)

 T2: R
3 → R3, T2(x, y, z) = (0, x, 0)

29. T1: R
2 → R3, T1(x, y) = (−2x + 3y, x + y, x − 2y)

 T2: R
3 → R2, T2(x, y, z) = (x − 2y, z + 2x)

30. T1: R
2 → R3, T1(x, y) = (x, y, y)

 T2: R
3 → R2, T2(x, y, z) = (y, z)

finding the inverse of a Linear Transformation  
In Exercises 31–36, determine whether the linear  
transformation is invertible. If it is, find its inverse.

31. T(x, y) = (−4x, 4y) 32. T(x, y) = (2x, 0)
33. T(x, y) = (x + y, 3x + 3y)
34. T(x, y) = (x + y, x − y)
35. T(x1, x2, x3) = (x1, x1 + x2, x1 + x2 + x3)
36. T(x1, x2, x3, x4) = (x1 − 2x2, x2, x3 + x4, x3)

finding the image Two Ways In Exercises 37–42, 
find T(v) by using (a) the standard matrix and (b) the 
matrix relative to B and B′.
37. T: R2 → R3, T(x, y) = (x + y, x, y),  v = (5, 4),
 B = {(1, −1), (0, 1)},
 B′ = {(1, 1, 0), (0, 1, 1), (1, 0, 1)}
38. T: R3 → R2, T(x, y, z) = (x − y, y − z),  v = (2, 4, 6),
 B = {(1, 1, 1), (1, 1, 0), (0, 1, 1)},  B′ = {(1, 1), (2, 1)}
39. T: R3 → R4, T(x, y, z) = (2x, x + y, y + z, x + z),
 v = (1, −5, 2),  B = {(2, 0, 1), (0, 2, 1), (1, 2, 1)},
 B′ = {(1, 0, 0, 1), (0, 1, 0, 1), (1, 0, 1, 0), (1, 1, 0, 0)}
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40. T: R4 → R2,

 T(x1, x2, x3, x4) = (x1 + x2 + x3 + x4, x4 − x1),
 v = (4, −3, 1, 1),
 B = {(1, 0, 0, 1), (0, 1, 0, 1), (1, 0, 1, 0), (1, 1, 0, 0)},
 B′ = {(1, 1), (2, 0)}
41. T: R3 → R3, T(x, y, z) = (x + y + z, 2z − x, 2y − z),
 v = (4, −5, 10),  B = {(2, 0, 1), (0, 2, 1), (1, 2, 1)},
 B′ = {(1, 1, 1), (1, 1, 0), (0, 1, 1)}
42. T: R2 → R2, T(x, y) = (3x − 13y, x − 4y),  v = (4, 8),
 B = B′ = {(2, 1), (5, 1)}
43.  Let T: P2 → P3 be the linear transformation T(p) = xp. 

Find the matrix for T  relative to the bases B = {1, x, x2} 
and B′ = {1, x, x2, x3}.

44.  Let T: P2 → P4 be the linear transformation T(p) = x2p. 
Find the matrix for T  relative to the bases B = {1, x, x2} 
and B′ = {1, x, x2, x3, x4}.

45.  Calculus Let B = {1, x, ex, xex} be a basis for a  
subspace W  of the space of continuous functions, and 
let Dx be the differential operator on W. Find the matrix 
for Dx relative to the basis B.

46. Calculus Repeat Exercise 45 for B = {e2x, xe2x, x2e2x}.
47.  Calculus Use the matrix from Exercise 45 to evaluate 

Dx [4x − 3xex].
48.  Calculus Use the matrix from Exercise 46 to evaluate 

Dx [5e2x − 3xe2x + x2e2x].
49.  Calculus Let B = {1, x, x2, x3} be a basis for P3, and 

T: = P3 → P4 be the linear transformation represented by

 T(xk) = ∫x

0
 t k dt.

 (a)  Find the matrix A for T  with respect to B and the 
standard basis for P4.

 (b) Use A to integrate p(x) = 8 − 4x + 3x3.

50. CAPSTONE
(a)  Explain how to find the standard matrix for a  

linear transformation.

(b)  Explain how to find a composition of linear  
transformations.

(c)  Explain how to find the inverse of a linear  
transformation.

(d)  Explain how to find the transformation matrix  
relative to nonstandard bases.

51. Define T: M2,3 → M3,2 by T(A) = AT.

 (a)  Find the matrix for T  relative to the standard bases 
for M2,3 and M3,2.

 (b) Show that T  is an isomorphism.

 (c) Find the matrix for the inverse of T.

52.  Let T  be a linear transformation such that T(v) = kv for 
v in Rn. Find the standard matrix for T.

True or false? In Exercises 53 and 54, determine 
whether each statement is true or false. If a statement 
is true, give a reason or cite an appropriate statement 
from the text. If a statement is false, provide an example 
that shows the statement is not true in all cases or cite an 
appropriate statement from the text.

53. (a)  If T: Rn → Rm is a linear transformation such that

   T(e1) =  [a11   a21   .  .  .   am1]T

   T(e2) =  [a12   a22   .  .  .   am2]T

     ⋮         

   T(en) =  [a1n   a2n   .  .  .   amn]T

   then the m × n matrix A = [aij] whose columns 
correspond to T(ei) and is such that T(v) = Av for 
every v in Rn is called the standard matrix for T.

 (b)  All linear transformations T  have a unique inverse 
T−1.

54. (a)  The composition T  of linear transformations T1  
and T2, represented by T(v) = T2(T1(v)), is defined 
when the range of T1 lies within the domain of T2.

 (b)  In general, the compositions T2 ∘ T1 and T1 ∘ T2 
have the same standard matrix A.

55.  Guided proof Let T1: V → V  and T2: V → V  be  
one-to-one linear transformations. Prove that the  
composition T = T2 ∘ T1 is one-to-one and that T−1 
exists and is equal to T1

−1 ∘ T2
−1.

  Getting Started: To show that T  is one-to-one, use the 
definition of a one-to-one transformation and show that 
T(u) = T(v) implies u = v. For the second statement, 
you first need to use Theorems 6.8 and 6.12 to show that 
T  is invertible, and then show that T ∘ (T1

−1 ∘ T2
−1) and 

(T1
−1 ∘ T2

−1) ∘ T  are identity transformations.

  (i)  Let T(u) = T(v). Recall that (T2 ∘ T1)(v) = T2(T1(v)) 
for all vectors v. Now use the fact that T2 and T1 
are one-to-one to conclude that u = v.

  (ii)  Use Theorems 6.8 and 6.12 to show that T1, T2,  
and T  are all invertible transformations. So, T1

−1 
and T2

−1 exist.

 (iii)  Form the composition T′ = T1
−1 ∘ T2

−1. It is a  
linear transformation from V into V. To show 
that it is the inverse of T, you need to determine 
whether the composition of T  with T′ on both sides 
gives an identity transformation.

56. proof Prove Theorem 6.12.

57.  Writing Is it always preferable to use the standard 
basis for Rn? Discuss the advantages and disadvantages 
of using different bases.

58.  Writing Look back at Theorem 4.19 and rephrase it 
in terms of what you have learned in this chapter.
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6.4 Transition Matrices and Similarity

 Find and use a matrix for a linear transformation.

  Show that two matrices are similar and use the properties of  
similar matrices.

The MaTrix for a Linear TransforMaTion

In Section 6.3, you saw that the matrix for a linear transformation T: V → V depends on 
the basis for V. In other words, the matrix for T  relative to a basis B is different from 
the matrix for T  relative to another basis B′.

A classical problem in linear algebra is determining whether it is possible to find a 
basis B such that the matrix for T  relative to B is diagonal. The solution of this problem 
is discussed in Chapter 7. This section lays a foundation for solving the problem. You 
will see how the matrices for a linear transformation relative to two different bases 
are related. In this section, A, A′, P, and P−1 represent the four square matrices listed 
below.

1. Matrix for T  relative to B: A

2. Matrix for T  relative to B′: A′

3. Transition matrix from B′ to B: P

4. Transition matrix from B to B′: P−1

Note that in Figure 6.4, there are two ways to get from the coordinate matrix [v]B′ 
to the coordinate matrix [T(v)]B′. One way is direct, using the matrix A′ to obtain

A′[v]B′ = [T(v)]B′.

The other way is indirect, using the matrices P, A, and P−1 to obtain 

P−1AP[v]B′ = [T(v)]B′.

This implies that A′ = P−1AP. Example 1 demonstrates this relationship.

 finding a Matrix for a Linear Transformation

Find the matrix A′ for T: R2 → R2, where T(x1, x2) = (2x1 − 2x2, −x1 + 3x2), relative 
to the basis B′ = {(1, 0), (1, 1)}.

soLuTion

The standard matrix for T  is A = [ 2
−1

−2
3].

Furthermore, using the techniques of Section 4.7, the transition matrix from B′ to 
the standard basis B = {(1, 0), (0, 1)} is

P = [1
0

1
1].

The inverse of this matrix is the transition matrix from B to B′,

P−1 = [1
0

−1
1].

So, the matrix for T  relative to B′ is

A′ = P−1AP = [1
0

−1
1][

2
−1

−2
3][

1
0

1
1] = [ 3

−1
−2

2]. 

figure 6.4

A

A′

P P−1

V

[ ]v B

[ ]v B′

[ ( )]T v B

[ ( )]T v B′

V

V V
(Basis B )

(Basis B ′ )
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In Example 1, the basis B is the standard basis for R2. In the next example, both B
and B′ are nonstandard bases.

 finding a Matrix for a Linear Transformation

Let B = {(−3, 2), (4, −2)} and B′ = {(−1, 2), (2, −2)} be bases for R2, and let

A = [−2
−3

7
7]

be the matrix for T: R2 → R2 relative to B. Find A′, the matrix of T  relative to B′.

soLuTion

In Example 5 in Section 4.7, you found that P = [3
2

−2
−1] and P−1 = [−1

−2
2
3].

So, the matrix of T  relative to B′ is

A′ = P−1AP = [−1
−2

2
3][

−2
−3

7
7][

3
2

−2
−1] = [ 2

−1
1
3]. 

Figure 6.4 should help you to remember the roles of the matrices A, A′, P, and P−1.

 using a Matrix for a Linear Transformation

For the linear transformation T: R2 → R2 from Example 2, find [v]B, [T(v)]B, and 
[T(v)]B′ for the vector v whose coordinate matrix is [v]B′ = [−3   −1]T.

soLuTion

To find [v]B, use the transition matrix P from B′ to B.

[v]B = P[v]B′ = [3
2

−2
−1][

−3
−1] = [−7

−5]
To find [T(v)]B, multiply [v]B on the left by the matrix A to obtain

[T(v)]B = A[v]B = [−2
−3

7
7][

−7
−5] = [−21

−14].

To find [T(v)]B′, multiply [T(v)]B on the left by P−1 to obtain

[T(v)]B′ = P−1[T(v)]B = [−1
−2

2
3][

−21
−14] = [−7

0]
or multiply [v]B′ on the left by A′ to obtain

[T(v)]B′ = A′[v]B′ = [ 2
−1

1
3][

−3
−1] = [−7

0]. 

Linear
aLGeBra
aPPLieD

A Leslie matrix, named after British mathematician Patrick 
H. Leslie (1900–1974), can be used to find the age and 
growth distributions of a population over time. The entries 
in the first row of an n × n Leslie matrix L are the average 
numbers of offspring per member for each of n age 
classes. The entries in subsequent rows are pi in row i + 1, 
column i and 0 elsewhere, where pi is the probability that 
an i th age class member will survive to become an (i + 1)th 
age class member. If xj is the age distribution vector 
for the j th time period, then the age distribution vector 
for the ( j + 1)th time period can be found using the linear 
transformation xj +1 = Lxj. You will study population growth 
models using Leslie matrices in more detail in Section 7.4.

reMarK
It is instructive to note that the 
rule T(x, y) = (x − 3

2y, 2x + 4y) 
represents the transformation 
T in Examples 2 and 3. Verify 
the results of Example 3 by 
showing that v = (1, −4) and 
T(v) = (7, −14).

Rich Lindie/Shutterstock.com

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



332 Chapter 6 Linear Transformations

siMiLar MaTriCes

Two square matrices A and A′ that are related by an equation A′ = P−1AP are called 
similar matrices, as stated in the next definition.

If A′ is similar to A, then it is also true that A is similar to A′, as stated in the next 
theorem. So, it makes sense to simply say that A and A′ are similar.

Proof

The first property follows from the fact that A = InAIn. To prove the second property, 
write

 A = P−1BP

 PAP−1 = P(P−1BP)P−1

 PAP−1 = B

 Q−1AQ = B, where Q = P−1.

The proof of the third property is left to you. (See Exercise 33.) 

From the definition of similarity, it follows that any two matrices that represent 
the same linear transformation T: V → V with respect to different bases must be similar.

 similar Matrices

See LarsonLinearAlgebra.com for an interactive version of this type of example.

a. From Example 1, the matrices

A = [ 2
−1

−2
3] and A′ = [ 3

−1
−2

2]
are similar because A′ = P−1AP, where P = [1

0
1
1].

b. From Example 2, the matrices

A = [−2
−3

7
7] and A′ = [ 2

−1
1
3]

are similar because A′ = P−1AP, where P = [3
2

−2
−1]. 

You have seen that the matrix for a linear transformation T: V → V depends on the 
basis used for V. This observation leads naturally to the question: What choice of basis 
will make the matrix for T  as simple as possible? Is it always the standard basis? Not 
necessarily, as the next example demonstrates.

Definition of similar Matrices

For square matrices A and A′ of order n, A′ is similar to A when there exists an 
invertible matrix P such that A′ = P−1AP.

TheoreM 6.13 Properties of similar Matrices

Let A, B, and C be square matrices of order n. Then the properties below are true.
1. A is similar to A.
2. If A is similar to B, then B is similar to A.
3. If A is similar to B and B is similar to C, then A is similar to C.
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  a Comparison of Two Matrices 
for a Linear Transformation

Let

A = [
1
3
0

3
1
0

0
0

−2]
be the matrix for T: R3 → R3 relative to the standard basis. Find the matrix for T  relative 
to the basis B′ = {(1, 1, 0), (1, −1, 0), (0, 0, 1)}.

soLuTion

The transition matrix from B′ to the standard basis has columns consisting of the  
vectors in B′,

P = [
1
1
0

1
−1

0

0
0
1]

and it follows that

P−1 = [
1
2
1
2

0

1
2

−1
2

0

0

0

1
].

So, the matrix for T  relative to B′ is

 A′ = P−1AP

 = [
1
2
1
2

0

1
2

−1
2

0

0

0

1
] [

1
3
0

3
1
0

0
0

−2

1

] [1
0

1
−1

0

0
0
1]

 = [
4
0
0

0
−2

0

0
0

−2].

Note that matrix A′ is diagonal. 

Diagonal matrices have many computational advantages over nondiagonal  
matrices. For example, for the diagonal matrix

D = [
d1

0

⋮
0

0
d2

⋮
0

.  .  .

.  .  .

.  .  .

0
0

⋮
dn

]
the k th power of D is

Dk = [
d1

k

0

⋮
0

0
d2

k

⋮
0

.  .  .

.  .  .

.  .  .

0
0

⋮
dn

k
].

Also, a diagonal matrix is its own transpose. Moreover, if all of the main diagonal 
entries of a diagonal matrix are nonzero, then the inverse of the matrix is also a diagonal 
matrix, whose main diagonal entries are the reciprocals of corresponding entries in the 
original matrix. With such computational advantages, it is important to find ways (if 
possible) to choose a basis for V such that the transformation matrix is diagonal, as it 
is in Example 5. You will pursue this problem in the next chapter.
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334 Chapter 6 Linear Transformations

6.4 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

finding a Matrix for a Linear Transformation In 
Exercises 1–12, find the matrix A′ for T relative to the 
basis B′.
 1. T: R2 → R2, T(x, y) = (2x − y, y − x),
 B′ = {(1, −2), (0, 3)}
 2. T: R2 → R2, T(x, y) = (2x + y, x − 2y),
 B′ = {(1, 2), (0, 4)}
 3. T: R2 → R2, T(x, y) = (x + y, 4y),
 B′ = {(−4, 1), (1, −1)}
 4. T: R2 → R2, T(x, y) = (x − 2y, 4x),
 B′ = {(−2, 1), (−1, 1)}
 5. T: R2 → R2, T(x, y) = (−3x + y, 3x − y),
 B′ = {(1, −1), (−1, 5)}
 6. T: R2 → R2, T(x, y) = (5x + 4y, 4x + 5y),
 B′ = {(12, −13), (13, −12)}
 7. T: R3 → R3, T(x, y, z) = (x, y, z),
 B′ = {(1, 1, 0), (1, 0, 1), (0, 1, 1)}
 8. T: R3 → R3, T(x, y, z) = (0, 0, 0),
 B′ = {(1, 1, 0), (1, 0, 1), (0, 1, 1)}
 9. T: R3 → R3, T(x, y, z) = (y + z, x + z, x + y),
 B′ = {(5, 0, −1), (−3, 2, −1), (4, −6, 5)}
10. T: R3 → R3, T(x, y, z) = (−x, x − y, y − z),
 B′ = {(0, −1, 2), (−2, 0, 3), (1, 3, 0)}
11. T: R3 → R3,

 T(x, y, z) = (x − y + 2z, 2x + y − z, x + 2y + z),
 B′ = {(1, 0, 1), (0, 2, 2), (1, 2, 0)}
12. T: R3 → R3,

 T(x, y, z) = (x, x + 2y, x + y + 3z),
 B′ = {(1, −1, 0), (0, 0, 1), (0, 1, −1)}

13.  Let B = {(1, 3), (−2, −2)} and B′= {(−12, 0), (−4, 4)} 
be bases for R2, and let

 A = [3
0

2
4]

 be the matrix for T: R2 → R2 relative to B.

 (a) Find the transition matrix P from B′ to B.

 (b)  Use the matrices P and A to find [v]B and [T(v)]B, 
where [v]B′ = [−1   2]T.

 (c) Find P−1 and A′ (the matrix for T  relative to B′).
 (d) Find [T(v)]B′ two ways.

14.  Repeat Exercise 13 for B = {(1, 1), (−2, 3)}, 
B′ = {(1, −1), (0, 1)}, and [v]B′ = [1   −3]T.

 (Use matrix A in Exercise 13.)

15.  Let B = {(1, 2), (−1, −1)} and B′ = {(−4, 1), (0, 2)} 
be bases for R2, and let

A = [2
0

1
−1]

 be the matrix for T: R2 → R2 relative to B.

 (a) Find the transition matrix P from B′ to B.

 (b)  Use the matrices P and A to find [v]B and [T(v)]B, 
where [v]B′ = [−1   4]T.

 (c) Find P−1 and A′ (the matrix for T  relative to B′).
 (d) Find [T(v)]B′ two ways.

16.  Repeat Exercise 15 for B = {(1, −1), (−2, 1)}, 
B′ = {(−1, 1), (1, 2)}, and [v]B′ = [1   −4]T.

 (Use matrix A in Exercise 15.)

17.  Let B = {(1, 1, 0), (1, 0, 1), (0, 1, 1)} and B′= {(1, 0, 0), 
(0, 1, 0), (0, 0, 1)} be bases for R3, and let

 A = [
3
2

−1
2
1
2

−1

2

1

−1
2
1
2
5
2

]
 be the matrix for T: R3 → R3 relative to B.

 (a) Find the transition matrix P from B′ to B.

 (b)  Use the matrices P and A to find [v]B and [T(v)]B, 
where [v]B′ = [1   0   −1]T.

 (c) Find P−1 and A′ (the matrix for T  relative to B′).
 (d) Find [T(v)]B′ two ways.

18. Repeat Exercise 17 for

 B = {(1, 1, −1), (1, −1, 1), (−1, 1, 1)},
 B′ = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, and

 [v]B′ = [2   1   1]T.

 (Use matrix A in Exercise 17.)

similar Matrices In Exercises 19–22, use the matrix P 
to show that the matrices A and A′ are similar.

19. P = [−1
1

−1
2],  A = [ 12

−20
7

−11],  A′ = [1
4

−2
0]

20. P = A = A′ = [1
0

−12
1]

21. P = [
5
0
0

0
4
0

0
0
3], A = [

5
8
0

10
4
9

0
0
6], A′ = [

5
10
0

8
4

12

0
0
6]

22. P = [
1
0
0

1
1
0

1
1
1],  A = [

5
0
0

0
3
0

0
0
1],  A′ = [

5
0
0

2
3
0

2
2
1]
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Diagonal Matrix for a Linear Transformation In 
Exercises 23 and 24, let A be the matrix for T: R3 → R3 
relative to the standard basis. Find the diagonal matrix 
A′ for T relative to the basis B′.

23. A = [
0
1
0

2
−1

0

0
0
1],

 B′ = {(−1, 1, 0), (2, 1, 0), (0, 0, 1)}

24. A = [
3
2

−1
2
1
2

−1

2

1

−1
2
1
2
5
2

],

 B′ = {(1, 1, −1), (1, −1, 1), (−1, 1, 1)}

25. Proof Prove that if A and B are similar matrices, then

∣A∣ = ∣B∣.
 Is the converse true?

26. Illustrate the result of Exercise 25 using the matrices

 A = [
1
0
0

0
−2

0

0
0
3],  B = [

11
10

−18

7
8

−12

10
10

−17],

 P = [
−1

2
1

1
1
1

0
2
1],  P−1 = [

−1
0
1

−1
−1

2

2
2

−3],

 where B = P−1AP.

27.  Proof Prove that if A and B are similar matrices, then 
there exists a matrix P such that Bk = P−1AkP.

28. Use the result of Exercise 27 to find B4, where

 B = P−1AP

 for the matrices

 A = [1
0

0
2],    B = [−4

2
−15

7],

 P = [2
1

5
3],    P−1 = [ 3

−1
−5

2].

29. Determine all n × n matrices that are similar to In.

30.  Proof Prove that if A is an idempotent matrix and B is 
similar to A, then B is idempotent. (Recall that an n × n 
matrix A is idempotent when A = A2.)

31.  Proof Let A be an n × n matrix such that A2 = O. 
Prove that if B is similar to A, then B2 = O.

32.  Proof Consider the matrix equation B = P−1AP. 
Prove that if Ax = x, then PBP−1x = x.

33.  Proof Prove Property 3 of Theorem 6.13: For square 
matrices A, B, and C of order n, if A is similar to B and 
B is similar to C, then A is similar to C.

34.  Writing Explain why two similar matrices have the 
same rank.

35.  Proof Prove that if A and B are similar matrices, then 
AT and BT are similar matrices.

36.  Proof Prove that if A and B are similar matrices and A 
is nonsingular, then B is also nonsingular and A−1 and 
B−1 are similar matrices.

37.  Proof Let A = CD, where C and D are n × n matrices  
and C is invertible. Prove that the matrix product DC 
is similar to A.

38.  Proof Let B = P−1AP, where A = [aij], P = [ pij], 
and B is a diagonal matrix with main diagonal entries 
b11, b22, .  .  . , bnn. Prove that

 [
a11

a21

⋮
an1

a12

a22

⋮
an2

.  .  .

.  .  .
 

.  .  .

a1n

a2n

⋮
ann

] [
p1i

p2i

⋮
pni

] = bii[
p1i

p2i

⋮
pni

]
 for i = 1, 2, .  .  . , n.

39.  Writing Let B = {v1, v2, .  .  . , vn} be a basis for the 
vector space V, let B′ be the standard basis, and consider 
the identity transformation I: V → V. What can you say 
about the matrix for I relative to B? relative to B′? when 
the domain has the basis B and the range has the basis B′?

40. CAPSTONE
(a)  Consider two bases B and B′ for a vector space 

V and the matrix A for the linear transformation 
T: V → V relative to B. Explain how to obtain the 
coordinate matrix [T(v)]B′ from the coordinate 
matrix [v]B′, where v is a vector in V.

(b)  Explain how to determine whether two square 
matrices A and A′ of order n are similar.

True or false? In Exercises 41 and 42, determine 
whether each statement is true or false. If a statement 
is true, give a reason or cite an appropriate statement 
from the text. If a statement is false, provide an example 
that shows the statement is not true in all cases or cite an 
appropriate statement from the text.

41. (a)  The matrix for a linear transformation A′ relative to 
the basis B′ is equal to the product P−1AP, where 
P−1 is the transition matrix from B to B′, A is the 
matrix for the linear transformation relative to basis 
B, and P is the transition matrix from B′ to B.

 (b)  Two matrices that represent the same linear  
transformation T: V → V with respect to different 
bases are not necessarily similar.

42. (a)  The matrix for a linear transformation A relative to 
the basis B is equal to the product PA′P−1, where P 
is the transition matrix from B′ to B, A′ is the matrix 
for the linear transformation relative to basis B′, and 
P−1 is the transition matrix from B to B′.

 (b)  The standard basis for Rn will always make the 
coordinate matrix for the linear transformation T  
the simplest matrix possible.
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6.5 Applications of Linear Transformations

  Identify linear transformations defined by reflections, expansions, 
contractions, or shears in R2.

 Use a linear transformation to rotate a figure in R3.

The GeomeTry of Linear TransformaTions in R 2

The first part of this section gives geometric interpretations of linear transformations  
represented by 2 × 2 elementary matrices. After a summary of the various types of 
2 × 2 elementary matrices are examples that examine each type of matrix in more 
detail.

 reflections in R 2

The transformations below are reflections. These have the effect of mapping a point in 
the xy-plane to its “mirror image” with respect to one of the coordinate axes or the line 
y = x, as shown in Figure 6.5.

a. Reflection in the y-axis:

 T (x, y) = (−x, y)

 [−1
0

0
1][

x
y] = [−x

y]
b. Reflection in the x-axis:

 T (x, y) = (x, −y)

 [1
0

0
−1][

x
y] = [ x

−y]
c. Reflection in the line y = x:

 T (x, y) = (y, x)

 [0
1

1
0][

x
y] = [y

x]  

elementary matrices for Linear Transformations in R 2

 Reflection in y-Axis Reflection in x-Axis

 A = [−1
0

0
1] A = [1

0
0

−1]
 Reflection in Line y = x

 A = [0
1

1
0]

Horizontal Expansion (k > 1) Vertical Expansion (k > 1)
 or Contraction (0 < k < 1) or Contraction (0 < k < 1)

 A = [k
0

0
1] A = [1

0
0
k]

 Horizontal Shear Vertical Shear

 A = [1
0

k
1] A = [1

k
0
1]

a. 

x

y

(x, y)(−x, y)

b. 

x

y

(x, y)

(x, −y)

c. y

(x, y)

Re�ections in R2

x

(y, x)

Reflections in R2

figure 6.5
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expansions and Contractions in R 2

The transformations below are expansions or contractions, depending on the value of 
the positive scalar k.

a. Horizontal expansions and contractions:

 T(x, y) = (kx, y)

 [k
0

0
1][

x
y] = [kx

y]
b. Vertical expansions and contractions:

 T(x, y) = (x, ky)

 [1
0

0
k][

x
y] = [ x

ky]
Note in the figures below that the distance the point (x, y) moves by a contraction or an 
expansion is proportional to its x- or y-coordinate. For example, under the transformation  
represented by

T (x, y) = (2x, y)

the point (1, 3) would move one unit to the right, but the point (4, 3) would move  
four units to the right. Under the transformation represented by

T (x, y) = (x, 12y)
the point (1, 4) would move two units down, but the point (1, 2) would move one unit 
down.

x

y

(x, y)(kx, y)

Contraction (0 < k < 1) 

  

x

y

(x, y) (kx, y)

Expansion (k  > 1)

x

y

(x, y)

(x, ky)

Contraction (0 < k < 1)

  

x

y

(x, y)

(x, ky)

Expansion (k > 1)  

Another type of linear transformation in R2 corresponding to an elementary matrix 
is a shear, as described in Example 3.
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338 Chapter 6 Linear Transformations

 
shears in R 2

The transformations below are shears.

 T(x, y) = (x + ky, y)  T(x, y) = (x, y + kx)

 [1
0

k
1][

x
y] = [x + ky

y]   [1
k

0
1][

x
y] = [ x

kx + y]
a. A horizontal shear represented by

T(x, y) = (x + 2y, y)

 is shown at the right. Under this  
transformation, points in the upper  
half-plane “shear” to the right by amounts 
proportional to their y-coordinates. Points 
in the lower half-plane “shear” to the left 
by amounts proportional to the absolute 
values of their y-coordinates. Points on the 
x-axis do not move by this transformation.

b. A vertical shear represented by

T(x, y) = (x, y + 2x)

 is shown below. Here, points in the right half-plane “shear” upward by amounts 
proportional to their x-coordinates. Points in the left half-plane “shear” downward 
by amounts proportional to the absolute values of their x-coordinates. Points on the 
y-axis do not move.

 

x

4

3

2

1

y

−4

−4 −3 −2 −1 1 2 3 4

(x, y)

(x, y + 2x)

 

x

4

3

2

1

y

−4

−4 −3 −2 1 2 3 4

(x, y) (x + 2y, y)

Linear 
aLGebra 
appLied

The use of computer graphics is common in many fields. 
By using graphics software, a designer can “see” an object 
before it is physically created. Linear transformations can  
be useful in computer graphics. To illustrate, consider a 
simplified example. Only 23 points in R3 were used to  
generate images of the toy boat shown at the left. Most 
graphics software can use such minimal information to  
generate views of an image from any perspective, as  
well as color, shade, and render as appropriate. Linear 
transformations, specifically those that produce rotations  
in R3, can represent the different views. The remainder of 
this section discusses rotation in R3.
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roTaTion in R 3

In Example 7 in Section 6.1, you saw how a linear transformation can be used to 
rotate figures in R2. Here you will see how linear transformations can be used to rotate  
figures in R3.

Say you want to rotate the point (x, y, z) counterclockwise about the z-axis through 
an angle θ, as shown in Figure 6.6. Letting the coordinates of the rotated point be 
(x′, y′, z′), you have

[
x′
y′
z′] = [

cos θ
sin θ

0

−sin θ
cos θ

0

0
0
1][

x
y
z] = [

x cos θ − y sin θ
x sin θ + y cos θ

z].

Example 4 uses this matrix to rotate a figure in three-dimensional space.

 rotation about the z-axis

The eight vertices of the rectangular prism 
shown at the right are

V1(0, 0, 0)  V2(1, 0, 0)

V3(1, 2, 0)  V4(0, 2, 0)

V5(0, 0, 3)  V6(1, 0, 3)

V7(1, 2, 3)  V8(0, 2, 3).

Find the coordinates of the vertices after the 
prism is rotated counterclockwise about the  
z-axis through (a) θ = 60°, (b) θ = 90°, and  
(c) θ = 120°.

soLuTion

a. The matrix that yields a rotation of 60° is

A = [
cos 60°
sin 60°

0

−sin 60°
cos 60°

0

0
0
1] = [

1�2
√3�2

0

−√3�2
1�2

0

0
0
1].

 Multiplying this matrix by the column vectors corresponding to each vertex  
produces the rotated vertices listed below.

V1′(0, 0, 0)  V2′(0.5, 0.87, 0)  V3′(−1.23, 1.87, 0)  V4′(−1.73, 1, 0)

V5′(0, 0, 3)  V6′(0.5, 0.87, 3)  V7′(−1.23, 1.87, 3)  V8′(−1.73, 1, 3)

Figure 6.7(a) shows a graph of the rotated prism.

b. The matrix that yields a rotation of 90° is

A = [
cos 90°
sin 90°

0

−sin 90°
cos 90°

0

0
0
1] = [

0
1
0

−1 
0 
0 

0
0
1]

and Figure 6.7(b) shows a graph of the rotated prism.

c. The matrix that yields a rotation of 120° is

A = [
cos 120°
sin 120°

0

−sin 120°
cos 120°

0

0
0
1] = [

−1�2
√3�2

0

−√3�2
−1�2

0

0
0
1]

and Figure 6.7(c) shows a graph of the rotated prism. 

figure 6.6

x y

z

(x, y, z) (x ′, y ′, z ′)

θ

x y

z

a. 

x y

z

60°

b. 

x y

z

90°

c. 

x y

°

z

120

figure 6.7
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Example 4 uses matrices to perform rotations about the z-axis. Similarly, you can 
use matrices to rotate figures about the x- or y-axis. A summary of all three types of 
rotations is below.

 Rotation About the x-Axis Rotation About the y-Axis Rotation About the z-Axis

 [
1
0
0

0
cos θ
sin θ

0
−sin θ

cos θ] [
cos θ

0
−sin θ

0
1
0

sin θ
0

cos θ] [
cos θ
sin θ

0

−sin θ
cos θ

0

0
0
1]

In each case, the rotation is oriented counterclockwise (using the “right-hand rule”) 
relative to the specified axis, as shown below.

x y

z

Rotation about x-axis

 

x y

z

Rotation about y-axis

 

x y

z

Rotation about z-axis

 rotation about the x-axis and y-axis

See LarsonLinearAlgebra.com for an interactive version of this type of example.

a. The matrix that yields a rotation of 90° about the x-axis is

A = [
1
0
0

0
cos 90°
sin 90°

0
−sin 90°

cos 90°] = [
1
0
0

0
0
1

0
−1

0].

Figure 6.8(a) shows the prism from Example 4 rotated 90° about the x-axis.

b. The matrix that yields a rotation of 90° about the y-axis is

A = [
cos 90°

0
−sin 90°

0
1
0

sin 90°
0

cos 90°] = [
0
0

−1

0
1
0

1
0
0].

Figure 6.8(b) shows the prism from Example 4 rotated 90° about the y-axis.

a. 

x y

z

90°

 b. 

x y

z

°90

figure 6.8 

Rotations about the coordinate axes can be combined to produce any desired view 
of a figure. For example, Figure 6.9 shows the prism from Example 4 rotated 90° about 
the y-axis and then 120° about the z-axis.

figure 6.9

x

y

z

90°

120°

remarK
To illustrate the right-hand 
rule, imagine the thumb of 
your right hand pointing in the 
positive direction of an axis. 
The cupped fingers will point in 
the direction of counterclockwise 
rotation. The figure below 
shows counterclockwise 
rotation about the z-axis.

x

y

z
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6.5 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

 1.  Let T: R2 → R2 be a reflection in the x-axis. Find the 
image of each vector.

 (a) (3, 5) (b) (2, −1) (c) (a, 0)
 (d) (0, b) (e) (−c, d) (f ) ( f,−g)
 2.  Let T: R2 → R2 be a reflection in the y-axis. Find the 

image of each vector.

 (a) (5, 2) (b) (−1, −6) (c) (a, 0)
 (d) (0, b) (e) (c, −d) (f ) ( f, g)
 3.  Let T: R2 → R2 be a reflection in the line y = x. Find the 

image of each vector.

 (a) (0, 1) (b) (−1, 3) (c) (a, 0)
 (d) (0, b) (e) (−c, d) (f ) ( f, −g)
 4.  Let T: R2 → R2 be a reflection in the line y = −x. Find 

the image of each vector.

 (a) (−1, 2) (b) (2, 3) (c) (a, 0)
 (d) (0, b) (e) (e, −d) (f ) (−f, g)
 5. Let T(1, 0) = (2, 0) and T(0, 1) = (0, 1).
 (a) Determine T(x, y) for any (x, y).
 (b) Give a geometric description of T.

 6. Let T(1, 0) = (1, 1) and T(0, 1) = (0, 1).
 (a) Determine T(x, y) for any (x, y).
 (b) Give a geometric description of T.

identifying and representing a Transformation In 
Exercises 7–14, (a) identify the transformation, and  
(b) graphically represent the transformation for an  
arbitrary vector in R2.

 7. T(x, y) = (x, y�2)  8. T(x, y) = (x�4, y)
 9. T(x, y) = (12x, y) 10. T(x, y) = (x, 3y)
11. T(x, y) = (x + 3y, y) 12. T(x, y) = (x + 4y, y)
13. T(x, y) = (x, 5x + y)
14. T(x, y) = (x, 9x + y)

finding fixed points of a Linear Transformation In 
Exercises 15–22, find all fixed points of the linear  
transformation. Recall that the vector v is a fixed point 
of T when T(v) = v.

15. A reflection in the y-axis

16. A reflection in the x-axis

17. A reflection in the line y = x

18. A reflection in the line y = −x

19. A vertical contraction

20. A horizontal expansion

21. A horizontal shear

22. A vertical shear

sketching an image of the unit square In Exercises 
23–30, sketch the image of the unit square [a square 
with vertices at (0, 0), (1, 0), (1, 1), and (0, 1)] under the  
specified transformation.

23. T  is a reflection in the x-axis.

24. T  is a reflection in the line y = x.

25. T  is the contraction represented by T(x, y) = (x�2, y).
26. T  is the contraction represented by T(x, y) = (x, y�4).
27. T  is the expansion represented by T(x, y) = (x, 3y).
28. T  is the expansion represented by T(x, y) = (5x, y).
29. T  is the shear represented by T(x, y) = (x + 2y, y).
30. T  is the shear represented by T(x, y) = (x, y + 3x).

sketching an image of a rectangle In Exercises 
31–38, sketch the image of the rectangle with vertices  
at (0, 0), (1, 0), (1, 2), and (0, 2) under the specified  
transformation.

31. T  is a reflection in the y-axis.

32. T  is a reflection in the line y = x.

33. T  is the contraction represented by T(x, y) = (x�3, y).
34. T  is the contraction represented by T(x, y) = (x, y�2).
35. T  is the expansion represented by T(x, y) = (x, 6y).
36. T  is the expansion represented by T(x, y) = (2x, y).
37. T  is the shear represented by T(x, y) = (x + y, y).
38. T  is the shear represented by T(x, y) = (x, y + 2x).

sketching an image of a figure In Exercises  
39–44, sketch each of the images under the specified 
transformation.

(a) 

−2
−2

2 4 6 8

2

4

6

8
(3, 6)

(5, 2)
(1, 2) (6, 0)(0, 0)

x

y  (b) 

−2
−2

2 4 6 8

2

4

6

8

(0, 0) (6, 0)

(0, 6) (6, 6)

x

y

39. T  is a reflection in the x-axis.

40. T  is a reflection in the line y = x.

41. T  is the shear represented by T(x, y) = (x + y, y).
42. T  is the shear represented by T(x, y) = (x, x + y).
43. T  is the expansion and contraction represented by

 T(x, y) = (2x, 12 y).
44. T  is the expansion and contraction represented by

 T(x, y) = (1
2 x, 2y).
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Giving a Geometric description In Exercises 45–50, 
give a geometric description of the linear transformation 
defined by the elementary matrix.

45. A = [2
0

0
1] 46. A = [1

2
0
1]

47. A = [1
0

5
1] 48. A = [1

0

0
1
2
]

49. A = [1
0

0
−2] 50. A = [−1

4

0

0

1]
Giving a Geometric description In Exercises 51 
and 52, give a geometric description of the linear  
transformation defined by the matrix product.

51. A = [2
2

0
1] = [2

0
0
1] [1

2
0
1]

52. A = [0
1

3
0] = [0

1
1
0] [1

0
0
3]

53.  The linear transformation defined by a diagonal matrix 
with positive main diagonal elements is called a  
magnification. Find the images of (1, 0), (0, 1), and 
(2, 2) under the linear transformation defined by A and 
graphically interpret your result.

 A = [2
0

0
3]

54.  CAPSTONE Describe the transformation 
defined by each matrix. Assume k and θ are  
positive scalars.

(a) [−1
0

0
1] (b) [1

0
0

−1]
(c) [0

1
1
0] (d) [k

0
0
1],  k > 1

(e) [k
0

0
1],  0 < k < 1 (f) [1

0
0
k],  k > 1

(g) [1
0

0
k],  0 < k < 1 (h) [1

0
k
1]

(i) [1
k

0
1] (j) [

1
0
0

0
cos θ
sin θ

0
−sin θ

cos θ]
(k) [

cos θ
0

−sin θ

0
1
0

sin θ
0

cos θ] (l) [
cos θ
sin θ

0

−sin θ
cos θ

0

0
0
1]

finding a matrix to produce a rotation In Exercises 
55–58, find the matrix that produces the rotation.

55. 30° about the z-axis 56. 60° about the x-axis

57. 120° about the x-axis 58. 60° about the y-axis

finding the image of a Vector In Exercises 59–62, 
find the image of the vector (1, 1, 1) for the rotation.

59. 30° about the z-axis 60. 60° about the x-axis

61. 120° about the x-axis 62. 60° about the y-axis

determining a rotation In 
Exercises 63–68, determine 
which single counterclockwise 
rotation about the x-, y-, or  
z-axis produces the rotated 
tetrahedron. The figure at the 
right shows the tetrahedron 
before rotation.

63. 

x y

z  64. 

x y

z

65. 

x y

z  66. 

x y

z

67. 

x y

z  68. 

x y

z

determining a matrix to produce a pair of 
rotations In Exercises 69–72, determine the matrix 
that produces the pair of rotations. Then find the image 
of the vector (1, 1, 1) under these rotations.

69. 90° about the x-axis and then 90° about the y-axis

70. 30° about the z-axis and then 60° about the y-axis

71. 45° about the z-axis and then 135° about the x-axis

72. 120° about the x-axis and then 135° about the z-axis

x y

z
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6 Review Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

Finding an Image and a Preimage In Exercises 1–6, 
find (a) the image of v and (b) the preimage of w for the 
linear transformation.

 1. T: R2 → R2, T(v1, v2) = (v1, v1 + 2v2), v = (2, −3),
 w = (4, 12)
 2. T: R2 → R2, T(v1, v2) = (v1 + v2, 2v2), v = (4, −1),
 w = (8, 4)
 3. T: R3 → R3, T(v1, v2, v3) = (0, v1 + v2, v2 + v3),
 v = (−3, 2, 5), w = (0, 2, 5)
 4. T: R3 → R3, T(v1, v2, v3) = (v1 + v2, v2 + v3, v3),
 v = (−2, 1, 2), w = (0, 1, 2)
 5. T: R2 → R3, T(v1, v2) = (v1 + v2, v1 − v2, 2v1 + 3v2),
 v = (2, −3), w = (1, −3, 4)
 6. T: R2 → R, T(v1, v2) = (2v1 − v2), v = (2, −3), w = 4

Linear Transformations and Standard Matrices In 
Exercises 7–18, determine whether the function is a 
linear transformation. If it is, find its standard matrix A.

 7. T: R → R2, T(x) = (x, x + 2)
 8. T: R2 → R, T(x1, x2) = (x1 + x2)
 9. T: R2 → R2, T(x1, x2) = (x1 + 2x2, −x1 − x2)
10. T: R2 → R2, T(x1, x2) = (x1 + 3, x2)
11. T: R2 → R2, T(x, y) = (x − 2y, 2y − x)
12. T: R2 → R2, T(x, y) = (x + y, y)
13.  T: R2 → R2, T(x, y) = (x + h, y + k), h ≠ 0 or k ≠ 0 

(translation in R2)
14. T: R2 → R2, T(x, y) = (∣x∣, ∣y∣)
15. T: R3 → R3, T(x1, x2, x3) = (x1 + x2, 2, x3 − x1)
16. T: R3 → R3, T(x1, x2, x3) = (x1 − x2, x2 − x3, x3 − x1)
17. T: R3 → R3, T(x, y, z) = (z, y, x)
18. T: R3 → R3, T(x, y, z) = (x, 0, −y)

19.  Let T  be a linear transformation from R2 into R2 such 
that T(2, 0) = (1, 1) and T(0, 3) = (3, 3). Find T(1, 1) 
and T(0, 1).

20.  Let T  be a linear transformation from R3 into R such that 
T(1, 1, 1) = 1, T(1, 1, 0) = 2, and T(1, 0, 0) = 3. Find 
T(0, 1, 1).

21.  Let T  be a linear transformation from R2 into R2 such 
that T(4, −2) = (2, −2) and T(3, 3) = (−3, 3). Find 
T(−7, 2).

22.  Let T  be a linear transformation from R2 into R2 such 
that T(1, −1) = (2, −3) and T(0, 2) = (0, 8). Find 
T(2, 4).

Linear Transformation Given by a Matrix In Exercises 
23–28, define the linear transformation T: Rn → Rm 
by T(v) = Av. Use the matrix A to (a) determine the 
dimensions of Rn and Rm, (b) find the image of v, and  
(c) find the preimage of w.

23. A = [ 0
−2

1
0

2
0], v = (6, 1, 1), w = (3, 5)

24. A = [1
1

2
0

−1
1], v = (5, 2, 2), w = (4, 2)

25. A = [
1
0
0

1
1
0

1
1
1], v = (2, 1, −5), w = (6, 4, 2)

26. A = [2
0

1
1], v = (8, 4), w = (5, 2)

27. A = [
4
0
1

0
5
1], v = (2, 2), w = (4, −5, 0)

28. A = [
−1

0
−1

0
1

−3], v = (3, 5), w = (5, 2, −1)

29.  Use the standard matrix for counterclockwise rotation 
in R2 to rotate the triangle with vertices (3, 5), (5, 3), 
and (3, 0) counterclockwise 90° about the origin. Graph 
the triangles.

30.  Rotate the triangle in Exercise 29 counterclockwise 90° 
about the point (5, 3). Graph the triangles.

Finding the Kernel and Range In Exercises 31–34, 
find (a) ker(T) and (b) range(T).
31. T: R4 → R3,

  T(w, x, y, z) = (2w + 4x + 6y + 5z,

  −w − 2x + 2y, 8y + 4z)
32. T: R3 → R3, T(x, y, z) = (x + 2y, y + 2z, z + 2x)
33. T: R3 → R3, T(x, y, z) = (x, y, z + 3y)
34. T: R3 → R3, T(x, y, z) = (x + y, y + z, x − z)

Finding the Kernel, Nullity, Range, and Rank In 
Exercises 35–38, define the linear transformation T by 
T(v) = Av. Find (a) ker(T), (b) nullity(T), (c) range(T),  
and (d) rank(T).

35. A = [
1

−1
1

2
0
1] 36. A = [

−1
0

−2

2
−1

2]
37. A = [

2
1
0

1
1
1

3
0

−3] 38. A = [
1
1
0

1
2
1

−1
1
0]
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39. For T: R5 → R3 and nullity(T) = 2, find rank(T).
40. For T: P5 → P3 and nullity(T) = 4, find rank(T).
41. For T: P4 → R5 and rank(T) = 3, find nullity(T).
42. For T: M3,3 → M3,3 and rank(T) = 5, find nullity(T).

Finding a Power of a Standard Matrix In Exercises 
43–46, find the specified power of A, the standard  
matrix for T.

43. T: R3 → R3, reflection in the xy-plane. Find A2.

44. T: R3 → R3, projection onto the xy-plane. Find A2.

45.  T: R2 → R2, counterclockwise rotation through the  
angle θ. Find A3.

46. Calculus T: P3 → P3, differential operator Dx. Find A2.

Finding Standard Matrices for Compositions In 
Exercises 47 and 48, find the standard matrices for 
T = T2 ∘ T1 and T′ = T1 ∘ T2.

47. T1: R
2 → R3, T1(x, y) = (x, x + y, y)

 T2: R
3 → R2, T2(x, y, z) = (0, y)

48. T1: R → R2, T1(x) = (x, 4x)
 T2: R

2 → R, T2(x, y) = (y + 3x)

Finding the Inverse of a Linear Transformation  
In Exercises 49–52, determine whether the linear  
transformation is invertible. If it is, find its inverse.

49. T: R2 → R2, T(x, y) = (0, y)
50. T: R2 → R2,

 T(x, y) = (x cos θ − y sin θ, x sin θ + y cos θ)
51. T: R2 → R2, T(x, y) = (x, −y)
52. T: R3 → R2, T(x, y, z) = (x + y, y − z)

One-to-One, Onto, and Invertible Transformations  
In Exercises 53–56, determine whether the linear  
transformation represented by the matrix A is  
(a) one-to-one, (b) onto, and (c) invertible.

53. A = [6
0

0
−1] 54. A = [1

0

1
4

1]
55. A = [1

0
1
1

1
1] 56. A = [

4
5
0

0
5
0

7
1
2]

Finding the Image Two Ways In Exercises 57 and 58, 
find T(v) by using (a) the standard matrix and (b) the 
matrix relative to B and B′.
57. T: R2 → R3,

 T(x, y) = (−x, y, x + y), v = (0, 1),
 B = {(1, 1), (1, −1)}, B′ = {(0, 1, 0), (0, 0, 1), (1, 0, 0)}
58. T: R2 → R2,

 T(x, y) = (2y, 0), v = (−1, 3),
 B = {(2, 1), (−1, 0)}, B′ = {(−1, 0), (2, 2)}

Finding a Matrix for a Linear Transformation In 
Exercises 59 and 60, find the matrix A′ for T relative to 
the basis B′.
59. T: R2 → R2, T(x, y) = (x − 3y, y − x),
 B′ = {(1, −1), (1, 1)}
60. T: R3 → R3, T(x, y, z) = (x + 3y, 3x + y, −2z),
 B′ = {(1, 1, 0), (1, −1, 0), (0, 0, 1)}

Similar Matrices In Exercises 61 and 62, use the 
matrix P to show that the matrices A and A′ are similar.

61. P = [2
3

−1
5], A = [6

2
−3
−2], A′ = [ 1

−1
−9

3]

62. P = [
1
0
1

2
1
0

0
−1

0], A = [
1

−1
0

0
3
0

1
1
2], A′ = [

2
0
0

0
1
0

0
0
3]

63. Define T: R3 → R3 by T(v) = projuv, where u = (0, 1, 2).
 (a) Find A, the standard matrix for T.

 (b)  Let S be the linear transformation represented  
by I − A. Show that S is of the form

 S(v) = projw1
v + projw2

v

  where w1 and w2 are fixed vectors in R3.

 (c) Show that the kernel of T  is equal to the range of S.

64. Define T: R2 → R2 by T(v) = projuv, where u = (4, 3).
 (a)  Find A, the standard matrix for T, and show that 

A2 = A.

 (b) Show that (I − A)2 = I − A.

 (c) Find Av and (I − A)v for v = (5, 0).
 (d) Sketch the graphs of u, v, Av, and (I − A)v.

65.  Let S and T  be linear transformations from V into W. 
Show that S + T  and kT  are both linear transformations, 
where (S + T)(v) = S(v) + T(v) and (kT)(v) = kT(v).

66.  Proof Let T: R2 → R2 such that T(v) = Av + b, where 
A is a 2 × 2 matrix. (Such a transformation is called  
an affine transformation.) Prove that T  is a linear  
transformation if and only if b = 0.

Sum of Two Linear Transformations In Exercises 
67 and 68, consider the sum S + T of two linear 
transformations S: V → W and T: V → W, defined as 
(S + T)(v) = S(v) + T(v).
67. Proof Prove that rank(S + T) ≤ rank(S) + rank(T).
68. Give an example for each.

 (a) Rank(S + T) = rank(S) + rank(T)
 (b) Rank(S + T) < rank(S) + rank(T)
69. Proof Let T: P3 → R such that

 T(a0 + a1x + a2x
2 + a3x

3) = a0 + a1 + a2 + a3.

 (a) Prove that T  is a linear transformation.

 (b) Find the rank and nullity of T.

 (c) Find a basis for the kernel of T.
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70. Proof Let

 T: V → U and S: U → W

 be linear transformations.

 (a)  Prove that ker(T) is contained in ker(S ∘ T).
 (b) Prove that if S ∘ T  is onto, then so is S.

71.  Let V be an inner product space. For a fixed nonzero 
vector v0 in V, let T: V → R be the linear transformation 
T(v) = 〈v, v0〉. Find the kernel, range, rank, and nullity 
of T.

72.  Calculus Let B = {1, x, sin x, cos x} be a basis for a 
subspace W  of the space of continuous functions, and 
let Dx be the differential operator on W. Find the matrix 
for Dx relative to the basis B. Find the range and kernel 
of Dx.

73.  Writing Are the vector spaces R4, M2,2, and M1,4 
exactly the same? Describe their similarities and 
differences.

74. Calculus Define T: P3 → P3 by

T(p) = p(x) + p′(x).

 Find the rank and nullity of T.

Identifying and Representing a Transformation In 
Exercises 75–80, (a) identify the transformation, and  
(b) graphically represent the transformation for an  
arbitrary vector in R2.

75. T(x, y) = (x, 2y) 76. T(x, y) = (x + y, y)
77. T(x, y) = (x, y + 3x) 78. T(x, y) = (5x, y)
79. T(x, y) = (x + 5y, y) 80. T(x, y) = (x, y + 3

2 x)
Sketching an Image of a Triangle In Exercises 81–84, 
sketch the image of the triangle with vertices (0, 0), (1, 0), 
and (0, 1) under the specified transformation.

81. T  is a reflection in the x-axis.

82. T  is the expansion represented by T(x, y) = (2x, y).
83. T  is the shear represented by T(x, y) = (x + 3y, y).
84. T  is the shear represented by T(x, y) = (x, y + 2x).

Giving a Geometric Description In Exercises 85 
and 86, give a geometric description of the linear 
transformation defined by the matrix product.

85. [0
1

12
0] = [12

0
0
1] [0

1
1
0]

86. [1
6

0
2] = [1

0
0
2] [1

3
0
1]

Finding a Matrix to Produce a Rotation In Exercises 
87–90, find the matrix that produces the rotation. Then 
find the image of the vector (1, −1, 1).
87. 45° about the z-axis 88. 90° about the x-axis

89. 60° about the x-axis 90. 30° about the y-axis

Determining a Matrix to Produce a Pair of Rotations  
In Exercises 91–94, determine the matrix that produces 
the pair of rotations.

 91. 60° about the x-axis and then 30° about the z-axis

 92. 120° about the y-axis and then 45° about the z-axis

 93. 30° about the y-axis and then 45° about the z-axis

 94. 60° about the x-axis and then 60° about the z-axis

Finding an Image of a Unit Cube In Exercises 95–98, 
find the image of the unit cube with vertices (0, 0, 0), 
(1, 0, 0), (1, 1, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (1, 1, 1), and 
(0, 1, 1) when it rotates through the given angle.

 95. 45° about the z-axis  96. 90° about the x-axis

 97. 30° about the x-axis  98. 120° about the z-axis

True or False? In Exercises 99–102, determine whether 
each statement is true or false. If a statement is true, give 
a reason or cite an appropriate statement from the text. 
If a statement is false, provide an example that shows the 
statement is not true in all cases or cite an appropriate 
statement from the text.

 99. (a)  Reflections that map a point in the xy-plane to 
its mirror image across the line y = x are linear 
transformations that are defined by the matrix

   [1
0

0
1].

  (b)  Horizontal expansions or contractions are linear 
transformations that are defined by the matrix

   [k
0

0
1].

100. (a)  Reflections that map a point in the xy-plane 
to its mirror image across the x-axis are linear 
transformations that are defined by the matrix

   [1
0

0
−1].

  (b)  Vertical expansions or contractions are linear 
transformations that are defined by the matrix

   [1
0

0
k].

101. (a)  In calculus, any linear function is also a linear  
transformation from R2 to R2.

  (b)  A linear transformation is onto if and only if, for 
all u and v in V, T(u) = T(v) implies u = v.

  (c)  For ease of computation, it is best to choose a basis 
for V such that the transformation matrix is diagonal.

102. (a)  For polynomials, the differential operator Dx is a 
linear transformation from Pn into Pn−1.

  (b)  The set of all vectors v in V that satisfy T(v) = v 
is the kernel of T.

  (c)  The standard matrix A of the composition of 
two linear transformations T(v) = T2(T1(v)) is 
the product of the standard matrix for T2 and the 
standard matrix for T1.
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Let ℓ be the line ax + by = 0 in R2. The linear transformation L: R2 → R2 that 
maps a point (x, y) to its mirror image with respect to ℓ is called the reflection  
in ℓ. (See Figure 6.10.) The goal of these two projects is to find the matrix for this 
reflection relative to the standard basis.

1 Reflections in R2 (I)
In this project, you will use transition matrices to determine the standard matrix for 
the reflection L in the line ax + by = 0.

1. Find the standard matrix for L for the line x = 0.

2. Find the standard matrix for L for the line y = 0.

3. Find the standard matrix for L for the line x − y = 0.

4.  Consider the line ℓ represented by x − 2y = 0. Find a vector v parallel to ℓ and 
another vector w orthogonal to ℓ. Determine the matrix A for the reflection in ℓ 
relative to the ordered basis {v, w}. Finally, use the appropriate transition matrix 
to find the matrix for the reflection relative to the standard basis. Use this matrix 
to find the images of the points (2, 1), (−1, 2), and (5, 0).

5.  Consider the general line ℓ represented by ax + by = 0. Find a vector v  
parallel to ℓ and another vector w orthogonal to ℓ. Determine the matrix A  
for the reflection in ℓ relative to the ordered basis {v, w}. Finally, use the  
appropriate transition matrix to find the matrix for the reflection relative to the 
standard basis.

6.  Find the standard matrix for the reflection in the line 3x + 4y = 0. Use this 
matrix to find the images of the points (3, 4), (−4, 3), and (0, 5).

2 Reflections in R2 (II)
In this project, you will use projections to determine 
the standard matrix for the reflection L in the line 
ax + by = 0. Recall that the projection of the vector u 
onto the vector v (shown at the right) is

 projvu =
u ∙ v
v ∙ v

v.

1.  Find the standard matrix for the projection onto the y-axis. That is, find the  
standard matrix for projvu when v = (0, 1).

2. Find the standard matrix for the projection onto the x-axis.

3.  Consider the line ℓ represented by x − 2y = 0. Find a vector v parallel to ℓ and 
another vector w orthogonal to ℓ. Determine the matrix A for the projection onto 
ℓ relative to the ordered basis {v, w}. Finally, use the appropriate transition matrix 
to find the matrix for the projection relative to the standard basis. Use this matrix 
to find projvu for u = (2, 1), u = (−1, 2), and u = (5, 0).

4.  Consider the general line ℓ represented by ax + by = 0. Find a vector v  
parallel to ℓ and another vector w orthogonal to ℓ. Determine the matrix A  
for the projection onto ℓ relative to the ordered basis {v, w}. Finally, use the  
appropriate transition matrix to find the matrix for the projection relative to the 
standard basis.

5.  Use Figure 6.11 to show that projvu = 1
2 (u + L(u)), where L is the reflection in 

the line ℓ. Solve this equation for L and compare your answer with the formula 
from the first project.

u

vprojvu

Figure 6.10

x

y

L(x, y)

(x, y)

x

u

y

L(u)

projvu

Figure 6.11
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7.1 Eigenvalues and Eigenvectors

 Verify eigenvalues and corresponding eigenvectors.

 Find eigenvalues and corresponding eigenspaces.

  Use the characteristic equation to find eigenvalues and eigenvectors, 
and find the eigenvalues and eigenvectors of a triangular matrix.

 Find the eigenvalues and eigenvectors of a linear transformation.

The eigenvalue problem

This section presents one of the most important problems in linear algebra, the eigenvalue 
problem. Its central question is “when A is an n × n matrix, do nonzero vectors x in Rn exist 
such that Ax is a scalar multiple of x?” The scalar, denoted by the Greek letter lambda (λ), 
is called an eigenvalue of the matrix A, and the nonzero vector x is called an eigenvector  
of A corresponding to λ. The origins of the terms eigenvalue and eigenvector are from the 
German word Eigenwert, meaning “proper value.” So, you have

 Eigenvalue

 
Ax = λx.

  
 Eigenvector

Eigenvalues and eigenvectors have many important applications, many of which are 
discussed throughout this chapter. For now, you will consider a geometric interpretation 
of the problem in R2. If λ is an eigenvalue of a matrix A and x is an eigenvector of A  
corresponding to λ, then multiplication of x by the matrix A produces a vector λx that 
is parallel to x, as shown below.

x

λx

λAx =   x, λ 0<

  

x

λx

λAx =    x, λ < 0

Note that an eigenvector cannot be zero. Allowing x to be the zero vector would  
render the definition meaningless, because A0 = λ0 is true for all real values of λ.  
An eigenvalue of λ = 0, however, is possible. (See Example 2.)

Definitions of eigenvalue and eigenvector

Let A be an n × n matrix. The scalar λ is an eigenvalue of A when there is 
a nonzero vector x such that Ax = λx. The vector x is an eigenvector of A  
corresponding to λ.

remarK
Only eigenvectors of real 
eigenvalues are presented in 
this chapter.
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A matrix can have more than one eigenvalue, as demonstrated in Examples 1 
and 2.

  verifying eigenvectors and eigenvalues

For the matrix

A = [2
0

0
−1]

verify that x1 = (1, 0) is an eigenvector of A corresponding to the eigenvalue 
λ1 = 2, and that x2 = (0, 1) is an eigenvector of A corresponding to the eigenvalue 
λ2 = −1.

soluTion

Multiplying x1 on the left by A produces

Ax1 = [2
0

0
−1][

1
0] = [2

0] = 2[1
0].

  

 Eigenvalue  Eigenvector

So, x1 = (1, 0) is an eigenvector of A corresponding to the eigenvalue λ1 = 2. 
Similarly, multiplying x2 on the left by A produces

Ax2 = [2
0

0
−1][

0
1] = [ 0

−1] = −1[0
1].

So, x2 = (0, 1) is an eigenvector of A corresponding to the eigenvalue λ2 = −1. 

  verifying eigenvectors and eigenvalues

For the matrix

A = [
1
0
0

−2
0
1

1
0
1]

verify that

x1 = (−3, −1, 1) and x2 = (1, 0, 0)

are eigenvectors of A and find their corresponding eigenvalues.

soluTion

Multiplying x1 on the left by A produces

Ax1 = [
1
0
0

−2
0
1

1
0
1][

−3
−1

1] = [
0
0
0] = 0[

−3
−1

1].

So, x1 = (−3, −1, 1) is an eigenvector of A corresponding to the eigenvalue λ1 = 0.  
Similarly, multiplying x2 on the left by A produces

Ax2 = [
1
0
0

−2
0
1

1
0
1][

1
0
0] = [

1
0
0] = 1[

1
0
0].

So, x2 = (1, 0, 0) is an eigenvector of A corresponding to the eigenvalue λ2 = 1. 

DISCOVERY
1.  In Example 2, λ2 = 1 is 

an eigenvalue of the 
matrix A. Calculate 
the determinant of the 
matrix λ2I − A, where 
I is the 3 × 3 identity 
matrix.

2.  Repeat for the other 
eigenvalue, λ1 = 0.

3.  In general, when λ is 
an eigenvalue of the 
matrix A, what is the 
value of ∣λI − A∣?

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



350 Chapter 7 Eigenvalues and Eigenvectors

eigenspaces

Although Examples 1 and 2 list only one eigenvector for each eigenvalue, each of the 
four eigenvalues in Examples 1 and 2 has infinitely many eigenvectors. For instance, 
in Example 1, the vectors (2, 0) and (−3, 0) are eigenvectors of A corresponding to the 
eigenvalue 2. In fact, if A is an n × n matrix with an eigenvalue λ and a corresponding  
eigenvector x, then every nonzero scalar multiple of x is also an eigenvector of A.  
To see this, let c be a nonzero scalar, which then produces

A(cx) = c(Ax) = c(λx) = λ(cx).

It is also true that if x1 and x2 are eigenvectors corresponding to the same eigenvalue λ, 
then their sum is also an eigenvector corresponding to λ, because

A(x1 + x2) = Ax1 + Ax2 = λx1 + λx2 = λ(x1 + x2).

In other words, the set of all eigenvectors of an eigenvalue λ, together with the zero 
vector, is a subspace of Rn. This special subspace of Rn is called the eigenspace of λ.

Determining the eigenvalues and corresponding eigenspaces of a matrix can 
involve algebraic manipulation. Occasionally, however, it is possible to find eigenvalues  
and eigenspaces by inspection, as demonstrated in Example 3.

  Finding eigenspaces in R 2 geometrically

Find the eigenvalues and corresponding eigenspaces of A = [−1
0

0
1].

soluTion

Geometrically, multiplying a vector (x, y) in R2 by the matrix A corresponds to a  
reflection in the y-axis. That is, if v = (x, y), then

Av = [−1
0

0
1][

x
y] = [−x

y].

Figure 7.1 illustrates that the only vectors reflected onto scalar multiples of themselves 
are those lying on either the x-axis or the y-axis.

 For a vector on the x-axis For a vector on the y-axis

[−1
0

0
1][

x
0] = [−x

0] = −1[x
0]   [−1

0
0
1][

0
y] = [0

y] = 1[0
y]

  
 Eigenvalue is λ1 = −1.  Eigenvalue is λ2 = 1.

So, the eigenvectors corresponding to λ1 = −1 are the nonzero vectors on the x-axis, 
and the eigenvectors corresponding to λ2 = 1 are the nonzero vectors on the y-axis. 
This implies that the eigenspace corresponding to λ1 = −1 is the x-axis, and that the 
eigenspace corresponding to λ2 = 1 is the y-axis. 

Theorem 7.1 eigenvectors of λ Form a subspace

If A is an n × n matrix with an eigenvalue λ, then the set of all eigenvectors  
of λ, together with the zero vector

{x: x is an eigenvector of λ} ∪ {0}

is a subspace of Rn. This subspace is the eigenspace of λ.

Figure 7.1

x

A re�ects vectors 
in the y-axis.

(0, y) (0, y) (x, y) (−x, y)

(x, 0)(−x, 0)

y

remarK
The geometric solution in 
Example 3 is not typical of the 
general eigenvalue problem.  
A more general approach  
follows.
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FinDing eigenvalues anD eigenvecTors

To find the eigenvalues and eigenvectors of an n × n matrix A, let I be the n × n
identity matrix. Rewriting Ax = λx as λIx = Ax and rearranging gives (λI − A)x = 0.
This homogeneous system of equations has nonzero solutions if and only if the 
coefficient matrix (λI − A) is not invertible—that is, if and only if its determinant is 
zero. The next theorem formally states this.

The equation det(λI − A) = 0 is the characteristic equation of A. Moreover, 
when expanded to polynomial form, the polynomial

∣λI − A∣ = λn + cn−1λn−1 + .  .  . + c2λ2 + c1λ + c0

is the characteristic polynomial of A. So, the eigenvalues of an n × n matrix A 
correspond to the roots of the characteristic polynomial of A.

  Finding eigenvalues and eigenvectors

See LarsonLinearAlgebra.com for an interactive version of this type of example.

Find the eigenvalues and corresponding eigenvectors of A = [2
1

−12
−5].

soluTion

The characteristic polynomial of A is

∣λI − A∣ = ∣λ − 2
−1

12
λ + 5∣ = λ2 + 3λ − 10 + 12 = (λ + 1)(λ + 2).

So, the characteristic equation is (λ + 1)(λ + 2) = 0, which gives λ1 = −1 and 
λ2 = −2 as the eigenvalues of A. To find the corresponding eigenvectors, solve 
the homogeneous linear system represented by (λI − A)x = 0 twice: first for 
λ = λ1 = −1, and then for λ = λ2 = −2. For λ1 = −1, the coefficient matrix is

(−1)I − A = [−1 − 2
−1

12
−1 + 5] = [−3

−1
12
4]

which row reduces to [1
0

−4
0], showing that x1 − 4x2 = 0. Letting x2 = t, you can 

conclude that every eigenvector of λ1 is of the form

x = [x1

x2
] = [4t

t] = t[4
1], t ≠ 0.

For λ2 = −2, you have

(−2)I − A = [−2 − 2
−1

12
−2 + 5] = [−4

−1
12
3]  [1

0
−3

0].

Letting x2 = t, you can conclude that every eigenvector of λ2 is of the form

x = [x1

x2
] = [3t

t] = t[3
1], t ≠ 0. 

Theorem 7.2 eigenvalues and eigenvectors of a matrix

Let A be an n × n matrix.

1. An eigenvalue of A is a scalar λ such that det(λI − A) = 0.
2.  The eigenvectors of A corresponding to λ are the nonzero solutions of 

(λI − A)x = 0.

remarK
The characteristic polynomial 
of A is of degree n, so A 
can have at most n distinct 
eigenvalues. The Fundamental 
Theorem of Algebra states 
that an n th-degree polynomial 
has precisely n roots. These n 
roots, however, include both 
repeated and complex roots. In 
this chapter, you will focus on 
the real roots of characteristic 
polynomials—that is, real 
eigenvalues.

remarK
Check that the eigenvalues and 
eigenvectors in this example 
satisfy the equation Ax = λi x.
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The homogeneous systems that arise when you are finding eigenvectors will 
always row reduce to a matrix having at least one row of zeros, because the systems 
must have nontrivial solutions. A summary of the steps used to find the eigenvalues and 
corresponding eigenvectors of a matrix is below.

Finding the eigenvalues of an n × n matrix can involve the factorization of an  
nth-degree polynomial. Once you have found an eigenvalue, you can find the  
corresponding eigenvectors by any appropriate method, such as Gauss-Jordan elimination.

  Finding eigenvalues and eigenvectors

Find the eigenvalues and corresponding eigenvectors of

A = [
2
0
0

1
2
0

0
0
2].

What is the dimension of the eigenspace of each eigenvalue?

soluTion

The characteristic polynomial of A is

 ∣λI − A∣ = ∣λ − 2
0
0

−1
λ − 2

0

0
0

λ − 2∣
 = (λ − 2)3.

So, the characteristic equation is (λ − 2)3 = 0, and the only eigenvalue is λ = 2.  
To find the eigenvectors of λ = 2, solve the homogeneous linear system represented  
by (2I − A)x = 0.

2I − A = [
0
0
0

−1
0
0

0
0
0]

This implies that x2 = 0. Using the parameters s = x1 and t = x3, you can conclude that 
the eigenvectors of λ = 2 are of the form

x = [
x1

x2

x3
] = [

s
0
t] = s[

1
0
0] + t[

0
0
1], s and t not both zero.

λ = 2 has two linearly independent eigenvectors, so the dimension of its eigenspace  
is 2. 

Finding eigenvalues and eigenvectors

Let A be an n × n matrix.

1.  Form the characteristic equation ∣λI − A∣ = 0. It will be a polynomial 
equation of degree n in the variable λ.

2.  Find the real roots of the characteristic equation. These are the eigenvalues 
of A.

3.  For each eigenvalue λi, find the eigenvectors corresponding to λi by solving 
the homogeneous system (λi I − A)x = 0. This can require row reducing an 
n × n matrix. The reduced row-echelon form must have at least one row  
of zeros.
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If an eigenvalue λi occurs as a multiple root (k times) of the characteristic  
polynomial, then λi has multiplicity k. This implies that (λ − λi)k is a factor of the 
characteristic polynomial and (λ − λi)k+1 is not a factor of the characteristic polynomial. 
For instance, in Example 5, the eigenvalue λ = 2 has a multiplicity of 3.

Also note that in Example 5, the dimension of the eigenspace of λ = 2 is 2.  
In general, the multiplicity of an eigenvalue is greater than or equal to the dimension of 
its eigenspace. (In Exercise 63, you are asked to prove this.)

  Finding eigenvalues and eigenvectors

Find the eigenvalues of

A = [
1
0
1
1

0
1
0
0

0
5
2
0

0
−10

0
3
]

and find a basis for each of the corresponding eigenspaces.

soluTion

The characteristic polynomial of A is

 ∣λI − A∣ = ∣λ − 1
0

−1
−1

0
λ − 1

0
0

0
−5

λ − 2
0

0
10
0

λ − 3∣
 = (λ − 1)2(λ − 2)(λ − 3).

So, the characteristic equation is (λ − 1)2(λ − 2)(λ − 3) = 0 and the eigenvalues are 
λ1 = 1, λ2 = 2, and λ3 = 3. (Note that λ1 = 1 has a multiplicity of 2.)

You can find a basis for the eigenspace of λ1 = 1 as shown below.

(1)I − A = [
0
0

−1
−1

0
0
0
0

0
−5
−1

0

0
10
0

−2
]  [

1
0
0
0

0
0
0
0

0
1
0
0

2
−2

0
0
]

Letting s = x2 and t = x4 produces

x = [
x1

x2

x3

x4

] = [
0s −
s +

0s +
0s +

2t
0t
2t
t
] = s[

0
1
0
0
] + t[

−2
0
2
1
].

So, a basis for the eigenspace corresponding to λ1 = 1 is

B1 = {(0, 1, 0, 0), (−2, 0, 2, 1)}. Basis for λ1 = 1

For λ2 = 2 and λ3 = 3, use the same procedure to obtain the eigenspace bases

B2 = {(0, 5, 1, 0)} Basis for λ2 = 2

B3 = {(0, −5, 0, 1)}. Basis for λ3 = 3 

Finding eigenvalues and eigenvectors of matrices of order n ≥ 4 can be tedious. 
Moreover, using the procedure shown in Example 6 on a computer can introduce 
roundoff errors. Consequently, it can be more efficient to use numerical methods of 
approximating eigenvalues. One of these numerical methods appears in Section 10.3. 
Other methods appear in texts on advanced linear algebra and numerical analysis.

Technology
Use a graphing utility or a 
software program to find the 
eigenvalues and eigenvectors 
in Example 6. When finding the 
eigenvectors, the technology 
you use may produce a matrix 
in which the columns are scalar 
multiples of the eigenvectors 
you would obtain by hand  
calculations. The Technology 
guide at CengageBrain.com 
can help you use technology  
to find eigenvalues and  
eigenvectors.
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The next theorem states that the eigenvalues of an n × n triangular matrix are simply 
the entries on the main diagonal. The proof of this theorem follows from the fact that 
the determinant of a triangular matrix is the product of its main diagonal entries.

  Finding eigenvalues of Triangular
and Diagonal matrices

Find the eigenvalues of each matrix.

a. A = [
2

−1
5

0
1
3

0
0

−3]
b. A = [

−1
0
0
0
0

0
2
0
0
0

0
0
0
0
0

0
0
0

−4
0

0
0
0
0
3
]

soluTion

a. Without using Theorem 7.3,

∣λI − A∣ = ∣λ − 2
1

−5

0
λ − 1

−3

0
0

λ + 3∣ = (λ − 2)(λ − 1)(λ + 3).

  So, the eigenvalues are λ1 = 2, λ2 = 1, and λ3 = −3, which are the main diagonal 
entries of A.

b.  In this case, use Theorem 7.3 to conclude that the eigenvalues are the main diagonal 
entries λ1 = −1, λ2 = 2, λ3 = 0, λ4 = −4, and λ5 = 3. 

Theorem 7.3 eigenvalues of Triangular matrices

If A is an n × n triangular matrix, then its eigenvalues are the entries on its main 
diagonal.

linear
algebra
applieD

Eigenvalues and eigenvectors are useful for modeling 
real-life phenomena. For example, consider an experiment 
to determine the diffusion of a fluid from one flask to 
another through a permeable membrane and then out 
of the second flask. If researchers determine that the flow 
rate between flasks is twice the volume of fluid in the first 
flask and the flow rate out of the second flask is three times 
the volume of fluid in the second flask, then the system 
of linear differential equations below, where yi represents 
the volume of fluid in flask i, models this situation.

y1′ =
y2′ =

−2y1

2y1 − 3y2

In Section 7.4, you will use eigenvalues and eigenvectors 
to solve such systems of linear differential equations. For 
now, verify that the solution of this system is

y1 = C1e−2t

y2 = 2C1e−2t + C2e−3t.
Shi Yali/Shutterstock.com
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eigenvalues anD eigenvecTors  
oF linear TransFormaTions

This section began with definitions of eigenvalues and eigenvectors in terms of  
matrices. Eigenvalues and eigenvectors can also be defined in terms of linear  
transformations. A number λ is an eigenvalue of a linear transformation T: V → V 
when there is a nonzero vector x such that T(x) = λx. The vector x is an eigenvector 
of T  corresponding to λ, and the set of all eigenvectors of λ (with the zero vector) is 
the eigenspace of λ.

Consider T: R3 → R3, whose matrix relative to the standard basis is

A = [
1
3
0

3
1
0

0
0

−2]. Standard basis: 
B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

In Example 5 in Section 6.4, you found that the matrix of T  relative to the basis 
B′ = {(1, 1, 0), (1, −1, 0), (0, 0, 1)} is the diagonal matrix

A′ = [
4
0
0

0
−2

0

0
0

−2]. Nonstandard basis: 
B′ = {(1, 1, 0), (1, −1, 0), (0, 0, 1)}

For a linear transformation T, can you find a basis B′ whose corresponding matrix is 
diagonal? The next example illustrates the answer.

  Finding eigenvalues and eigenspaces

Find the eigenvalues and a basis for each corresponding eigenspace of

A = [
1
3
0

3
1
0

0
0

−2].

soluTion

 ∣λI − A∣ = ∣λ − 1
−3

0

−3
λ − 1

0

0
0

λ + 2∣
 = [(λ − 1)2 − 9](λ + 2)
 = (λ − 4)(λ + 2)2

so the eigenvalues of A are λ1 = 4 and λ2 = −2. Bases for the eigenspaces are
B1 = {(1, 1, 0)} and B2 = {(1, −1, 0), (0, 0, 1)}, respectively (verify these). 

Example 8 illustrates two results. If T: R3 → R3 is the linear transformation whose 
standard matrix is A, and B′ is a basis for R3 made up of the three linearly independent 
eigenvectors corresponding to the eigenvalues of A, then the matrix A′ for T  relative 
to the basis B′ is diagonal. Also, the main diagonal entries of the matrix A′ are the 
eigenvalues of A.

A′ = [
4
0
0

0
−2

0

0
0

−2] Nonstandard basis: 
B′ = {(1, 1, 0), (1, −1, 0), (0, 0, 1)}

      

 Eigenvalues of A  Eigenvectors of A

The next section discusses these results in more detail.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



356 Chapter 7 Eigenvalues and Eigenvectors

7.1 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

verifying eigenvalues and eigenvectors In Exercises 
1–6, verify that λi is an eigenvalue of A and that xi is a 
corresponding eigenvector.

 1. A = [2
0

0
−2],  

λ1 = 2, x1 = (1, 0)
λ2 = −2, x2 = (0, 1)

 2. A = [4
2

−5
−3],  

λ1 = −1, x1 = (1, 1)
λ2 = 2, x2 = (5, 2)

 3. A = [
2
0
0

3
−1

0

1
2
3],  

λ1 = 2, x1 = (1, 0, 0)
λ2 = −1, x2 = (1, −1, 0)
λ3 = 3, x3 = (5, 1, 2)

 4. A = [
−2

2
−1

2
1

−2

−3
−6

0],  
λ1 = 5, x1 = (1, 2, −1)
λ2 = −3, x2 = (−2, 1, 0)
λ3 = −3, x3 = (3, 0, 1)

 5. A = [
0
0
1

1
0
0

0
1
0],  λ1 = 1, x1 = (1, 1, 1)

 6. A = [
4
0
0

−1
2
0

3
1
3],  

λ1 = 4, x1 = (1, 0, 0)
λ2 = 2, x2 = (1, 2, 0)
λ3 = 3, x3 = (−2, 1, 1)

 7. Use A, λi, and xi from Exercise 1 to show that

 (a) A(cx1) = 2(cx1) for any real number c.

 (b) A(cx2) = −2(cx2) for any real number c.

 8. Use A, λi, and xi from Exercise 4 to show that

 (a) A(cx1) = 5(cx1) for any real number c.

 (b) A(cx2) = −3(cx2) for any real number c.

 (c) A(cx3) = −3(cx3) for any real number c.

Determining eigenvectors In Exercises 9–12,  
determine whether x is an eigenvector of A.

 9. A = [7
2

2
4] 

(a) x = (1, 2) 
(b) x = (2, 1) 
(c) x = (1, −2) 
(d) x = (−1, 0)

10. A = [−3
5

10
2]

 (a) x = (4, 4) 
 (b) x = (−8, 4) 
 (c) x = (−4, 8) 
 (d) x = (5, −3)

11. A = [
−1
−2

3

−1
0

−3

1
−2

1]
 (a) x = (2, −4, 6) 

 (b) x = (2, 0, 6) 
 (c) x = (2, 2, 0) 
 (d) x = (−1, 0, 1)

12.

 

A = [
1
0
1

0
−2
−2

5
4
9]

 (a) x = (1, 1, 0) 
 (b) x = (−5, 2, 1) 
 (c) x = (0, 0, 0)
 (d) x = (2√6 − 3, −2√6 + 6, 3)

Finding eigenspaces in R2 geometrically In Exercises 
13 and 14, use the method shown in Example 3 to find the 
eigenvalue(s) and corresponding eigenspace(s) of A.

13. A = [1
0

0
−1] 14. A = [1

0
k
1]

characteristic equation, eigenvalues, and eigenvectors 
In Exercises 15–28, find (a) the characteristic equation 
and (b) the eigenvalues (and corresponding eigenvectors) 
of the matrix.

15. [ 6
−2

−3
1] 16. [ 1

−2
−4

8]
17. [1

2
2
1] 18. [−2

1
4
1]

19. [1
1
2

−3
2

−1] 20. [
1
4
1
2

1
4

0]
21. [

2
0
0

−2
3

−1

3
−2

2] 22. [
3
0
0

2
0
2

1
2
0]

23. [
1

−2
−6

2
5
6

−2
−2
−3] 24. [

3
−3
−1

2
−4
−2

−3
9
5]

25. [
0

−4
0

−3
4
0

5
−10

4] 26. [
1

−2
3
2

−3
2

13
2

−9
2

5
2

−10

8
]

27. [
2
0
0
0

0
2
0
0

0
0
3
4

0
0
1
0
] 28. [

5
1
0
0

0
4
0
0

0
0
1
0

0
0
3
4
]

Finding eigenvalues In Exercises 29–40, use a  
software program or a graphing utility to find the  
eigenvalues of the matrix.

29. [−4
−2

5
3] 30. [2

3
3

−6]
31. [

1
2

−1
3

1
3

−1
3

 ] 32. [
1
2

−1
2

−1
2

−1
2
]

33. [
2
1
1

4
0

−4

2
1
5] 34. [

1
1
1

2
0

−1

−1
1
2]

35. [
3

−1
3

0

−1
2

−1
6

0

5

−1
4

4
] 36. [

1
2

−2

1

0
1
5

0

5
1
4

3
]
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37. [
1
2
3
4

1
2
3
4

2
4
6
8

3
6
9

12
] 38. [

1
4
0
0

1
4
0
0

0
0
1
2

0
0
1
2
]

39. [
1
0

−2
0

0
1
0
2

−1
0
2
0

1
1

−2
2
]

40. [
1

−1
−2

1

−3
4
0
0

3
−3

1
0

3
−3

1
0
]

eigenvalues of Triangular and Diagonal matrices In 
Exercises 41–44, find the eigenvalues of the triangular 
or diagonal matrix.

41. [
2
0
0

0
3
0

1
4
1] 42. [

−5
3
4

0
7

−2

0
0
3]

43. [
−6

0
0
0

0
5
0
0

0
0

−4
0

0
0
0

−4
] 44. [

1
2

0
0
0

0
5
4

0
0

0
0
0
0

0
0
0
3
4

]
eigenvalues and eigenvectors of linear 
Transformations In Exercises 45–48, consider the  
linear transformation T: Rn → Rn whose matrix A relative  
to the standard basis is given. Find (a) the eigenvalues of  
A, (b) a basis for each of the corresponding eigenspaces, 
and (c) the matrix A′ for T relative to the basis B′, where 
B′ is made up of the basis vectors found in part (b).

45. [2
1

−2
5] 46. [−8

1
16

−2]

47. [
0

−1
0

2
3
0

−1
1

−1] 48. [
3
2
5

1
4
5

4
0
6]

cayley-hamilton Theorem In Exercises 49–52,  
demonstrate the Cayley-Hamilton Theorem for the 
matrix A. The Cayley-Hamilton Theorem states that a 
matrix satisfies its characteristic equation. For example, 
the characteristic equation of

A = [1
2

−3
5]

is λ2 − 6λ + 11 = 0, and by the theorem you have 
A2 − 6A + 11I2 = O.

49. A = [ 5
−7

0
3] 50. A = [6

1
−1

5]

51. A = [
1
0
2

0
3
0

−4
1
1] 52. A = [

−3
−1

0

1
3
4

0
2
3]

53.  Perform each computational check on the eigenvalues 
found in Exercises 15–27 odd.

 (a)  The sum of the n eigenvalues equals the trace of the 
matrix. (Recall that the trace of a matrix is the sum 
of the main diagonal entries of the matrix.)

 (b) The product of the n eigenvalues equals ∣A∣.
  (When λ is an eigenvalue of multiplicity k, remember  

to use it k times in the sum or product of these  
checks.)

54.  Perform each computational check on the eigenvalues 
found in Exercises 16–28 even.

 (a)  The sum of the n eigenvalues equals the trace of the 
matrix. (Recall that the trace of a matrix is the sum 
of the main diagonal entries of the matrix.)

 (b) The product of the n eigenvalues equals ∣A∣.
  (When λ is an eigenvalue of multiplicity k, remember  

to use it k times in the sum or product of these  
checks.)

55.  Show that if A is an n × n matrix whose ith row is  
identical to the ith row of I, then 1 is an eigenvalue of A.

56.  proof Prove that λ = 0 is an eigenvalue of A if and 
only if A is singular.

57.  proof For an invertible matrix A, prove that A and 
A−1 have the same eigenvectors. How are the eigenvalues 
of A related to the eigenvalues of A−1?

58.  proof Prove that A and AT have the same eigenvalues. 
Are the eigenspaces the same?

59.  proof Prove that the constant term of the characteristic 
polynomial is ±∣A∣.

60. Define T: R2 → R2 by

 T(v) = projuv

 where u is a fixed vector in R2. Show that the eigenvalues  
 of A (the standard matrix of T ) are 0 and 1.

61.  guided proof Prove that a triangular matrix is  
nonsingular if and only if its eigenvalues are real and 
nonzero.

  Getting Started: This is an “if and only if” statement,  
so you must prove that the statement is true in both 
directions. Review Theorems 3.2 and 3.7.

 (i)  To prove the statement in one direction, assume 
that the triangular matrix A is nonsingular. Use 
your knowledge of nonsingular and triangular 
matrices and determinants to conclude that the 
entries on the main diagonal of A are nonzero.

 (ii)  A is triangular, so use Theorem 7.3 and part (i) to 
conclude that the eigenvalues are real and nonzero.

 (iii)  To prove the statement in the other direction, 
assume that the eigenvalues of the triangular 
matrix A are real and nonzero. Repeat parts (i) and 
(ii) in reverse order to prove that A is nonsingular.
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62.  guided proof Prove that if A2 = O, then 0 is the 
only eigenvalue of A.

  Getting Started: You need to show that if there exists 
a nonzero vector x and a real number λ such that 
Ax = λx, then if A2 = O, λ must be zero.

 (i) A2 = A ∙ A, so you can write A2x as A(Ax).
 (ii)  Use the fact that Ax = λx and the properties of 

matrix multiplication to show that A2x = λ2x.

 (iii) A2 is a zero matrix, so you can conclude that λ  
  must be zero.

63.  proof Prove that the multiplicity of an eigenvalue is 
greater than or equal to the dimension of its eigenspace.

65. When the eigenvalues of

A = [a
0

b
d]

  are λ1 = 0 and λ2 = 1, what are the possible values of 
a and d?

66. Show that

A = [ 0
−1

1
0]

 has no real eigenvalues.

True or False? In Exercises 67 and 68, determine 
whether each statement is true or false. If a statement 
is true, give a reason or cite an appropriate statement 
from the text. If a statement is false, provide an example 
that shows the statement is not true in all cases or cite an 
appropriate statement from the text.

67. (a)  The scalar λ is an eigenvalue of an n × n matrix 
A when there exists a vector x such that Ax = λx.

 (b)  To find the eigenvalue(s) of an n × n matrix A,  
you can solve the characteristic equation  
det(λI − A) = 0.

68. (a)  Geometrically, if λ is an eigenvalue of a matrix A  
and x is an eigenvector of A corresponding to 
λ, then multiplying x by A produces a vector λx  
parallel to x.

 (b)  If A is an n × n matrix with an eigenvalue λ, then 
the set of all eigenvectors of λ is a subspace of Rn.

Finding the Dimension of an eigenspace In  
Exercises 69–72, find the dimension of the eigenspace 
corresponding to the eigenvalue λ = 3.

69. A = [
3
0
0

0
3
0

0
0
3] 70. A = [

3
0
0

1
3
0

0
0
3]

71. A = [
3
0
0

1
3
0

0
1
3] 72. A = [

3
0
0

1
3
0

1
1
3]

73.  calculus Let T: C′[0, 1] → C[0, 1] be the linear  
transformation T( f) = f′. Show that λ = 1 is an  
eigenvalue of T  with corresponding eigenvector 
f(x) = ex.

74.  calculus For the linear transformation in Exercise 
73, find the eigenvalue corresponding to the eigenvector  
f(x) = e−2x.

75. Define T: P2 → P2 by

 T(a0 + a1x + a2x2) = (−3a1 + 5a2) +
  (−4a0 + 4a1 − 10a2)x + 4a2x

2.

  Find the eigenvalues and the eigenvectors of T  relative 
to the standard basis {1, x, x2}.

76. Define T: P2 → P2 by

 T(a0 + a1x + a2x
2) = (2a0 + a1 − a2) +

  (−a1 + 2a2)x − a2x
2.

  Find the eigenvalues and eigenvectors of T  relative to 
the standard basis {1, x, x2}.

77. Define T: M2,2 → M2,2 by

T([a
c

b
d]) = [ a − c + d

−2a + 2c − 2d
b + d

2b + 2d]
  Find the eigenvalues and eigenvectors of T  relative to 

the standard basis

B = {[1
0

0
0], [0

0
1
0], [0

1
0
0], [0

0
0
1]}.

78. Find all values of the angle θ for which the matrix

A = [cos θ  
sin θ  

−sin θ
cos θ]

 has real eigenvalues. Interpret your answer geometrically.

79.  What are the possible eigenvalues of an idempotent 
matrix? (Recall that a square matrix A is idempotent 
when A2 = A.)

80.  What are the possible eigenvalues of a nilpotent matrix? 
(Recall that a square matrix A is nilpotent when there 
exists a positive integer k such that Ak = 0.)

81.  proof Let A be an n × n matrix such that the sum 
of the entries in each row is a fixed constant r. Prove  
that r is an eigenvalue of A. Illustrate this result with 
an example.

64.  CAPSTONE An n × n matrix A has the  
characteristic equation

 ∣λI − A∣ = (λ + 2)(λ − 1)(λ − 3)2 = 0.

(a) What are the eigenvalues of A?

(b) What is the order of A? Explain.

(c) Is λI − A singular? Explain.

(d)  Is A singular? Explain. (Hint: Use the result of 
Exercise 56.)
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7.2 Diagonalization

  Find the eigenvalues of similar matrices, determine whether a matrix 
A is diagonalizable, and find a matrix P such that P −1AP is diagonal.

  Find, for a linear transformation T: V → V, a basis B for V such that 
the matrix for T relative to B is diagonal.

The DiagonalizaTion Problem

The preceding section discussed the eigenvalue problem. In this section, you will 
look at another classic problem in linear algebra called the diagonalization problem. 
Expressed in terms of matrices*, the problem is “for a square matrix A, does there exist 
an invertible matrix P such that P−1AP is diagonal?”

Recall from Section 6.4 that two square matrices A and B are similar when there 
exists an invertible matrix P such that B = P−1AP.

Matrices that are similar to diagonal matrices are called diagonalizable.

With this definition, the diagonalization problem can be stated as “which square 
matrices are diagonalizable?” Clearly, every diagonal matrix D is diagonalizable, 
because D = I−1DI, where I is the identity matrix. Example 1 shows another example 
of a diagonalizable matrix.

  a Diagonalizable matrix

The matrix from Example 5 in Section 6.4

A = [
1
3
0

3
1
0

0
0

−2]
is diagonalizable because

P = [
1
1
0

1
−1

0

0
0
1]

has the property that

P−1AP = [
4
0
0

0
−2

0

0
0

−2]. 

As suggested in Example 8 in the preceding section, the eigenvalue problem is  
related closely to the diagonalization problem. The next two theorems shed more 
light on this relationship. The first theorem tells you that similar matrices have the  
same eigenvalues.

* At the end of this section, the diagonalization problem will be expressed in terms of linear transformations.

Definition of a Diagonalizable matrix

An n × n matrix A is diagonalizable when A is similar to a diagonal matrix. That 
is, A is diagonalizable when there exists an invertible matrix P such that P−1AP 
is a diagonal matrix.
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Proof

A and B are similar, so there exists an invertible matrix P such that B = P−1AP. By the 
properties of determinants, it follows that

 ∣λI − B∣ = ∣λI − P−1AP∣
 = ∣P−1λIP − P−1AP∣
 = ∣P−1(λI − A)P∣
 = ∣P−1∣∣λI − A∣∣P∣
 = ∣P−1P∣∣λI − A∣
 = ∣λI − A∣.

This means that A and B have the same characteristic polynomial. So, they must have 
the same eigenvalues. 

  finding eigenvalues of Similar matrices

The matrices A and D are similar.

A = [
1

−1
−1

0
1

−2

0
1
4] and D = [

1
0
0

0
2
0

0
0
3]

Use Theorem 7.4 to find the eigenvalues of A.

SoluTion

D is a diagonal matrix, so its eigenvalues are the entries on its main diagonal—that  
is, λ1 = 1, λ2 = 2, and λ3 = 3. Matrices A and D are similar, so you know from 
Theorem 7.4 that A has the same eigenvalues. Check this by showing that the  
characteristic polynomial of A is ∣λI − A∣ = (λ − 1)(λ − 2)(λ − 3). 

The two diagonalizable matrices in Examples 1 and 2 provide a clue to the  
diagonalization problem. Each of these matrices has a set of three linearly independent 
eigenvectors. (See Example 3.) This is characteristic of diagonalizable matrices, as  
stated in Theorem 7.5.

Proof

First, assume A is diagonalizable. Then there exists an invertible matrix P such that 
P−1AP = D is diagonal. Letting the column vectors of P be p1, p2, .  .  . , pn, and the 
main diagonal entries of D be λ1, λ2, .  .  . , λn, produces

PD = [p1   p2  .  .  .  pn][
λ1

0

⋮
0

0
λ2

⋮
0

.  .  .

.  .  .

.  .  .

0
0

⋮
λn

] = [λ1p1    λ2p2  .  .  .  λnpn].

Theorem 7.5 Condition for Diagonalization

An n × n matrix A is diagonalizable if and only if it has n linearly independent 
eigenvectors.

Theorem 7.4 Similar matrices have the Same eigenvalues

If A and B are similar n × n matrices, then they have the same eigenvalues.

remarK
Check that A and D are similar 
by showing that they satisfy 
the matrix equation D = P−1AP, 
where

P = [
1
1
1

0
1
1

0
1
2].

In fact, the columns of P are 
eigenvectors of A corresponding 
to the eigenvalues 1, 2, and 3. 
(Verify this.)
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P−1AP = D, so AP = PD, which implies

[Ap1    Ap2  .  .  .  Apn] = [λ1p1   λ2p2  .  .  .  λnpn].

In other words, Api = λipi for each column vector pi. This means that the column  
vectors pi of P are eigenvectors of A. Moreover, P is invertible, so its column vectors 
are linearly independent. So, A has n linearly independent eigenvectors.

Conversely, assume A has n linearly independent eigenvectors p1, p2, .  .  . , pn 
with corresponding eigenvalues λ1, λ2, .  .  . , λn. Let P be the matrix whose columns 
are these n eigenvectors. That is, P = [p1    p2  .  .  .  pn ]. Each pi is an eigenvector of 
A, so you have Api = λipi and

AP = A[p1    p2  .  .  .  pn] = [λ1p1    λ2p2  .  .  .  λnpn].

The right-hand matrix in this equation can be written as the matrix product below.

[λ1p1   λ2p2  .  .  .  λnpn] = [p1    p2  .  .  .  pn][
λ1

0

⋮
0

0
λ2

⋮
0

.  .  .

.  .  .

.  .  .

0
0

⋮
λn

] = PD

Finally, the vectors p1, p2, .  .  . , pn are linearly independent, so P is invertible  
and you can write the equation AP = PD as P−1AP = D, which means that A is 
diagonalizable. 

A key result of this proof is the fact that for diagonalizable matrices, the columns 
of P consist of n linearly independent eigenvectors. Example 3 verifies this important 
property for the matrices in Examples 1 and 2.

  Diagonalizable matrices

a.  The matrix A in Example 1 has the eigenvalues and corresponding eigenvectors 
below.

λ1 = 4, p1 = [
1
1
0]; λ2 = −2, p2 = [

1
−1

0]; λ3 = −2, p3 = [
0
0
1]

The matrix P whose columns correspond to these eigenvectors is

P = [
1
1
0

1
−1

0

0
0
1].

Moreover, P is row-equivalent to the identity matrix, so the eigenvectors p1, p2, and 
p3 are linearly independent.

b.  The matrix A in Example 2 has the eigenvalues and corresponding eigenvectors 
below.

λ1 = 1, p1 = [
1
1
1]; λ2 = 2, p2 = [

0
1
1]; λ3 = 3, p3 = [

0
1
2]

The matrix P whose columns correspond to these eigenvectors is

P = [
1
1
1

0
1
1

0
1
2].

 Again, P is row-equivalent to the identity matrix, so the eigenvectors p1, p2, and p3 
are linearly independent. 
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The second part of the proof of Theorem 7.5 and Example 3 suggest the steps for 
diagonalizing a matrix listed below.

  Diagonalizing a matrix

Show that the matrix A is diagonalizable.

A = [
1
1

−3

−1
3
1

−1
1

−1]
Then find a matrix P such that P−1AP is diagonal.

SoluTion

The characteristic polynomial of A is ∣λI − A∣ = (λ − 2)(λ + 2)(λ − 3). (Verify this.) 
So, the eigenvalues of A are λ1 = 2, λ2 = −2, and λ3 = 3. From these eigenvalues, you 
obtain the reduced row-echelon forms and corresponding eigenvectors below.

 Eigenvector

 2I − A = [
1

−1
3

1
−1
−1

1
−1

3]  [
1
0
0

0
1
0

1
0
0] [

−1
0
1]

−2I − A = [
−3
−1

3

1
−5
−1

1
−1
−1]  [

1

0

0

0

1

0

−1
4
1
4

0
] [

1
−1

4]
 3I − A = [

2
−1

3

1
0

−1

1
−1

4]  [
1
0
0

0
1
0

1
−1

0] [
−1

1
1]

Form the matrix P whose columns are the eigenvectors just obtained.

P = [
−1

0
1

1
−1

4

−1
1
1]

This matrix is nonsingular (check this), which implies that the eigenvectors are linearly 
independent and A is diagonalizable. So, it follows that 

P−1AP = [
2
0
0

0
−2

0

0
0
3]. 

Steps for Diagonalizing a Square matrix

Let A be an n × n matrix.

1.  Find n linearly independent eigenvectors p1, p2, .  .  . , pn for A (if possible) 
with corresponding eigenvalues λ1, λ2, .  .  . , λn. If n linearly independent 
eigenvectors do not exist, then A is not diagonalizable.

2.  Let P be the n × n matrix whose columns consist of these eigenvectors. 
That is, P = [p1    p2  .  .  .  pn].

3.  The diagonal matrix D = P−1AP will have the eigenvalues λ1, λ2, .  .  . , λn 
on its main diagonal. Note that the order of the eigenvectors used to form  
P will determine the order in which the eigenvalues appear on the main 
diagonal of D.
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Diagonalizing a matrix

Show that the matrix A is diagonalizable.

A = [
1
0
1
1

0
1
0
0

0
5
2
0

0
−10

0
3
]

Then find a matrix P such that P−1AP is diagonal.

SoluTion

In Example 6 in Section 7.1, you found that the three eigenvalues of A are λ1 = 1, 
λ2 = 2, and λ3 = 3, and that they have the eigenvectors listed below.

λ1: [
0
1
0
0
], [

−2
0
2
1
]  λ2: [

0
5
1
0
]  λ3: [

0
−5

0
1
]

The matrix whose columns consist of these eigenvectors is

P = [
0
1
0
0

−2
0
2
1

0
5
1
0

0
−5

0
1
].

P is invertible (check this), so its column vectors form a linearly independent set. This 
means that A is diagonalizable, and

P−1AP = [
1
0
0
0

0
1
0
0

0
0
2
0

0
0
0
3
]. 

  a matrix That is not Diagonalizable

Show that the matrix A is not diagonalizable.

A = [1
0

2
1]

SoluTion

A is triangular, so the eigenvalues are the entries on the main diagonal. The only  
eigenvalue is λ = 1. The matrix (I − A) has the reduced row-echelon form below.

I − A = [0
0

−2
0]  [0

0
1
0]

This implies that x2 = 0, and letting x1 = t, you can write every eigenvector of A in 
the form

x = [x1

x2
] = [ t

0] = t[1
0].

So, A does not have two linearly independent eigenvectors, and you can conclude that 
A is not diagonalizable. 
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364 Chapter 7 Eigenvalues and Eigenvectors

For a square matrix A of order n to be diagonalizable, the sum of the dimensions of 
the eigenspaces must be equal to n. This can happen when A has n distinct eigenvalues. 
So, you have the next theorem.

Proof

Let λ1, λ2, .  .  . , λn be n distinct eigenvalues of A with corresponding eigenvectors x1, 
x2, .  .  . , xn. To begin, assume the set of eigenvectors is linearly dependent. Moreover, 
consider the eigenvectors to be ordered so that the first m eigenvectors are linearly 
independent, but the first m + 1 are linearly dependent, where m < n. Then xm+1 can 
be written as a linear combination of the first m eigenvectors:

xm+1 = c1x1 + c2x2 + .  .  . + cmxm Equation 1

where the ci’s are not all zero. Multiplication of both sides of Equation 1 by A
yields

Axm+1 = Ac1x1 + Ac2x2 + .  .  . + Acmxm.

Now Axi = λixi, i = 1, 2, .  .  . , m + 1, so you have

λm+1xm+1 = c1λ1x1 + c2λ2x2 + .  .  . + cmλmxm. Equation 2

Multiplication of Equation 1 by λm+1 yields

λm+1xm+1 = c1λm+1x1 + c2λm+1x2 + .  .  . + cmλm+1xm. Equation 3

Subtracting Equation 2 from Equation 3 produces

c1(λm+1 − λ1)x1 + c2(λm+1 − λ2)x2 + .  .  . + cm(λm+1 − λm)xm = 0

and, using the fact that the first m eigenvectors are linearly independent, all coefficients 
of this equation must be zero. That is,

c1(λm+1 − λ1) = c2(λm+1 − λ2) = .  .  . = cm(λm+1 − λm) = 0.

All the eigenvalues are distinct, so it follows that ci = 0, i = 1, 2, .  .  . , m. But this 
result contradicts our assumption that xm+1 can be written as a linear combination of 
the first m eigenvectors. So, the set of eigenvectors is linearly independent, and from 
Theorem 7.5, you can conclude that A is diagonalizable. 

  Determining Whether a
matrix is Diagonalizable

See LarsonLinearAlgebra.com for an interactive version of this type of example.

Determine whether the matrix A is diagonalizable.

A = [
1
0
0

−2
0
0

1
1

−3]
SoluTion

A is a triangular matrix, so its eigenvalues are the main diagonal entries λ1 = 1, λ2 = 0, 
and λ3 = −3. Moreover, these three values are distinct, so you can conclude from 
Theorem 7.6 that A is diagonalizable. 

Theorem 7.6 Sufficient Condition for Diagonalization

If an n × n matrix A has n distinct eigenvalues, then the corresponding 
eigenvectors are linearly independent and A is diagonalizable.

remarK
The condition in Theorem 7.6 is 
sufficient but not necessary for 
diagonalization, as demonstrated 
in Example 5. In other words, a 
diagonalizable matrix need not 
have distinct eigenvalues.
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DiagonalizaTion anD linear TranSformaTionS

So far in this section, the diagonalization problem has been in terms of matrices. 
In terms of linear transformations, the diagonalization problem can be stated as: For a 
linear transformation

T: V → V

does there exist a basis B for V such that the matrix for T  relative to B is diagonal? 
The answer is “yes” when the standard matrix for T  is diagonalizable.

  finding a basis

Let T: R3 → R3 be the linear transformation represented by

T(x1, x2, x3) = (x1 − x2 − x3, x1 + 3x2 + x3, −3x1 + x2 − x3).

If possible, find a basis B for R3 such that the matrix for T  relative to B is diagonal.

SoluTion

The standard matrix for T  is

A = [
1
1

−3

−1
3
1

−1
1

−1].

From Example 4, you know that A is diagonalizable. So, the three linearly independent 
eigenvectors found in Example 4 can be used to form the basis B. That is,

B = {(−1, 0, 1), (1, −1, 4), (−1, 1, 1)}.

The matrix for T  relative to this basis is

D = [
2
0
0

0
−2

0

0
0
3].

linear
algebra
aPPlieD

Genetics is the science of heredity. A mixture of chemistry 
and biology, genetics attempts to explain hereditary evolution 
and gene movement between generations based on the 
deoxyribonucleic acid (DNA) of a species. Research in the 
area of genetics called population genetics, which focuses 
on genetic structures of specific populations, is especially 
popular today. Such research has led to a better 
understanding of the types of genetic inheritance. For 
example, in humans, one type of genetic inheritance is called 
X-linked inheritance (or sex-linked inheritance), which refers 
to recessive genes on the X chromosome. Males have 
one X and one Y chromosome, and females have two 
X chromosomes. If a male has a defective gene on the 
X chromosome, then its corresponding trait will be expressed 
because there is not a normal gene on the Y chromosome 
to suppress its activity. With females, the trait will not be 
expressed unless it is present on both X chromosomes, 
which is rare. This is why inherited diseases or conditions 
are usually found in males, hence the term sex-linked 
inheritance. Some of these include hemophilia A, Duchenne 
muscular dystrophy, red-green color blindness, and male 
pattern baldness. Matrix eigenvalues and diagonalization 
can be useful for coming up with mathematical models to 
describe X-linked inheritance in a population.

Sergey Nivens/Shutterstock.com
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7.2 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

Diagonalizable matrices and eigenvalues In 
Exercises 1–6, (a) verify that A is diagonalizable by  
finding P−1AP, and (b) use the result of part (a) and 
Theorem 7.4 to find the eigenvalues of A. 

 1. A = [−11
−3

36
10], P = [−3

−1
−4
−1]

 2. A = [ 1
−1

3
5], P = [3

1
1
1]

 3. A = [3
2

−2
−2], P = [1

2
2
1]

 4. A = [4
2

−5
−3], P = [1

1
5
2]

 5. A = [
−1

0
4

1
3

−2

0
0
5], P = [

0
0
1

1
4
2

−3
0
2]

 6.  A = [
0.80
0.10
0.05
0.05

0.10
0.80
0.05
0.05

0.05
0.05
0.80
0.10

0.05
0.05
0.10
0.80

],

  P = [
1
1
1
1

−1
−1

1
1

0
0
1

−1

1
−1

0
0
]

Diagonalizing a matrix In Exercises 7–14, find (if  
possible) a nonsingular matrix P such that P−1AP is 
diagonal. Verify that P−1AP is a diagonal matrix with 
the eigenvalues on the main diagonal.

 7. A = [ 6
−2

−3
1]  8. A = [

1
4
1
2

1
4

0]
  (See Exercise 15,  (See Exercise 20, 

Section 7.1.)  Section 7.1.)

 9. A = [
2
0
0

−2
3

−1

3
−2

2] 10. A = [
3
0
0

2
0
2

1
2
0]

   (See Exercise 21,  (See Exercise 22, 
Section 7.1.)  Section 7.1.)

11. A = [
1

−2
−6

2
5
6

−2
−2
−3] 12. A = [

3
−3
−1

2
−4
−2

−3
9
5]

  (See Exercise 23,  (See Exercise 24, 
Section 7.1.)  Section 7.1.)

13. A = [
1
1
1

0
2
0

0
1
2] 14. A = [

2
4
0

0
4
4

0
0
4]

Showing That a matrix is not Diagonalizable  
In Exercises 15–22, show that the matrix is not  
diagonalizable.

15. [0
5

0
0] 16. [ 1

−2

1
2

−1]
17. [7

0
7
7] 18. [ 1

−2
0
1]

19. [
1
0
0

−2
1
0

1
4
2] 20. [

3
0
0

2
−2

0

−2
3

−2]
21. [

1
0

−2
0

0
1
0
2

−1
0
2
0

1
1

−2
2
]

 (See Exercise 39, Section 7.1.)

22. [
1

−1
−2

1

−3
4
0
0

3
−3

1
0

3
−3

1
0
]

 (See Exercise 40, Section 7.1.)

Determining a Sufficient Condition for Diagonalization 
In Exercises 23–26, find the eigenvalues of the  
matrix and determine whether there is a sufficient  
number of eigenvalues to guarantee that the matrix  
is diagonalizable by Theorem 7.6.

23. [1
1

1
1] 24. [2

5
0
2]

25. [
−3

3
1

−2
4
2

3
−9
−5] 26. [

4
0
0

3
1
0

−2
1

−2]
finding a basis In Exercises 27–30, find a basis B for 
the domain of T such that the matrix for T relative to B  
is diagonal.

27. T: R2 → R2: T(x, y) = (x + y, x + y)
28. T: R3 → R3:

 T(x, y, z) = (−2x + 2y − 3z, 2x + y − 6z, −x − 2y)
29. T: P1 → P1: T(a + bx) = a + (a + 2b)x
30. T: P2 → P2:

 T(c + bx + ax2) = (3c + a) + (2b + 3a)x + ax2

31.  Proof Let A be a diagonalizable n × n matrix and let 
P be an invertible n × n matrix such that B = P−1AP is 
the diagonal form of A. Prove that Ak = PBkP−1, where 
k is a positive integer.
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32.  Let λ1, λ2, . . . , λn be n distinct eigenvalues of an  
n × n matrix A. Use the result of Exercise 31 to find the 
eigenvalues of Ak.

finding a Power of a matrix In Exercises 33–36, use 
the result of Exercise 31 to find the power of A shown.

33. A = [ 10
−6

18
−11], A6 34. A = [1

2
3
0], A7

35. A = [
2
0
3

0
2
0

−2
−2
−3], A5

36. A = [
2

−2
−2

3
−5
−1

−2
0
4], A8

True or false? In Exercises 37 and 38, determine 
whether each statement is true or false. If a statement 
is true, give a reason or cite an appropriate statement 
from the text. If a statement is false, provide an example 
that shows the statement is not true in all cases or cite an 
appropriate statement from the text.

37. (a)  If A and B are similar n × n matrices, then they 
always have the same characteristic polynomial 
equation.

 (b)  The fact that an n × n matrix A has n distinct  
eigenvalues does not guarantee that A is  
diagonalizable.

38. (a)  If A is a diagonalizable matrix, then it has n linearly 
independent eigenvectors.

 (b)  If an n × n matrix A is diagonalizable, then it must 
have n distinct eigenvalues.

39.  Are the two matrices similar? If so, find a matrix P such 
that B = P−1AP.

A = [
1
0
0

0
2
0

0
0
3]  B = [

3
0
0

0
2
0

0
0
1]

40.  Calculus For a real number x, you can define ex by 
the series

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ .  .  . .

  In a similar way, for a square matrix X, you can define 
eX by the series

eX = I + X +
1
2!

X2 +
1
3!

X3 +
1
4!

X4 + .  .  . .

 Evaluate eX, where X is the square matrix shown.

(a) X = [1
0

0
1] (b) X = [1

1
0
0]

(c) X = [0
1

1
0] (d) X = [2

0
0

−2]

41.  Writing Can a matrix be similar to two different  
diagonal matrices? Explain.

42.  Proof Prove that if matrix A is diagonalizable, then 
AT is diagonalizable.

43.  Proof Prove that if matrix A is diagonalizable with n 
real eigenvalues λ1, λ2, . . . , λn, then ∣A∣ = λ1λ2 .  .  . λn.

44. Proof Prove that the matrix

A = [a
c

b
d]

  is diagonalizable when −4bc < (a − d)2 and is not 
diagonalizable when −4bc > (a − d)2.

45.  guided Proof Prove that if the eigenvalues of a  
diagonalizable matrix A are all ±1, then the matrix is 
equal to its inverse.

  Getting Started: To show that the matrix is equal to its 
inverse, use the fact that there exists an invertible matrix 
P such that D = P−1AP, where D is a diagonal matrix 
with ±1 along its main diagonal.

 (i)  Let D = P−1AP, where D is a diagonal matrix 
with ±1 along its main diagonal.

 (ii) Find A in terms of P, P−1, and D.

 (iii)  Use the properties of the inverse of a product of  
matrices and the fact that D is diagonal to expand 
to find A−1.

 (iv) Conclude that A−1 = A.

46.  guided Proof Prove that nonzero nilpotent matrices 
are not diagonalizable.

  Getting Started: From Exercise 80 in Section 7.1,  
you know that 0 is the only eigenvalue of the  
nilpotent matrix A. Show that it is impossible for A to  
be diagonalizable.

 (i)  Assume A is diagonalizable, so there exists an 
invertible matrix P such that P−1AP = D, where 
D is the zero matrix.

 (ii) Find A in terms of P, P−1, and D.

 (iii)  Find a contradiction and conclude that nonzero 
nilpotent matrices are not diagonalizable.

47.  Proof Prove that if A is a nonsingular diagonalizable 
matrix, then A−1 is also diagonalizable.

Showing That a matrix is not Diagonalizable In 
Exercises 49 and 50, show that the matrix is not  
diagonalizable.

49. [4
0

k
4], k ≠ 0 50. [0

k
0
0], k ≠ 0

48.  CAPSTONE Explain how to determine 
whether an n × n matrix A is diagonalizable  
using (a) similar matrices, (b) eigenvectors, and  
(c) distinct eigenvalues.
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7.3 Symmetric Matrices and orthogonal Diagonalization

 Recognize, and apply properties of, symmetric matrices.

 Recognize, and apply properties of, orthogonal matrices.

Find an orthogonal matrix P that orthogonally diagonalizes 
a symmetric matrix A.

SYMMEtrIc MatrIcES

For most matrices, you must go through much of the diagonalization process before 
determining whether diagonalization is possible. One exception is with a triangular 
matrix that has distinct entries on the main diagonal. Such a matrix can be recognized as 
diagonalizable by inspection. In this section, you will study another type of matrix that 
is guaranteed to be diagonalizable: a symmetric matrix. Recall the definition below.

  Symmetric Matrices and
nonsymmetric Matrices

The matrices A and B are symmetric, but the matrix C is not.

A = [
0
1

−2

1
3
0

−2
0
5]  B = [4

3
3
1]  C = [

3
1
1

2
−4

0

1
0
5] 

Nonsymmetric matrices have properties that are not exhibited by symmetric 
matrices, as listed below.

1. A nonsymmetric matrix may not be diagonalizable.

2.  A nonsymmetric matrix can have eigenvalues that are not real. For example, 
the matrix

A = [0
1

−1
0]

has a characteristic equation of λ2 + 1 = 0. So, its eigenvalues are the imaginary 
numbers λ1 = i and λ2 = −i.

3.  For a nonsymmetric matrix, the number of linearly independent eigenvectors 
corresponding to an eigenvalue can be less than the multiplicity of the eigenvalue. 
(See Example 6, Section 7.2.)

Theorem 7.7 lists properties of symmetric matrics.

Definition of a Symmetric Matrix

A square matrix A is symmetric when it is equal to its transpose: A = AT.

thEorEM 7.7 properties of Symmetric Matrices

If A is an n × n symmetric matrix, then the properties listed below are true.

1. A is diagonalizable.
2. All eigenvalues of A are real.
3.  If λ is an eigenvalue of A with multiplicity k, then λ has k linearly 

independent eigenvectors. That is, the eigenspace of λ has dimension k.

rEMarK
Theorem 7.7 is called the real 
Spectral theorem, and the set 
of eigenvalues of A is called 
the spectrum of A.

DISCOVERY
1.  Pick an arbitrary 

nonsymmetric square 
matrix and calculate its 
eigenvalues.

2.  Can you find a 
nonsymmetric square 
matrix for which the 
eigenvalues are not real?

3.  Now pick an arbitrary 
symmetric matrix and 
calculate its eigenvalues.

4.  Can you find a 
symmetric matrix for 
which the eigenvalues 
are not real?

5.  What can you conclude 
about the eigenvalues 
of a symmetric matrix?

See LarsonLinearAlgebra.com 
for an interactive version 
of this type of exercise.
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A proof of Theorem 7.7 is beyond the scope of this text. The next example proves 
that every 2 × 2 symmetric matrix is diagonalizable.

  Every 2 × 2 Symmetric Matrix  
Is Diagonalizable

Prove that a symmetric matrix

A = [a
c

c
b]

is diagonalizable.

SolutIon

The characteristic polynomial of A is

 ∣λI − A∣ = ∣λ − a
−c

−c
λ − b∣

 = λ2 − (a + b)λ + ab − c2.

As a quadratic in λ, this polynomial has a discriminant of

 (a + b)2 − 4(ab − c2) = a2 + 2ab + b2 − 4ab + 4c2

 = a2 − 2ab + b2 + 4c2

 = (a − b)2 + 4c2.

This discriminant is the sum of two squares, so it must be either zero or positive.  
If (a − b)2 + 4c2 = 0, then a = b and c = 0, so A is already diagonal. That is,

A = [a
0

0
a].

On the other hand, if (a − b)2 + 4c2 > 0, then by the Quadratic Formula the  
characteristic polynomial of A has two distinct real roots, which means that A has two 
distinct real eigenvalues. So, A is diagonalizable in this case as well. 

  Dimensions of the Eigenspaces 
of a Symmetric Matrix

Find the eigenvalues of the symmetric matrix

A = [
1

−2
0
0

−2
1
0
0

0
0
1

−2

0
0

−2
1
]

and determine the dimensions of the corresponding eigenspaces.

SolutIon

The characteristic polynomial of A is

∣λI − A∣ = ∣λ − 1
2
0
0

2
λ − 1

0
0

0
0

λ − 1
2

0
0
2

λ − 1∣ = (λ + 1)2(λ − 3)2.

So, the eigenvalues of A are λ1 = −1 and λ2 = 3. Each of these eigenvalues has  
a multiplicity of 2, so you know from Theorem 7.7 that the corresponding  
eigenspaces also have dimension 2. Specifically, the eigenspace of λ1 = −1 has a  
basis of B1 = {(1, 1, 0, 0), (0, 0, 1, 1)} and the eigenspace of λ2 = 3 has a basis of 
B2 = {(1, −1, 0, 0), (0, 0, 1, −1)}. (Verify these.) 
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orthogonal MatrIcES

To diagonalize a square matrix A, you need to find an invertible matrix P such that 
P−1AP is diagonal. For symmetric matrices, the matrix P can be chosen to have the  
special property that P−1 = PT. This unusual matrix property is defined below.

 orthogonal Matrices

a. The matrix P = [ 0
−1

1
0] is orthogonal because P−1 = PT = [0

1
−1

0].

b. The matrix

P = [
3
5

0
4
5

0

1

0

−4
5

0
3
5
]

is orthogonal because

P−1 = PT = [
3
5

0

−4
5

0

1

0

4
5

0
3
5
]. 

In Example 4, the columns of the matrices P form orthonormal sets in R2 and R3, 
respectively (verify this), which suggests the next theorem.

proof

To prove the theorem in one direction, assume that the column vectors of P form an 
orthonormal set:

 P = [p1    p2  .  .  .  pn]

 = [
p11

p21

⋮
pn1

p12

p22

⋮
pn2

.  .  .

.  .  .

.  .  .

p1n

p2n

⋮
pnn

].

Then the product PTP has the form

PTP = [
p1 ∙ p1

p2 ∙ p1

⋮
pn ∙ p1

p1 ∙ p2

p2 ∙ p2

⋮
pn ∙ p2

.  .  .

.  .  .

.  .  .

p1 ∙ pn

p2 ∙ pn

⋮
pn ∙ pn

].

Definition of an orthogonal Matrix

A square matrix P is orthogonal when it is invertible and P−1 = PT.

thEorEM 7.8 property of orthogonal Matrices

An n × n matrix P is orthogonal if and only if its column vectors form an  
orthonormal set.
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The set

{p1, p2, .  .  . , pn}

is orthonormal, so you have

pi ∙ pj = 0, i ≠ j and pi ∙ pi = �pi�2 = 1.

So, the matrix composed of dot products has the form

PTP = [
1
0

⋮
0

0
1

⋮
0

.  .  .

.  .  .

.  .  .

0
0

⋮
1
] = In.

This implies that PT = P−1, so P is orthogonal.
Conversely, if P is orthogonal, then reverse the steps above to verify that the  

column vectors of P form an orthonormal set. 

 an orthogonal Matrix

Show that

P = [
1
3

−
2
√5

−
2

3√5

2
3

1
√5

−
4

3√5

2
3

0

5
3√5

]
is orthogonal by showing that PT = P−1. Then show that the column vectors of P form 
an orthonormal set.

SolutIon

PPT = [
1
3

−
2
√5

−
2

3√5

2
3

1
√5

−
4

3√5

2
3

0

5
3√5

] [
1
3
2
3
2
3

−
2
√5
1
√5

0

−
2

3√5

−
4

3√5
5

3√5
] = I3

so it follows that PT = P−1. Moreover, letting

p1 = [
1
3

−
2
√5

−
2

3√5
], p2 = [

2
3

1
√5

−
4

3√5
], and p3 = [

2
3
0

5
3√5

]
produces

p1 ∙ p2 = p1 ∙ p3 = p2 ∙ p3 = 0

and

�p1� = �p2� = �p3� = 1.

So, {p1, p2, p3} is an orthonormal set, as guaranteed by Theorem 7.8. 
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It can be shown that for a symmetric matrix, the eigenvectors corresponding to  
distinct eigenvalues are orthogonal. The next theorem states this property.

proof

Let λ1 and λ2 be distinct eigenvalues of A with corresponding eigenvectors x1 and x2. 
So, Ax1 = λ1x1 and Ax2 = λ2x2. To prove the theorem, use the matrix form of the dot 
product, x1 ∙ x2 = xT

1x2. (See Section 5.1.) Now you can write

 λ1(x1 ∙ x2) = (λ1x1) ∙ x2

 = (Ax1) ∙ x2

 = (Ax1)Tx2

 = (xT
1AT )x2

 = (xT
1A)x2  A is symmetric, so A = AT.

 = xT
1(Ax2)

 = xT
1(λ2x2)

 = x1 ∙ (λ2x2)
 = λ2(x1 ∙ x2).

This implies that (λ1 − λ2)(x1 ∙ x2) = 0. Also, λ1 ≠ λ2, so it follows that x1 ∙ x2 = 0, 
which means that x1 and x2 are orthogonal. 

 Eigenvectors of a Symmetric Matrix

Show that any two eigenvectors of

A = [3
1

1
3]

corresponding to distinct eigenvalues are orthogonal.

SolutIon

The characteristic polynomial of A is

∣λI − A∣ = ∣λ − 3
−1

−1
λ − 3∣ = (λ − 2)(λ − 4)

which implies that the eigenvalues of A are λ1 = 2 and λ2 = 4. Verify that every  
eigenvector corresponding to λ1 = 2 is of the form

x1 = [ s
−s], s ≠ 0

and every eigenvector corresponding to λ2 = 4 is of the form

x2 = [t
t], t ≠ 0.

So,

x1 ∙ x2 = st − st = 0

which means that x1 and x2 are orthogonal. 

thEorEM 7.9 property of Symmetric Matrices

Let A be an n × n symmetric matrix. If λ1 and λ2 are distinct eigenvalues of A, 
then their corresponding eigenvectors x1 and x2 are orthogonal.
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orthogonal DIagonalIzatIon

A matrix A is orthogonally diagonalizable when there exists an orthogonal matrix P 
such that P−1AP = D is diagonal. The important theorem below states that the set of 
orthogonally diagonalizable matrices is precisely the set of symmetric matrices.

proof

The proof of the theorem in one direction is fairly straightforward. That is, if you 
assume A is orthogonally diagonalizable, then there exists an orthogonal matrix P such 
that D = P−1AP is diagonal. Moreover, P−1 = PT, so you have

 A = PDP−1

 = PDPT

which implies that

 AT = (PDPT)T

 = (PT)TDTPT

 = PDPT

 = A.

So, A is symmetric.
The proof of the theorem in the other direction is more involved, but it is important 

because it is constructive. Assume A is symmetric. If A has an eigenvalue λ of  
multiplicity k, then by Theorem 7.7, λ has k linearly independent eigenvectors. Through 
the Gram-Schmidt orthonormalization process, use this set of k vectors to form an 
orthonormal basis of eigenvectors for the eigenspace corresponding to λ. Repeat this 
procedure for each eigenvalue of A. The collection of all resulting eigenvectors is 
orthogonal by Theorem 7.9, and you know from the orthonormalization process that the 
collection is also orthonormal. Now let P be the matrix whose columns consist of these 
n orthonormal eigenvectors. By Theorem 7.8, P is an orthogonal matrix. Finally, by 
Theorem 7.5, P−1AP is diagonal. So, A is orthogonally diagonalizable. 

  Determining Whether a Matrix 
Is orthogonally Diagonalizable

Which matrices are orthogonally diagonalizable?

A1 = [
1
1
1

1
0
1

1
1
1] A2 = [

5
2

−1

2
1
8

1
8
0]

A3 = [3
2

2
0

0
1] A4 = [0

0
0

−2]
SolutIon

By Theorem 7.10, the orthogonally diagonalizable matrices are the symmetric ones:  
A1 and A4. 

As mentioned above, the second part of the proof of Theorem 7.10 is constructive. 
That is, it gives you steps to follow to diagonalize a symmetric matrix orthogonally.  
A summary of these steps is on the next page.

thEorEM 7.10 fundamental theorem of Symmetric Matrices

Let A be an n × n matrix. Then A is orthogonally diagonalizable (and has real 
eigenvalues) if and only if A is symmetric.
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 orthogonal Diagonalization

Find a matrix P that orthogonally diagonalizes A = [−2
2

2
1].

SolutIon

1. The characteristic polynomial of A is

∣λI − A∣ = ∣λ + 2
−2

−2
λ − 1∣ = (λ + 3)(λ − 2).

So the eigenvalues are λ1 = −3 and λ2 = 2.

2.  For each eigenvalue, find an eigenvector by converting the matrix λI − A to reduced 
row-echelon form.

 Eigenvector

−3I − A = [−1
−2

−2
−4]  [1

0
2
0]  [−2

1]
2I − A = [ 4

−2
−2

1]  [1

0

−1
2

0]  [1
2]

The eigenvectors (−2, 1) and (1, 2) form an orthogonal basis for R2. Normalize 
these eigenvectors to produce an orthonormal basis.

p1 =
(−2, 1)

�(−2, 1)� = (−
2
√5

, 
1
√5)  p2 =

(1, 2)
�(1, 2)� = ( 1

√5
, 

2
√5)

3. Each eigenvalue has a multiplicity of 1, so go directly to step 4.

4. Using p1 and p2 as column vectors, construct the matrix P.

P = [−
2
√5
1
√5

1
√5
2
√5

]
Verify that P orthogonally diagonalizes A by finding P−1AP = PTAP.

PTAP = [−
2
√5
1
√5

1
√5
2
√5

] [−2
2

2
1][−

2
√5
1
√5

1
√5
2
√5

] = [−3
0

0
2] 

orthogonal Diagonalization of a Symmetric Matrix

Let A be an n × n symmetric matrix.

1. Find all eigenvalues of A and determine the multiplicity of each.
2.  For each eigenvalue of multiplicity 1, find a unit eigenvector. (Find any 

eigenvector and then normalize it.)
3.  For each eigenvalue of multiplicity k ≥ 2, find a set of k linearly independent 

eigenvectors. (You know from Theorem 7.7 that this is possible.) If this set is 
not orthonormal, then apply the Gram-Schmidt orthonormalization process. 

4.  The results of Steps 2 and 3 produce an orthonormal set of n eigenvectors.  
Use these eigenvectors to form the columns of P. The matrix 
P−1AP = PTAP = D will be diagonal. (The main diagonal entries of D  
are the eigenvalues of A.)
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 orthogonal Diagonalization

See LarsonLinearAlgebra.com for an interactive version of this type of example.

Find a matrix P that orthogonally diagonalizes A = [
2
2

−2

2
−1

4

−2
4

−1].

SolutIon

1.  The characteristic polynomial of A, ∣λI − A∣ = (λ + 6)(λ − 3)2, yields the 
eigenvalues λ1 = −6 and λ2 = 3. The eigenvalue λ1 has a multiplicity of 1 and 
the eigenvalue λ2 has a multiplicity of 2.

2. An eigenvector for λ1 is v1 = (1, −2, 2), which normalizes to 

u1 =
v1

�v1�
= (1

3
, −

2
3

, 
2
3).

3.  Two eigenvectors for λ2 are v2 = (2, 1, 0) and v3 = (−2, 0, 1). Note that v1 is 
orthogonal to v2 and v3 by Theorem 7.9. The eigenvectors v2 and v3, however, are 
not orthogonal to each other. To find two orthonormal eigenvectors for λ2, use the 
Gram-Schmidt process as shown below.

w2 = v2 = (2, 1, 0)

w3 = v3 − ( v3 ∙ w2

w2 ∙ w2
)w2 = (−2

5
,

4
5

, 1)
These vectors normalize to

u2 =
w2

�w2�
= ( 2

√5
,

1

√5
, 0)

u3 =
w3

�w3�
= (−

2
3√5

, 
4

3√5
, 

5
3√5).

4. The matrix P has u1, u2, and u3 as its column vectors.

P = [
1
3

−
2
3
2
3

2
√5
1
√5

0

−
2

3√5
4

3√5
5

3√5
]

A check shows that P−1AP = PTAP = [
−6

0
0

0
3
0

0
0
3].

lInEar
algEBra
applIED

The Hessian matrix is a symmetric matrix that can be helpful 
in finding relative maxima and minima of functions of several 
variables. For a function f of two variables x and y—that is, a 
surface in R3—the Hessian matrix has the form

[fxx

fyx

fxy

fyy
].

The determinant of this matrix, evaluated at a point for 
which fx and fy are zero, is the expression used in the 
Second Partials Test for relative extrema.

Tacu Alexei/Shutterstock.com
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7.3 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

Determining Whether a Matrix Is Symmetric In 
Exercises 1 and 2, determine whether the matrix is  
symmetric.

 1. [
4
3
1

−2
1
2

1
2
1]  2. [

2
0
3
5

0
11
0

−2

3
0
5
0

5
−2

0
1
]

proof In Exercises 3–6, prove that the symmetric 
matrix is diagonalizable.

 3. A = [
0
0
a

0
a
0

a
0
0]  4. A = [

0
a
0

a
0
a

0
a
0]

 5. A = [
a
0
a

0
a
0

a
0
a]  6. A = [

a
a
a

a
a
a

a
a
a]

finding Eigenvalues and Dimensions of 
Eigenspaces In Exercises 7–18, find the eigenvalues 
of the symmetric matrix. For each eigenvalue, find the 
dimension of the corresponding eigenspace.

 7. [2
1

1
2]  8. [3

0
0
3]

 9. [
3
0
0

0
2
0

0
0
2] 10. [

2
1
1

1
2
1

1
1
2]

11. [
0
2
2

2
0
2

2
2
0] 12. [

0
4
4

4
2
0

4
0

−2]
13. [

0
1
1

1
0
1

1
1
1] 14. [

2
−1
−1

−1
2

−1

−1
−1

2]
15. [

3
0
0
0

0
3
0
0

0
0
3
5

0
0
5
3
] 16. [

−1
2
0
0

2
−1

0
0

0
0

−1
2

0
0
2

−1
]

17. [
2

−1
0
0
0

−1
2
0
0
0

0
0
2
0
0

0
0
0
2
0

0
0
0
0
2
]

18. [
1

−1
0
0
0

−1
1
0
0
0

0
0
1
0
0

0
0
0
1

−1

0
0
0

−1
1
]

Determining Whether a Matrix Is orthogonal In 
Exercises 19–32, determine whether the matrix is 
orthogonal. If the matrix is orthogonal, then show that 
the column vectors of the matrix form an orthonormal set.

19. [
√2
2

−
√2
2

√2
2
√2
2

] 20. [
4
9
4
9

−
4
9
3
9
]

21. [−0.936      
0.352      

−0.352
−0.936] 22. [

1
2

   

−
√3
2

√3
2
1
2

  ]
23. [

0
0
1

0
1
0

0
0
1] 24. [

1
0
0

0
1
0

0
0
1]

25. [
2
3
2
3
1
3

−2
3
1
3
2
3

1
3

−2
3
2
3

] 26. [−4
5

0
3
5

0
1
0

3
5

0
4
5
]

27. [
−4

0
3

0
1
0

3
0
4] 28. [

4
−1

1

−1
0
4

−4
−17
−1]

29. [
√2
2

      

0      

√2
2

      

−
√6
6

   

√6
3

   

√6
6

   

√3
3
√3
3

−
√3
3
]

30. [
√2
3

       

 0       

−
√2
6

       

0   

2√5
5

   

−
√5
5

   

√5
2

0

1
2
]

31. [
1
8

0
0

3
8√7

0
1
0
0

0
0
1
0

3
8√7

0
0
1
8

]
32. [

1
10√10

0
0

3
10√10

0
0
1
0

0
1
0
0

− 3
10√10

0
0

1
10√10

]
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Eigenvectors of a Symmetric Matrix In Exercises 
33–38, show that any two eigenvectors of the symmetric  
matrix corresponding to distinct eigenvalues are  
orthogonal.

33. [3
3

3
3] 34. [−1

−2
−2

2]

35. [
1
0
0

0
1
0

0
0
2] 36. [

3
0
0

0
−3

0

0
0
2]

37. [
0

√3
0

√3
0

−1

0
−1

0] 38. [
1
0
1

0
1
0

1
0

−1]
orthogonally Diagonalizable Matrices In Exercises 
39–42, determine whether the matrix is orthogonally 
diagonalizable.

39. [4
0

5
1] 40. [

3
−2
−3

2
−1

2

−3
2
3]

41. [
5

−3
8

−3
−3
−3

8
−3

8] 42. [
0
1
0

−1

1
0

−1
0

0
−1

0
−1

−1
0

−1
0
]

orthogonal Diagonalization In Exercises 43–52, find 
a matrix P such that PTAP orthogonally diagonalizes A. 
Verify that PTAP gives the correct diagonal form.

43. A = [1
1

1
1] 44. A = [4

2
2
4]

45. A = [ 2

√2

√2

1] 46. A = [
0
1
1

1
0
1

1
1
0]

47. A = [
0

10
10

10
5
0

10
0

−5] 48. A = [
0
3
0

3
0
4

0
4
0]

49. A = [
1

−1
2

−1
1
2

2
2
2]

50. A = [
−2

2
4

2
−2

4

4
4
4]

51. A = [
4
2
0
0

2
4
0
0

0
0
4
2

0
0
2
4
]

52. A = [
1
1
0
0

1
1
0
0

0
0
1
1

0
0
1
1
]

true or false? In Exercises 53 and 54, determine 
whether each statement is true or false. If a statement 
is true, give a reason or cite an appropriate statement 
from the text. If a statement is false, provide an example 
that shows the statement is not true in all cases or cite an 
appropriate statement from the text.

53. (a)  Let A be an n × n matrix. Then A is symmetric if 
and only if A is orthogonally diagonalizable.

 (b)  The eigenvectors corresponding to distinct  
eigenvalues are orthogonal for symmetric matrices.

54. (a)  A square matrix P is orthogonal when it is  
invertible—that is, when P−1 = PT.

 (b)  If A is an n × n symmetric matrix, then A has real 
eigenvalues.

55.  proof Prove that if A and B are n × n orthogonal  
matrices, then AB and BA are orthogonal.

56.  proof Prove that if a symmetric matrix A has only one 
eigenvalue λ, then A = λI.

57.  proof Prove that if A is an orthogonal matrix, then so 
are AT and A−1.

58. CAPSTONE Consider the matrix below.

 A = [
−1

0
−1

0
1

0
1
0

−1
0

−1
0
1
0

−1

0
−1

0
−1

0

1
0

−1
0

−1
]

(a) Is A symmetric? Explain.

(b) Is A diagonalizable? Explain.

(c) Are the eigenvalues of A real? Explain.

(d)  The eigenvalues of A are distinct. What are the 
dimensions of the corresponding eigenspaces? 
Explain.

(e) Is A orthogonal? Explain.

(f)  For the eigenvalues of A, are the corresponding 
eigenvectors orthogonal? Explain.

(g) Is A orthogonally diagonalizable? Explain.

59.  proof Prove that the matrix below is orthogonal for  
any value of θ.

[
cos θ
sin θ

0

−sin θ
cos θ

0

0
0
1]

60.  Find ATA and AAT for the matrix below. What do you 
observe?

A = [1
4

−3
−6

2
1]
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7.4 Applications of Eigenvalues and Eigenvectors

  Model population growth using an age transition matrix and an 
age distribution vector, and find a stable age distribution vector.

  Use a matrix equation to solve a system of first-order linear  
differential equations.

  Find the matrix of a quadratic form and use the Principal Axes 
Theorem to perform a rotation of axes for a conic and a  
quadric surface.

 Solve a constrained optimization problem.

PoPulation Growth

Matrices can be used to form models for population growth. The first step in this  
process is to group the population into age classes of equal duration. For example, if 
the maximum life span of a member is M years, then the n intervals below represent 
the age classes.

[0, 
M
n ) First age class

[M
n

, 
2M
n ) Second age class

  ⋮ ⋮

[(n − 1)M
n

, M] nth age class

The age distribution vector x represents the number of population members in each 
age class, where

x = [
x1

x2

⋮
xn

]. 

Number in first age class

Number in second age class

 ⋮
Number in nth age class

Over a period of M�n years, the probability that a member of the ith age class will  
survive to become a member of the (i + 1)th age class is pi, where

0 ≤ pi ≤ 1, i = 1, 2, .  .  . , n − 1.

The average number of offspring produced by a member of the ith age class is bi, where 
0 ≤ bi, i = 1, 2, .  .  . , n. These numbers can be written in matrix form, as shown 
below.

L = [
b1

p1

0

⋮
0

b2

0
p2

⋮
0

.  .  .

.  .  .

.  .  .

.  .  .

bn−1

0
0

⋮
pn−1

bn

0
0

⋮
0
]

Multiplying this age transition matrix by the age distribution vector for a specific time 
period produces the age distribution vector for the next time period. That is,

Lxj = xj+1.

Example 1 illustrates this procedure.

rEMarK
Recall from Section 6.4 that the 
age transition matrix L is also  
called a leslie matrix after 
mathematician Patrick H. Leslie.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 7.4 Applications of Eigenvalues and Eigenvectors 379

 
a Population Growth Model

A population of rabbits has the characteristics below.
a.  Half of the rabbits survive their first year. Of those, half survive their second year. 

The maximum life span is 3 years.
b.  During the first year, the rabbits produce no offspring. The average number of  

offspring is 6 during the second year and 8 during the third year.
The population now consists of 24 rabbits in the first age class, 24 in the second,  
and 20 in the third. How many rabbits will there be in each age class in 1 year?

solution

The current age distribution vector is

x1 = [
24
24
20] 

0 ≤ age < 1

1 ≤ age < 2

2 ≤ age ≤ 3

and the age transition matrix is

L = [
0

0.5
0

6
0

0.5

8
0
0].

After 1 year, the age distribution vector will be

x2 = Lx1 = [
0

0.5
0

6
0

0.5

8
0
0] [

24
24
20] = [

304
12
12]. 

0 ≤ age < 1

1 ≤ age < 2

2 ≤ age ≤ 3

 

 Finding a stable age Distribution Vector

Find a stable age distribution vector for the population in Example 1.

solution

To solve this problem, find an eigenvalue λ and a corresponding eigenvector x such that 
Lx = λx. The characteristic polynomial of L is

∣λI − L∣ = (λ + 1)2(λ − 2)

(check this), which implies that the eigenvalues are −1 and 2. Choosing the positive 
value, let λ = 2. Verify that the corresponding eigenvectors are of the form

x = [
x1

x2

x3
] = [

16t
4t
t] = t[

16
4
1].

For example, if t = 2, then the initial age distribution vector is

x1 = [
32
8
2] 

0 ≤ age < 1

1 ≤ age < 2

2 ≤ age ≤ 3

and the age distribution vector for the next year is

x2 = Lx1 = [
0

0.5
0

6
0

0.5

8
0
0][

32
8
2] = [

64
16
4]. 

0 ≤ age < 1

1 ≤ age < 2

2 ≤ age ≤ 3

Notice that the ratio of the three age classes is still 16 : 4 : 1, and so the percent of 
the population in each age class remains the same. 

rEMarK
In Example 1, verify that  
the rabbit population after  
2 years is

x3 = Lx2 = [
168
152

6].
Notice from the age distribution 
vectors x1, x2, and x3 that the 
percent of rabbits in each of 
the three age classes changes 
each year. To obtain a stable 
growth pattern, one in which 
the percent in each age class 
remains the same each year, 
the (n + 1)th age distribution 
vector must be a scalar  
multiple of the nth age  
distribution vector. That is, 
xn +1 = Lxn = λxn. Example 2 
shows how to solve this  
problem.
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380 Chapter 7 Eigenvalues and Eigenvectors

systEMs oF linEar DiFFErEntial  
Equations (CalCulus)

A system of first-order linear differential equations has the form

y1′ = a11y1 + a12y2 + .  .  . + a1nyn

y2′ = a21y1 + a22y2 + .  .  . + a2nyn

  ⋮
yn′ = an1y1 + an2y2 + .  .  . + annyn

where each yi is a function of t and yi′ =
dyi

dt
. If you let

y′ = [
y1′
y2′
⋮

yn′
], y = [

y1

y2

⋮
yn

], and A = [
a11

a21

⋮
an1

a12

a22

⋮
an2

.  .  .

.  .  .

.  .  .

a1n

a2n

⋮
ann

]
then the system can be written in matrix form as

y′ = Ay.

  solving a system of linear 
Differential Equations

Solve the system of linear differential equations.

y1′ = 4y1

y2′ = −y2

y3′ = 2y3

solution

From calculus, you know that the solution of the differential equation y′ = ky is

y = Cekt.

So, the solution of the system is

y1 = C1e
4t

y2 = C2e
−t

y3 = C3e
2t. 

The matrix form of the system of linear differential equations in Example 3 is 
y′ = Ay, or

[
y1′
y2′
y3′

] = [
4
0
0

0
−1

0

0
0
2][

y1

y2

y3
].

So, the coefficients of t in the solutions yi = Cie
λit are the eigenvalues of the matrix A.

If A is a diagonal matrix, then the solution of

y′ = Ay

can be obtained immediately, as in Example 3. If A is not diagonal, then the solution 
requires more work. First, find a matrix P that diagonalizes A. Then, the change of 
variables y = Pw and y′ = Pw′ produces

Pw′ = y′ = Ay = APw  w′ = P−1APw

where P−1AP is a diagonal matrix. Example 4 demonstrates this procedure.
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  solving a system of linear
Differential Equations

See LarsonLinearAlgebra.com for an interactive version of this type of example.

To solve the system of linear differential equations

y1′ = 3y1 +
y2′ = 6y1 −

2y2

y2

first find a matrix P that diagonalizes A = [3
6

2
−1]. Verify that the eigenvalues of A

are λ1 = −3 and λ2 = 5, and that the corresponding eigenvectors are p1 = [1   −3]T

and p2 = [1   1]T. Diagonalize A using the matrix P whose columns consist of p1 and p2

to obtain

P = [ 1
−3

1
1], P−1 = [

1
4
3
4

−1
4
1
4
], and P−1AP = [−3

0
0
5].

The system w′ = P−1APw has the form below.

[w1′
w2′] = [−3

0
0
5][

w1

w2
]  

w1′ =
w2′ =

−3w1

5w2

The solution of this system of equations is

w1 = C1e
−3t

w2 = C2e5t.

To return to the original variables y1 and y2, use the substitution y = Pw and write

[y1

y2
] = [ 1

−3
1
1][

w1

w2
]

which implies that the solution is

y1 =
y2 =

w1 + w2 =
−3w1 + w2 =

C1e
−3t + C2e

5t

−3C1e
−3t + C2e

5t.
 

If A has eigenvalues with multiplicity greater than 1 or if A has complex 
eigenvalues, then the technique for solving the system must be modified.

1. Eigenvalues with multiplicity greater than 1: The coefficient matrix of the system

y1′ =
y2′ =

y2

−4y1 + 4y2
 is A = [ 0

−4
1
4].

The only eigenvalue of A is λ = 2, and the solution of the system is

y1 =
y2 =

C1e
2t +

(2C1 + C2)e2t +
C2te

2t

2C2te
2t.

2. Complex eigenvalues: The coefficient matrix of the system

y1′ =
y2′ =

−y2

y1
 is A = [0

1
−1

0].

The eigenvalues of A are λ1 = i and λ2 = −i, and the solution of the system is

y1 =
y2 =

C1 cos t + C2 sin t
−C2 cos t + C1 sin t.

Check these solutions by differentiating and substituting into the original systems of 
equations.
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quaDratiC ForMs

Eigenvalues and eigenvectors can be used to solve the rotation of axes problem  
introduced in Section 4.8. Recall that classifying the graph of the quadratic equation

ax2 + bxy + cy2 + dx + ey + f = 0 Quadratic equation

is fairly straightforward as long as the equation has no xy-term (that is, b = 0). If 
the equation has an xy-term, however, then the classification is accomplished most  
easily by first performing a rotation of axes that eliminates the xy-term. The resulting  
equation (relative to the new x′y′-axes) will then be of the form

a′(x′)2 + c′(y′)2 + d′x′ + e′y′ + f ′ = 0.

You will see that the coefficients a′ and c′ are eigenvalues of the matrix

A = [ a
b�2

b�2
c].

The expression

ax2 + bxy + cy2 Quadratic form

is the quadratic form associated with the quadratic equation 

ax2 + bxy + cy2 + dx + ey + f = 0

and the matrix A is the matrix of the quadratic form. Note that the matrix A is  
symmetric. Moreover, the matrix A will be diagonal if and only if its corresponding 
quadratic form has no xy-term, as illustrated in Example 5.

 Finding the Matrix of the quadratic Form

Find the matrix of the quadratic form associated with each quadratic equation.

a. 4x2 + 9y2 − 36 = 0  b. 13x2 − 10xy + 13y2 − 72 = 0

solution

a. a = 4, b = 0, and c = 9, so the matrix is

A = [4
0

0
9]. Diagonal matrix (no xy-term)

b. a = 13, b = −10, and c = 13, so the matrix is

A = [ 13
−5

−5
13]. Nondiagonal matrix (xy-term) 

In standard form, the equation 4x2 + 9y2 − 36 = 0 is

x2

32 +
y2

22 = 1

which is the equation of the ellipse shown in Figure 7.2. Although it is not apparent  
by inspection, the graph of the equation 13x2 − 10xy + 13y2 − 72 = 0 is similar.  
In fact, when you rotate the x- and y-axes counterclockwise 45° to form a new  
x′y′-coordinate system, this equation takes the form

(x′)2

32 +
(y′)2

22 = 1

(verify this) which is the equation of the ellipse shown in Figure 7.3.
To see how to use the matrix of a quadratic form to perform a rotation of axes, let

X = [x   y]T.

Figure 7.2

−2 −1
−1

2

−3

1

3

x

y

1

x2 y2

32 22+ = 1

Figure 7.3

−1−3 3

−3

−2

1

3y ′ x ′

x
45°

y

1

13x2 − 10xy + 13y2 − 72 = 0

(x ′)2 (y ′)2

32 22+ = 1
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Then the quadratic expression ax2 + bxy + cy2 + dx + ey + f  can be written in 
matrix form as shown below.

 XTAX + [d   e]X + f = [x   y][ a
b�2

b�2
c][

x
y] + [d   e][x

y] + f

 = ax2 + bxy + cy2 + dx + ey + f

If b = 0, then no rotation is necessary. But if b ≠ 0, then use the fact that A is  
symmetric and apply Theorem 7.10 to conclude that there exists an orthogonal matrix 
P such that PTAP = D is diagonal. So, if you let

PTX = X′ = [x′
y′]

then it follows that X = PX′, and XTAX = (PX′)TA(PX′) = (X′)TPTAPX′ = (X′)TDX′.
The choice of the matrix P must be made with care. P is orthogonal, so its  

determinant will be ±1. It can be shown (see Exercise 67) that if P is chosen so that 

∣P∣ = 1, then P will be of the form

P = [cos θ
sin θ

−sin θ
cos θ]

where θ is the angle of rotation of the conic measured from the positive x-axis to the 
positive x′-axis. This leads to the Principal Axes Theorem.

 rotation of a Conic

Perform a rotation of axes to eliminate the xy-term in the quadratic equation 

13x2 − 10xy + 13y2 − 72 = 0.

solution

The matrix of the quadratic form associated with this equation is

A = [ 13
−5

−5
13].

The characteristic polynomial of A is (λ − 8)(λ − 18) (check this), so it follows that 
the eigenvalues of A are λ1 = 8 and λ2 = 18. Then, the equation of the rotated conic is 

8(x′)2 + 18(y′)2 − 72 = 0

which, when written in the standard form

(x′)2

32 +
(y′)2

22 = 1

is the equation of an ellipse. (See Figure 7.3.) 

Principal axes theorem

For a conic whose equation is ax2 + bxy + cy2 + dx + ey + f = 0, the rotation 
X = PX′ eliminates the xy-term when P is an orthogonal matrix, with ∣P∣ = 1, 
that diagonalizes the matrix of the quadratic form A. That is,

PTAP = [λ1

0
0
λ2
]

where λ1 and λ2 are eigenvalues of A. The equation of the rotated conic is

λ1(x′)2 + λ2(y′)2 + [d    e]PX′ + f = 0.

rEMarK
For brevity, the 1 × 1 matrices [f ]  
and [ax2 + bxy + cy2 + ey + f ] 
are not shown enclosed in 
brackets.

rEMarK
Note that the matrix product 
[d    e]PX ′ has the form

(d cos θ + e sin θ)x′
+ (−d sin θ + e cos θ)y ′.
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In Example 6, the eigenvectors of the matrix A are

x1 = [1
1] and x2 = [−1

1]
which you can normalize to form the columns of P, as shown below.

P = [
1

√2

1

√2

−
1

√2

1

√2
] = [cos θ

sin θ
−sin θ

cos θ]

Note first that ∣P∣ = 1, which implies that P is a rotation. Moreover,  
cos 45° = 1�√2 = sin 45°, so the angle of rotation is 45° as shown in Figure 7.3.

The orthogonal matrix P specified in the Principal Axes Theorem is not unique. 
Its entries depend on the ordering of the eigenvalues λ1 and λ2 and on the subsequent 
choice of eigenvectors x1 and x2. For instance, in the solution of Example 6, any of the 
choices of P shown below would have worked.

 x1 x2 x1 x2 x1 x2

[−
1

√2

−
1

√2

1

√2

−
1

√2
] [−

1

√2

1

√2

−
1

√2

−
1

√2
] [

1

√2

−
1

√2

1

√2

1

√2
]

 λ1 = 8, λ2 = 18 λ1 = 18, λ2 = 8 λ1 = 18, λ2 = 8

 θ = 225° θ = 135° θ = 315°

For any of these choices of P, the graph of the rotated conic will, of course, be the 
same. (See below.)

−3 31

−3

−2

3

y ′x ′

x
225°

y

(x ′)2 (y ′)2

32 22+ = 1 

 

−3 3

−3

−2

3

y ′

x ′

x
135°

y

1

(x ′)2 (y ′)2

22 32+ = 1 

 

−3 3

−3

−2

3 y ′

x ′

x
315°

y

1

(x ′)2 (y ′)2

22 32+ = 1 

The list below summarizes the steps used to apply the Principal Axes Theorem.

1. Form the matrix A and find its eigenvalues λ1 and λ2.

2.  Find eigenvectors corresponding to λ1 and λ2. Normalize these eigenvectors to 
form the columns of P.

3.  If ∣P∣ = −1, then multiply one of the columns of P by −1 to obtain a matrix of 
the form

P = [cos θ
sin θ

−sin θ
cos θ]

4. The angle θ represents the angle of rotation of the conic.

5. The equation of the rotated conic is λ1(x′)2 + λ2(y′)2 + [d    e]PX′ + f = 0.
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Example 7 shows how to apply the Principal Axes Theorem to rotate a conic whose 
center is translated away from the origin.

 rotation of a Conic

Perform a rotation of axes to eliminate the xy-term in the quadratic equation

3x2 − 10xy + 3y2 + 16√2x − 32 = 0.

solution

The matrix of the quadratic form associated with this equation is

A = [ 3
−5

−5
3].

The eigenvalues of A are

λ1 = 8 and λ2 = −2

with corresponding eigenvectors of

x1 = (−1, 1) and x2 = (−1, −1).

This implies that the matrix P is

 P = [−
1

√2

1

√2

−
1

√2

−
1

√2
]

 = [cos θ
sin θ

−sin θ
cos θ], where ∣P∣ = 1.

cos 135° = −1�√2 and sin 135° = 1�√2, so the angle of rotation is 135°. Finally, 
from the matrix product

 [d    e]PX′ = [16√2    0] [−
1

√2

1

√2

−
1

√2

−
1

√2
][x′

y′]

 = −16x′ − 16y′

the equation of the rotated conic is

8(x′)2 − 2(y′)2 − 16x′ − 16y′ − 32 = 0.

In standard form, the equation is

(x′ − 1)2

12 −
(y′ + 4)2

22 = 1

which is the equation of a hyperbola. Its graph is shown in Figure 7.4. 

Quadratic forms can also be used to analyze equations of quadric surfaces in R3, 
which are the three-dimensional analogs of conic sections. The equation of a quadric 
surface in R3 is a second-degree polynomial of the form

ax2 + by2 + cz2 + dxy + exz + fyz + gx + hy + iz + j = 0.

There are six basic types of quadric surfaces: ellipsoids, hyperboloids of one  
sheet, hyperboloids of two sheets, elliptic cones, elliptic paraboloids, and hyperbolic  
paraboloids. The intersection of a surface with a plane, called the trace of the surface 
in the plane, is useful to help visualize the graph of the surface in R3. The six basic 
types of quadric surfaces, together with their traces, are shown on the next two pages.

Figure 7.4

−4 −2 4 62 8
−2

4

6

8

10

x

x ′

y ′

135°

y

(x ′ − 1) (y ′ + 4)

12 22− = 1
2 2
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Ellipsoid

x2

a2 +
y2

b2 +
z2

c2 = 1

Trace     Plane                       

Ellipse Parallel to xy-plane
Ellipse Parallel to xz-plane
Ellipse Parallel to yz-plane

The surface is a sphere when 
a = b = c ≠ 0.

Hyperboloid of One Sheet

x2

a2 +
y2

b2 −
z2

c2 = 1

Trace     Plane                       

Ellipse Parallel to xy-plane
Hyperbola Parallel to xz-plane
Hyperbola Parallel to yz-plane

The axis of the hyperboloid  
corresponds to the variable whose 
coefficient is negative.

Hyperboloid of Two Sheets

z2

c2 −
x2

a2 −
y2

b2 = 1

Trace     Plane                       

Ellipse Parallel to xy-plane
Hyperbola Parallel to xz-plane
Hyperbola Parallel to yz-plane

The axis of the hyperboloid  
corresponds to the variable whose 
coefficient is positive. There is  
no trace in the coordinate plane  
perpendicular to this axis.

y
x

z

y
x

z

xz-trace yz-trace

xy-trace

y

x

z

y

x

z

xz-trace yz-trace

xy-trace

x y

z
z

x y

yz-trace xz-trace

no xy-trace
parallel to
xy-plane
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Elliptic Cone

x2

a2 +
y2

b2 −
z2

c2 = 0

Trace     Plane                       

Ellipse Parallel to xy-plane
Hyperbola Parallel to xz-plane
Hyperbola Parallel to yz-plane

The axis of the cone corresponds  
to the variable whose coefficient  
is negative. The traces in the  
coordinate planes parallel to this 
axis are intersecting lines.

Elliptic Paraboloid

z =
x2

a2 +
y2

b2

Trace     Plane                       

Ellipse Parallel to xy-plane
Parabola Parallel to xz-plane
Parabola Parallel to yz-plane

The axis of the paraboloid  
corresponds to the variable raised 
to the first power.

Hyperbolic Paraboloid

z =
y2

b2 −
x2

a2

Trace     Plane                       

Hyperbola Parallel to xy-plane
Parabola Parallel to xz-plane
Parabola Parallel to yz-plane

The axis of the paraboloid  
corresponds to the variable raised 
to the first power.

x

y

z

x

y

z xz-trace

yz-trace

xy-trace
(one point)

parallel to
xy-plane

x
y

z

x
y

z
yz-trace xz-trace

parallel to 
xy-plane

xy-trace
(one point)

x

y

z

x

y

z
yz-trace

xz-trace

parallel to
xy-plane
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The quadratic form of the equation

ax2 + by2 + cz2 + dxy + exz + fyz + gx + hy + iz + j = 0 Quadric surface

is

ax2 + by2 + cz2 + dxy + exz + fyz. Quadratic form

The corresponding matrix is

A = [
a

d
2
e
2

d
2

b

f
2

e
2
f
2

c
].

In its three-dimensional version, the Principal Axes Theorem relates the eigenvalues 
and eigenvectors of A to the equation of the rotated surface, as shown in Example 8.

 rotation of a quadric surface

Perform a rotation of axes to eliminate the xz-term in the quadratic equation

5x2 + 4y2 + 5z2 + 8xz − 36 = 0.

solution

The matrix A associated with this quadratic equation is

A = [
5
0
4

0
4
0

4
0
5]

which has eigenvalues of λ1 = 1, λ2 = 4, and λ3 = 9 (verify this). So, in the rotated 
x′y′z′-system, the quadratic equation is (x′)2 + 4(y′)2 + 9(z′)2 − 36 = 0, which in 
standard form is

(x′)2

62 +
(y′)2

32 +
(z′)2

22 = 1.

The graph of this equation is an ellipsoid. As shown in Figure 7.5, the x′y′z′-axes 
represent a counterclockwise rotation of 45° about the y-axis. Verify that the columns of

P = [
1
√2

0

−
1
√2

0

1

0

1
√2

0
1
√2

 ]
are the normalized eigenvectors of A, that P is orthogonal, and that PTAP is diagonal.

Figure 7.5

z'

y

x'

x

2

22

4

4

6

6
6

z

linEar
alGEBra
aPPliED

Some of the world’s most unusual architecture makes use 
of quadric surfaces. For example, Catedral Metropolitana 
Nossa Senhora Aparecida, a cathedral located in Brasilia, 
Brazil, is in the shape of a hyperboloid of one sheet. It 
was designed by Pritzker Prize winning architect Oscar 
Niemeyer, and dedicated in 1970. The sixteen identical 
curved steel columns are intended to represent two hands 
reaching up to the sky. In the triangular gaps formed by the 
columns, semitransparent stained glass allows light inside 
for nearly the entire height of the columns.

rEMarK
In general, the matrix A of the 
quadratic form will always be 
symmetric.

ostill/Shutterstock.com
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ConstrainED oPtiMiZation

Many real-life applications require you to determine the maximum or minimum value 
of a quantity subject to a constraint. For instance, consider a simplified example in 
which you need to find the maximum and minimum values of the quadric surface 
f(x, y) = 9x2 + 5y2 along the curve formed by intersection of the surface with the 
unit cylinder x2 + y2 = 1, as shown in Figure 7.6. The constraint is the unit cylinder 
x2 + y2 = 1. By inspection, the maximum value of f  is 9 when x = ±1 and y = 0, and 
the minimum value of f  is 5 when x = 0 and y = ±1.

The theorem below allows you to use the eigenvalues and eigenvectors of a 
symmetric matrix to solve a constrained optimization problem.

ProoF

The quadratic form f  can be written as

f(x1, x2, .  .  . , xn) = xTAx.

The matrix of the quadratic form A is symmetric, so A has n real eigenvalues (counting 
multiplicities). Call these λ1, λ2, .  .  . λn, and assume that λ1 ≥ λ2 ≥ .  .  . ≥ λn. Now 
consider a change of variables x = Px′, where x′ = [x1′   x2′   .  .  .   xn′]T and P is an 
orthogonal matrix that diagonalizes A. Then

  f(x1, x2, .  .  . , xn) = xTAx

 = (Px′)T A(Px′)
 = (x′)TPTAPx′
 = λ1(x1′)2 + λ2(x2′)2 + .  .  . + λn(xn′)2

and

 �x�2 = �Px′�2

 = (Px′)T(Px′)
 = (x′)TPTPx′
 = (x′)Tx′
 = (x1′)2 + (x2′)2 + .  .  . + (xn′)2

 = �x′�2.

�x�2 = 1, so �x′�2 = 1, and

λ1 = λ1[(x1′)2 + (x2′)2 + .  .  . + (xn′)2]
 ≥ λ1(x1′)2 + λ2(x2′)2 + .  .  . + λn(xn′)2

 ≥ λn[(x1′)2 + (x2′)2 + .  .  . + (xn′)2]
 = λn.

This shows that λ1 ≥ xTAx ≥ λn. So, all values of f(x1, x2, .  .  . , xn) = xTAx for which 
�x�2 = 1 lie between λ1 and λn. If x is a normalized eigenvector that corresponds to λ1, then

f(x1, x2, .  .  . , xn) = xTAx = xT(λ1x) = λ1�x�2 = λ1.

If x is a normalized eigenvector that corresponds to λn, then

f(x1, x2, .  .  . , xn) = xTAx = xT(λnx) = λn�x�2 = λn.

So, f  has a constrained maximum of λ1 and a constrained minimum of λn. 

Constrained optimization theorem

For a quadratic form f  in n variables with matrix of the quadratic form A subject 
to the constraint �x�2 = 1, the maximum value of f  is the greatest eigenvalue of 
A and the minimum value of f  is the least eigenvalue of A.

Figure 7.6

y
x

z

(1, 0, 9)

(0, −1, 5)

(−1, 0, 9)

(0, 1, 5)
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Finding Maximum and Minimum Values

Find the maximum and minimum values of f(x1, x2) = 9x1
2 + 5x2

2 subject to the  
constrait �x�2 = 1.

solution

The matrix of the quadratic form is the diagonal matrix

A = [9
0

0
5].

By inspection, the eigenvalues of A are λ1 = 9 and λ2 = 5. So by the Constrained 
Optimization Theorem, the maximum value of z is 9 and the minimum value of z is 5.
 

 Finding Maximum and Minimum Values

Find the maximum and minimum values, and the corresponding normalized  
eigenvectors, of z = 7x1

2 + 6x1x2 + 7x2
2 subject to the costraint �x�2 = 1.

solution

The quadratic form f  can be written using matrix notation as

f(x1, x2) = xTAx = [x1    x2][7
3

3
7][

x1

x2
].

Verify that the eigenvalues of A = [7
3

3
7] are λ1 = 10 and λ2 = 4, with corresponding  

eigenvectors

[1
1] and [−1

1].

So, the constrained maximum of 10 occurs when (x1, x2) =
1
√2

(1, 1) = ( 1
√2

, 
1
√2)

and the constrained minimum of 4 occurs when (x1, x2) =
1
√2

(−1, 1) = (− 1
√2

, 
1
√2).

 

 using a Change of Variables

To find the maximum and minimum values of

z = 4xy

subject to the constraint 9x2 + 4y2 = 36, you cannot use the Constrained Optimization 
Theorem directly because the constraint is not �x�2 = 1. However, with the change of 
variables

x = 2x′ and y = 3y′

the problem becomes finding the maximum and minimum values of

z = 24x′y′

subject to the constraint (x′)2 + (y′)2 = 1. Verify that the maximum value of 12 occurs 

when (x′, y′) = (1�√2, 1�√2), or (x, y) = (√2, 3�√2), and the minimum value of 

−12 occurs when (x′, y′) = (1�√2, −1�√2), or (x, y) = (√2, −3�√2). 

rEMarK
With the substitutions x = x1 
and y = x2, this is the same 
problem as that given at the 
top of the preceding page.
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7.4 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

Finding age Distribution Vectors In Exercises 1–6, 
use the age transition matrix L and age distribution  
vector x1 to find the age distribution vectors x2 and x3. 
Then find a stable age distribution vector.

 1. L = [0
1
2

2
0], x1 = [10

10]

 2. L = [ 0
1

16

4
0], x1 = [160

160]

 3. L = [
0
1
0

3
0
1
2

4
0
0], x1 = [

12
12
12]

 4. L = [
0
1
2

0

2
0
1
2

0
0
0], x1 = [

8
8
8]

 5. L = [
0
1
4

0
0

2
0
1
0

2
0
0
1
2

0
0
0
0
], x1 = [

100
100
100
100

]
 6. L = [

0
1
2

0
0
0

6
0
1
0
0

4
0
0
1
2

0

0
0
0
0
1
2

0
0
0
0
0
], x1 = [

24
24
24
24
24
]

 7.  Population Growth Model A population has the  
characteristics below.

 (a)  A total of 75% of the population survives the first 
year. Of that 75%, 25% survives the second year. 
The maximum life span is 3 years.

 (b)  The average number of offspring for each member 
of the population is 2 the first year, 4 the second 
year, and 2 the third year.

  The population now consists of 160 members in each of 
the three age classes. How many members will there be 
in each age class in 1 year? in 2 years?

 8.  Population Growth Model A population has the  
characteristics below.

 (a)  A total of 80% of the population survives the first 
year. Of that 80%, 25% survives the second year. 
The maximum life span is 3 years.

 (b)  The average number of offspring for each member 
of the population is 3 the first year, 6 the second 
year, and 3 the third year.

  The population now consists of 120 members in each of 
the three age classes. How many members will there be 
in each age class in 1 year? in 2 years?

 9.  Population Growth Model A population has the  
characteristics below.

 (a)  A total of 60% of the population survives the first 
year. Of that 60%, 50% survives the second year. 
The maximum life span is 3 years.

 (b)  The average number of offspring for each member 
of the population is 2 the first year, 5 the second 
year, and 2 the third year.

  The population now consists of 100 members in each of 
the three age classes. How many members will there be 
in each age class in 1 year? in 2 years?

10.  Find the limit (if it exists) of Anx1 as n approaches  
infinity, where

A = [0
1
2

2
0] and x1 = [a

a].

solving a system of linear Differential Equations In 
Exercises 11–20, solve the system of first-order linear 
differential equations.

11. y1′ =
y2′ =

2y1

y2
 

12. y1′ =
y2′ =

−5y1

4y2

13. y1′ =
y2′ =

−4y1

−1
2y2

 
14. y1′ =

y2′ =

1
2y1
1
8y2

15. y1′ =
y2′ =
y3′ =

−y1

6y2

y3

 
16. y1′ =

y2′ =
y3′ =

5y1

−2y2

−3y3

17. y1′ =
y2′ =
y3′ =

−0.3y1

0.4y2

−0.6y3

 
18. y1′ =

y2′ =
y3′ =

−2
3y1

−3
5y2

−8y3

19. y1′ =
y2′ =
y3′ =
y4′ =

7y1

9y2

−7y3

−9y4

 

20. y1′ =
y2′ =
y3′ =
y4′ =

−0.1y1

−7
4y2

−2πy3

√5y4

solving a system of linear Differential Equations In 
Exercises 21–28, solve the system of first-order linear 
differential equations.
21. y1′ =

y2′ =
y1 − 4y2

2y2

 22. y1′ =
y2′ =

y1 − 4y2

−2y1 + 8y2

23. y1′ =
y2′ =

y1 + 2y2

2y1 +   y2
 

24. y1′ =
y2′ =

y1 −
2y1 +

y2

4y2

25. y1′ =
y2′ =
y3′ =

y1 − 2y2

2y2

+   y3

+ 4y3

3y3

 
26. y1′ =

y2′ =
y3′ =

2y1 + y2

y1 + y2

y1             

+ y3       

+ y3       

27. y1′ =
y2′ =
y3′ =

4y1

3y2

− 4y2

−
+
−

5y3

10y3

4y3

 
28. y1′ =

y2′ =
y3′ =

−2y1           +    y3

3y2 + 4y3

y3

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



392 Chapter 7 Eigenvalues and Eigenvectors

writing a system and Verifying the General solution 
In Exercises 29–32, write the system of first-order  
linear differential equations represented by the matrix  
equation y′ = Ay. Then verify the general solution.

29. A = [1
0

1
1], 

y1 = C1e
t + C2te

t

y2 = C2e
t

30. A = [1
1

−1
1], 

y1 =     C1e
t cos t + C2e

t sin t 
y2 = −C2e

t cos t + C1e
t sin t

31. A = [
0
0
0

1
0

−4

0
1
0],

 
y1 =
y2 =
y3 =

C1 +

−

C2 cos 2t +
2C3 cos 2t −
4C2 cos 2t −

C3 sin 2t
2C2 sin 2t
4C3 sin 2t

32. A = [
0
0
1

1
0

−3

0
1
3],

 
y1 =                                                          
y2 =                                                          
y3 =                                                          

C1e
t +               C2te

t +
(C1 + C2)et + (C2 + 2C3)tet +

(C1 + 2C2 + 2C3)et + (C2 + 4C3)tet +

C3t
2et

C3t
2et

C3t
2et

Finding the Matrix of a quadratic Form In Exercises 
33–38, find the matrix A of the quadratic form associated 
with the equation.

33. x2 + y2 − 4 = 0 34. x2 − 4xy + y2 − 4 = 0

35. 9x2 + 10xy − 4y2 − 36 = 0

36. 12x2 − 5xy − x + 2y − 20 = 0

37. 10xy − 10y2 + 4x − 48 = 0

38. 16x2 − 4xy + 20y2 − 72 = 0

Finding the Matrix of a quadratic Form In Exercises 
39–44, find the matrix A of the quadratic form associated  
with the equation. Then find the eigenvalues of A and an 
orthogonal matrix P such that PTAP is diagonal.

39. 2x2 − 3xy − 2y2 + 10 = 0

40. 5x2 − 2xy + 5y2 + 10x − 17 = 0

41. 13x2 + 6√3xy + 7y2 − 16 = 0

42. 3x2 − 2√3xy + y2 + 2x + 2√3y = 0

43. 16x2 − 24xy + 9y2 − 60x − 80y + 100 = 0

44. 17x2 + 32xy − 7y2 − 75 = 0

rotation of a Conic In Exercises 45–52, use the 
Principal Axes Theorem to perform a rotation of axes to 
eliminate the xy-term in the quadratic equation. Identify 
the resulting rotated conic and give its equation in the 
new coordinate system.

45. 13x2 − 8xy + 7y2 − 45 = 0

46. x2 + 4xy + y2 − 9 = 0

47. 2x2 − 4xy + 5y2 − 36 = 0

48. 7x2 + 32xy − 17y2 − 50 = 0

49. 2x2 + 4xy + 2y2 + 6√2x + 2√2y + 4 = 0

50. 8x2 + 8xy + 8y2 + 10√2x + 26√2y + 31 = 0

51. xy + x − 2y + 3 = 0

52. 5x2 − 2xy + 5y2 + 10√2x = 0

rotation of a quadric surface In Exercises 53–56, 
find the matrix A of the quadratic form associated with 
the equation. Then find the equation of the quadric  
surface in the rotated x′y′z′-system.

53. 3x2 − 2xy + 3y2 + 8z2 − 16 = 0

54. 2x2 + 2y2 + 2z2 + 2xy + 2xz + 2yz − 1 = 0

55. x2 + 2y2 + 2z2 + 2yz − 1 = 0

56. x2 + y2 + z2 + 2xy − 8 = 0

Constrained optimization In Exercises 57–66, find 
the maximum and minimum values, and a vector where 
each occurs, of the quadratic form subject to the constraint.

57. z = 3x1
2 + 2x2

2; �x�2 = 1

58. z = 11x1
2 + 4x2

2; �x�2 = 1

59. z = x1
2 + 12x2

2; 4x1
2+ 25x2

2 = 100 

60. z = −5x2 + 9y2; x2 + 9y2 = 9

61. z = 5x2 + 12xy + 5y2; x2 + y2 = 1

62. z = 5x1
2 + 12x1x2; �x�2 = 1

63. z = 6x1x2; �x�2 = 1

64. z = 9xy; 9x2 + 16y2 = 144

65. w = x2 + 3y2 + z2 + 2xy + 2xz + 2yz; x2 + y2 + z2 = 1

66. w = 2x2 − y2 − z2 + 4xy − 4xz + 8yz; x2 + y2 + z2 = 1

67.  Let P be a 2 × 2 orthogonal matrix such that ∣P∣ = 1. 
Show that there exists a number θ, 0 ≤ θ < 2π, such that

P = [cos θ    
sin θ    

−sin θ
cos θ].

68. CAPSTONE
(a)  Explain how to model population growth using an 

age transition matrix and an age distribution vector, 
and how to find a stable age distribution vector.

(b)  Explain how to use a matrix equation to solve a 
system of first-order linear differential equations.

(c)  Explain how to use the Principal Axes Theorem to 
perform a rotation of axes for a conic and a quadric 
surface.

(d)  Explain how to solve a constrained optimization 
problem.

69.  Use your school’s library, the Internet, or some other 
reference source to find real-life applications of  
constrained optimization.
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7 Review Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

Characteristic Equation, Eigenvalues, and Basis In 
Exercises 1–6, find (a) the characteristic equation of A, 
(b) the eigenvalues of A, and (c) a basis for the eigenspace  
corresponding to each eigenvalue.

 1. A = [2
5

1
−2]  2. A = [ 2

−4
1

−2]

 3. A = [
9

−2
−1

4
0

−4

−3
6

11]  4. A = [
−4

0
0

1
1
0

2
1
3]

 5. A = [
2
0
0

0
3
0

1
4
1]  6. A = [

1
0
1

0
1
0

4
−2
−2]

Characteristic Equation, Eigenvalues, and Basis  
In Exercises 7 and 8, use a software program or a  
graphing utility to find (a) the characteristic equation of A,  
(b) the eigenvalues of A, and (c) a basis for the eigenspace  
corresponding to each eigenvalue.

 7. A = [
2
1
0
0

1
2
0
0

0
0
2
1

0
0
1
2
]  8. A = [

3
1
0
0

0
3
1
0

2
1
1
0

0
0
0
4
]

Determining Whether a Matrix Is Diagonalizable In 
Exercises 9 –14, determine whether A is diagonalizable. 
If it is, find a nonsingular matrix P such that P−1AP is 
diagonal.

 9. A = [ 1
−2

−4
8] 10. A = [

1
6
2
3

1
4

0]
11. A = [

−2
0
0

−1
1
0

3
2
1] 12. A = [

3
−2

2

−2
0

−1

2
−1

0]
13. A = [

1
0
2

0
1
0

2
0
1] 14. A = [

2
−2
−1

−1
3
1

1
−2

0]
15. For what value(s) of a does the matrix

A = [0
a

1
1]

 have the characteristics below?

 (a) A has an eigenvalue of multiplicity 2.

 (b) A has −1 and 2 as eigenvalues.

 (c) A has real eigenvalues.

16.  Show that if 0 < θ < π, then the transformation for 
a counterclockwise rotation through an angle θ has no 
real eigenvalues.

Writing In Exercises 17–20, explain why the matrix is 
not diagonalizable.

17. A = [0
0

9
0] 18. A = [−1

0
2

−1]

19. A = [
3
1
0

0
3
0

0
0
3] 20. A = [

−2
0
0

3
4
0

1
3

−2]
Determining Whether Two Matrices Are Similar In 
Exercises 21–24, determine whether the matrices are 
similar. If they are, find a matrix P such that A = P−1BP.

21. A = [1
0

0
2], B = [2

0
0
1]

22. A = [5
0

0
3], B = [ 7

−4
2
1]

23. A = [
1
0
0

1
1
0

0
1
1], B = [

1
0
0

1
1
0

0
0
1]

24. A = [
1
0
0

0
−2

0

0
0

−2], B = [
1
3

−3

−3
−5

3

−3
−3

1]
Determining Symmetric and Orthogonal Matrices In 
Exercises 25–32, determine whether the matrix is  
symmetric, orthogonal, both, or neither.

25. A = [−
√2
2
√2
2

√2
2
√2
2

] 26. A = [
2√5

5
√5

5

√5
5

−
2√5

5
]

27. A = [
0
0
1

0
1
0

1
0
0] 28. A = [

0
0
1

0
1
0

1
0
1]

29. A = [
1
3
1
3
1
3

1
2

0
1
2

1
3
1
3
1
3
] 30. A = [

4
5

0

−3
5

0

1

0

3
5

0
4
5
]

31. A = [
−2

3
2
3
1
3

1
3
2
3

−2
3

−2
3

−1
3
2
3

]
32. A = [

√3
3
√3
3
√3
3

√3
3

2√3
3

0

√3
3

0

√3
3
]
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Eigenvectors of a Symmetric Matrix In Exercises 
33–36, show that any two eigenvectors of the  
symmetric matrix corresponding to distinct eigenvalues 
are orthogonal.

33. [2
0

0
−3] 34. [ 4

−2
−2

1]

35. [
−1

0
−1

0
−1

0

−1
0
1] 36. [

2
0
0

0
2
0

0
0
5]

Orthogonally Diagonalizable Matrices In Exercises 
37–40, determine whether the matrix is orthogonally 
diagonalizable.

37. [−3
−1

−1
−2] 38. [−4

−1
1
3]

39. [
4
0
2

1
−1

1

2
0

−5] 40. [
5
4

−1

4
1
3

−1
3

−2]
Orthogonal Diagonalization In Exercises 41–46, find 
a matrix P that orthogonally diagonalizes A. Verify that 
PTAP gives the correct diagonal form.

41. A = [3
4

4
−3] 42. A = [ 8

15
15

−8]

43. A = [
1
1
0

1
1
0

0
0
0] 44. A = [

3
0

−3

0
−3

0

−3
0
3]

45. A = [
2
0

−1

0
1
0

−1
0
2] 46. A = [

1
2
0

2
1
0

0
0
5]

Steady State Probability Vector In Exercises 47–54, 
find the steady state probability vector for the matrix. 
An eigenvector v of an n × n matrix A is a steady state 
probability vector when Av = v and the components of 
v sum to 1.

47. A = [
2
3
1
3

1
2
1
2
] 48. A = [

1
2
1
2

1

0]
49. A = [0.8

0.2
0.3
0.7]  50. A = [0.4

0.6
0.2
0.8]

51. A = [
1
2
1
2

0

1
4
1
2
1
4

0
1
2
1
2
] 52. A = [

1
3
1
3
1
3

2
3
1
3

0

1
3

0
2
3
]

53. A = [
0.7
0.2
0.1

0.1
0.7
0.2

0.1
0.1
0.8] 54. A = [

0.3
0.2
0.5

0.1
0.4
0.5

0.4
0.0
0.6]

55.  Proof Prove that if A is an n × n symmetric matrix, 
then PTAP is symmetric for any n × n matrix P.

56. Show that the characteristic polynomial of

A = [
0
0

⋮
0

−a0

1
0

⋮
0

−a1

0
1

⋮
0

−a2

0
0

⋮
0

−a3

.  .  .

.  .  .

.  .  .

.  .  .

0
0

⋮
1

−an−1

]
  is p(λ) = λn + an−1λn−1 + .  .  . + a2λ2 + a1λ + a0. A 

is called the companion matrix of the polynomial p.

Finding the Companion Matrix and Eigenvalues In 
Exercises 57 and 58, use the result of Exercise 56 to find 
the companion matrix A of the polynomial and find the 
eigenvalues of A.

57. p(λ) = 4λ2 − 9λ
58. p(λ) = 2λ3 − 7λ2 − 120λ + 189

59. The characteristic equation of

A = [8
2

−4
2]

  is λ2 − 10λ + 24 = 0. Using A2 − 10A + 24I2 = O, 
you can find powers of A by the process below.

  A2 = 10A − 24I2, A3 = 10A2 − 24A, 
A4 = 10A3 − 24A2, . . .

 Use this process to find the matrices A2, A3, and A4.

60. Repeat Exercise 59 for the matrix

A = [
9

−2
−1

4
0

−4

−3
6

11].

61. Proof Let A be an n × n matrix.

 (a)  Prove or disprove that an eigenvector of A is also an 
eigenvector of A2.

 (b)  Prove or disprove that an eigenvector of A2 is also 
an eigenvector of A.

62.  Proof Let A be an n × n matrix. Prove that if Ax = λx,  
then x is an eigenvector of (A + cI), where λ and c are 
scalars. What is the corresponding eigenvalue?

63.  Proof Let A and B be n × n matrices. Prove that if A 
is nonsingular, then AB is similar to BA.

64. (a) Find a symmetric matrix B such that B2 = A for

 A = [2
1

1
2].

 (b)  Generalize the result of part (a) by proving that if  
A is an n × n symmetric matrix with positive  
eigenvalues, then there exists a symmetric matrix B 
such that B2 = A.

65.  Determine all n × n symmetric matrices that have 0 as 
their only eigenvalue.
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66.  Find an orthogonal matrix P such that P−1AP is  
diagonal for the matrix

A = [a
b

b
a].

67.  Writing Let A be an n × n idempotent matrix (that is, 
A2 = A). Describe the eigenvalues of A.

68.  Writing The matrix below has an eigenvalue λ = 2 of 
multiplicity 4. 

A = [
2
0
0
0

a
2
0
0

0
b
2
0

0
0
c
2
]

 (a) Under what conditions is A diagonalizable?

 (b)  Under what conditions does the eigenspace of 
λ = 2 have dimension 1? 2? 3?

True or False? In Exercises 69 and 70, determine 
whether each statement is true or false. If a statement 
is true, give a reason or cite an appropriate statement 
from the text. If a statement is false, provide an example 
that shows the statement is not true in all cases or cite an 
appropriate statement from the text.

69. (a)  An eigenvector of an n × n matrix A is a nonzero 
vector x in Rn such that Ax is a scalar multiple of x.

 (b)  Similar matrices may or may not have the same 
eigenvalues.

 (c)  To diagonalize a square matrix A, you need to find 
an invertible matrix P such that P−1AP is diagonal.

70. (a)  An eigenvalue of a matrix A is a scalar λ such that 
det(λI − A) = 0.

 (b) An eigenvector may be the zero vector 0.

 (c)  A matrix A is orthogonally diagonalizable when 
there exists an orthogonal matrix P such that 
P−1AP = D is diagonal.

Finding Age Distribution Vectors In Exercises 71–74, 
use the age transition matrix L and the age distribution 
vector x1 to find the age distribution vectors x2 and x3. 
Then find a stable age distribution vector.

71. L = [0
1
4

1
0], x1 = [100

100]
72. L = [0

3
4

1
0], x1 = [32

32]

73. L = [
0
1
0

3
0
1
6

12
0
0], x1 = [

300
300
300]

74. L = [
0
1
2

0

2
0
0

2
0
0], x1 = [

240
240
240]

75.  Population Growth Model A population has the 
characteristics below.

 (a)  A total of 90% of the population survives the first 
year. Of that 90%, 75% survives the second year. 
The maximum life span is 3 years.

 (b)  The average number of offspring for each member 
of the population is 4 the first year, 6 the second 
year, and 2 the third year.

  The population now consists of 120 members in each of 
the three age classes. How many members will there be 
in each age class in 1 year? in 2 years?

76.  Population Growth Model    A population has the 
characteristics below.

 (a)  A total of 75% of the population survives the first 
year. Of that 75%, 60% survives the second year. 
The maximum life span is 3 years.

 (b)  The average number of offspring for each member 
of the population is 4 the first year, 8 the second 
year, and 2 the third year.

  The population now consists of 120 members in each of 
the three age classes. How many members will there be 
in each age class in 1 year? in 2 years?

Solving a System of Linear Differential Equations In 
Exercises 77–80, solve the system of first-order linear 
differential equations.

77. y1′ =
y2′ =

3y1

  y1 − y2
  

 78. y1′ = y2

    y2′ = y1

79. y1′ = 3y1 80. y1′
y2′
y3′

=     
=     
=    

6y1 − y2 + 2y3

             3y2 −   y3

                     y3

 y2′ = 8y2

 y3′ = −8y3

Rotation of a Conic In Exercises 81–84, (a) find the 
matrix A of the quadratic form associated with the  
equation, (b) find an orthogonal matrix P such that 
PTAP is diagonal, (c) use the Principal Axes Theorem to  
perform a rotation of axes to eliminate the xy-term in  
the quadratic equation, and (d) sketch the graph of  
each equation.

81. x2 + 3xy + y2 − 3 = 0

82. x2 − √3xy + 2y2 − 10 = 0

83. xy − 2 = 0

84. 9x2 − 24xy + 16y2 − 400x − 300y = 0

Constrained Optimization In Exercises 85–88, find 
the maximum and minimum values, and a vector where 
each occurs, of the quadratic form subject to the constraint.

85. z = x2 − y2; x2 + y2 = 1

86. z = x1x2; 25x1
2+ 4x 2

2 = 100

87. z = 15x1
2 − 4x1x2 + 15x2

2; �x�2 = 1

88. z = −11x2 + 10xy − 11y2; x2 + y2 = 1
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7 Projects

1 Population Growth and Dynamical Systems (I)
Systems of differential equations often arise in biological applications of population 
growth of various species of animals. These equations are called dynamical systems 
because they describe the changes in a system as functions of time. Assume that a 
biologist studies the populations of predator sharks y1(t) and their small fish prey y2(t)
over time t. One model for the relative growths of these populations is

y1′(t) = ay1(t) + by2(t) Predator

y2′(t) = cy1(t) + dy2(t) Prey

where a, b, c, and d are constants. The constants a and d are positive, reflecting 
the growth rates of the species. In a predator-prey relationship, b > 0 and c < 0
because an increase in prey fish y2 would cause an increase in predator sharks y1,
whereas an increase in y1 would cause a decrease in y2.

 The system of linear differential equations below models the populations of 
sharks y1(t) and prey fish y2(t) with the populations at time t = 0.

y1′(t) =     0.5y1(t) + 0.6y2(t) y1(0) = 36

y2′(t) = −0.4y1(t) + 3.0y2(t) y2(0) = 121

1.  Use the diagonalization techniques of this chapter to find the populations y1(t) and 
y2(t) at any time t > 0.

2.  Interpret the solutions in terms of the long-term population trends for the two 
species. Does one species ultimately disappear? Why or why not?

3. Graph the solutions y1(t) and y2(t) over the domain 0 ≤ t ≤ 3.

4. Explain why the quotient y2(t)�y1(t) approaches a limit as t increases.

2 The Fibonacci Sequence
The Fibonacci sequence is named after the Italian mathematician Leonard 
Fibonacci of Pisa (1170–1250). To form this sequence, define the first two terms 
as x1 = 1 and x2 = 1, and then define the nth term as the sum of its two immediate 
predecessors. That is, xn = xn−1 + xn−2. So, the third term is 2 = 1 + 1. the 
fourth term is 3 = 2 + 1, and so on. The formula xn = xn−1 + xn−2 is called 
recursive because the first n − 1 terms must be calculated before the nth term can be 
calculated. In this project, you will use eigenvalues and diagonalization to derive an 
explicit formula for the nth term of the Fibonacci sequence.

1. Calculate the first 12 terms of the Fibonacci sequence.

2. Explain how the matrix identity [1
1

1
0][

xn−1

xn−2
] = [xn−1 + xn−2

xn−1
] can be used

 to generate the Fibonacci sequence recursively.

3. Starting with [x1

x2
] = [1

1], show that An−2[1
1] = [ xn

xn−1
], where A = [1

1
1
0].

4. Find a matrix P that diagonalizes A.

5.  Derive an explicit formula for the nth term of the Fibonacci sequence. Use this 
formula to calculate x1, x2, and x3.

6.  Determine the limit of xn�xn−1 as n approaches infinity. Do you recognize this 
number?

REMARK
You can learn more about 
dynamical systems and 
population modeling in most 
books on differential equations. 
You can learn more about 
Fibonacci numbers in most 
books on number theory. 
You might find it interesting to 
look at the Fibonacci Quarterly, 
the official journal of the 
Fibonacci Association.

Roger Jegg - Fotodesign-Jegg.de/Shutterstock.com
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6 and 7 Cumulative Test See CalcChat.com for worked-out solutions  
to odd-numbered exercises.

Take this test to review the material in Chapters 6 and 7. After you are finished, 
check your work against the answers in the back of the book.

In Exercises 1 and 2, determine whether the function is a linear transformation.

 1. T: R3 → R2, T(x, y, z) = (2x, x + y)  2. T: M2,2 → R, T(A) = ∣A + AT∣
 3. Let T: Rn → Rm be the linear transformation defined by T(v) = Av, where

A = [3
0

0
3

1
0

0
2].

 Find the dimensions of Rn and Rm.

 4. Let T: R2 → R3 be the linear transformation defined by T(v) = Av, where

A = [
−2

1
0

0
0
0].

 Find (a) T(2, −1) and (b) the preimage of (−6, 3, 0).
 5. Find the kernel of the linear transformation

T: R4 → R4, T(x1, x2, x3, x4) = (x1 − x2, x2 − x1, 0, x3 + x4).

 6. Let T: R4 → R2 be the linear transformation defined by T(v) = Av, where

A = [1
0

0
−1

1
0

0
−1].

  Find a basis for (a) the kernel of T  and (b) the range of T. (c) Determine the rank 
and nullity of T.

In Exercises 7–10, find the standard matrix for the linear transformation T.

 7. T(x, y) = (3x + 2y, 2y − x)  8. T(x, y, z) = (x + y, y + z, x − z)
 9. T(x, y, z) = (3z − 2y, 4x + 11z) 10. T(x1, x2, x3) = (0, 0, 0)

11.  Find the standard matrix A for the linear transformation projvu: R2 → R2  that  
projects an arbitrary vector u onto the vector v = [1   −1]T, as shown in the figure. 
Use this matrix to find the images of the vectors (1, 1) and (−2, 2).

12.  Let T: R2 → R2 be the linear transformation defined by a counterclockwise rotation 
of 30° in R2.

 (a) Find the standard matrix A for the linear transformation.

 (b) Use A to find the image of the vector v = (1, 2).
 (c) Sketch the graph of v and its image.

In Exercises 13 and 14, find the standard matrices for T = T2 ∘ T1 and T′ = T1 ∘ T2.

13. T1: R
2 → R2, T1(x, y) = (x − 2y, 2x + 3y)

 T2: R
2 → R2, T2(x, y) = (2x, x − y)

14. T1: R
3 → R3, T1(x, y, z) = (x + 2y, y − z, −2x + y + 2z)

 T2: R
3 → R3, T2(x, y, z) = (y + z, x + z, 2y − 2z)

15.  Find the inverse of the linear transformation T: R2 → R2 defined by 
T(x, y) = (x − y, 2x + y). Verify that (T−1 ∘ T)(3, −2) = (3, −2).

16.  Determine whether the linear transformation T: R3 → R3 defined by 
T(x1, x2, x3) = (x1 + x2, x2 + x3, x1 + x3) is invertible. If it is, find its inverse.

x
1

1

−1

−1

u

v

projv u

y

Figure for 11
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398 Chapter 7 Eigenvalues and Eigenvectors

17.  Find the matrix of the linear transformation T(x, y) = (y, 2x, x + y) relative to 
the bases B = {(1, 1), (1, 0)} for R2 and B′ = {(1, 0, 0), (1, 1, 0), (1, 1, 1)} for R3.  
Use this matrix to find the image of the vector (0, 1).

18. Let B = {(1, 0), (0, 1)} and B′ = {(1, 1), (1, 2)} be bases for R2.

 (a)  Find the matrix A of T: R2 → R2, T(x, y) = (x − 2y, x + 4y), relative to the 
basis B.

 (b) Find the transition matrix P from B′ to B.

 (c) Find the matrix A′ of T  relative to the basis B′.

 (d) Find [T(v)]B′ when [v]B′ = [ 3
−2].

 (e) Verify your answer in part (d) by finding [v]B and [T(v)]B.

In Exercises 19–22, find the eigenvalues and the corresponding eigenvectors of  
the matrix.

19. [ 7
−2

2
3] 20. [−15

0
−5

5]

21. [
1
0
0

2
3

−3

1
1

−1] 22. [
1
0
0

−1
1
0

1
2
1]

In Exercises 23 and 24, find a nonsingular matrix P such that P−1AP is diagonal.

23. A = [
2
0
0

3
−1

0

1
2
3] 24. A = [

0
−4

0

−3
4
0

5
−10

4]
25.  Find a basis B for R3 such that the matrix for the linear transformation

T: R3 → R3, T(x, y, z) = (2x − 2z, 2y − 2z, 3x − 3z), relative to B is diagonal.

26. Find an orthogonal matrix P such that PTAP diagonalizes the symmetric matrix

A = [1
3

3
1].

27.  Use the Gram-Schmidt orthonormalization process to find an orthogonal matrix P 
such that PTAP diagonalizes the symmetric matrix

A = [
0
2
2

2
0
2

2
2
0].

28. Solve the system of differential equations.

y1′ = y1

y2′ = 9y2

29. Find the matrix of the quadratic form associated with the quadratic equation

3x2 − 16xy + 3y2 − 13 = 0.

30. A population has the following characteristics.

 (a)  A total of 80% of the population survives the first year. Of that 80%,  
40% survives the second year. The maximum life span is 3 years.

 (b)  The average number of offspring for each member of the population is 3 the 
first year, 6 the second year, and 3 the third year.

  The population now consists of 150 members in each of the three age classes. How 
many members will there be in each age class in 1 year? in 2 years?

31. Define an orthogonal matrix.

32. Prove that if A is similar to B and A is diagonalizable, then B is diagonalizable.
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 Appendix Mathematical Induction and Other Forms of Proofs A1

Appendix Mathematical Induction and Other Forms of Proofs

  Use the Principle of Mathematical Induction to prove statements 
involving a positive integer n.

 Prove by contradiction that a mathematical statement is true.

  Use a counterexample to show that a mathematical statement  
is false.

MatheMatical induction

In this appendix, you will study some basic strategies for writing mathematical 
proofs—mathematical induction, proof by contradiction, and the use of counterexamples.

Example 1 illustrates the logical need for using mathematical induction.

  Sum of odd integers

Use the pattern to propose a formula for the sum of the first n odd integers.

 1 = 1

 1 + 3 = 4

 1 + 3 + 5 = 9

 1 + 3 + 5 + 7 = 16

 1 + 3 + 5 + 7 + 9 = 25

Solution

Notice that the sums on the right are equal to the squares 12, 22, 32, 42, and 52. From 
this pattern, it appears that the sum Sn of the first n odd integers is 

Sn = 1 + 3 + 5 + 7 + .  .  . + (2n − 1) = n2. 

Although this particular formula is valid, it is important for you to see that  
recognizing a pattern and then simply jumping to the conclusion that the pattern must  
be true for all values of n is not a logically valid method of proof. There are many  
examples in which a pattern appears to be developing for small values of n and then at 
some point the pattern fails. One of the most famous cases of this was the conjecture  
by the French mathematician Pierre de Fermat (1601–1665), who speculated that all 
numbers of the form

Fn = 22n + 1, n = 0, 1, 2, .  .  .

are prime. For n = 0, 1, 2, 3, and 4, the conjecture is true.

F0 = 3  F1 = 5  F2 = 17  F3 = 257  F4 = 65,537

The size of the next Fermat number (F5 = 4,294,967,297) is so great that it was 
difficult for Fermat to determine whether it was prime or not. However, another  
well-known mathematician, Leonhard Euler (1707–1783), later found the factorization

F5 = 4,294,967,297 = (641)(6,700,417)

which proved that F5 is not prime and Fermat’s conjecture was false.
Just because a rule, pattern, or formula seems to work for several values of n,  

you cannot simply decide that it is valid for all values of n without going through a  
legitimate proof. One legitimate method of proof for such conjectures is the Principle 
of Mathematical Induction.
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The next example uses the Principle of Mathematical Induction to prove the  
conjecture from Example 1.

  using Mathematical induction

Use mathematical induction to prove the formula below.

Sn = 1 + 3 + 5 + 7 + .  .  . + (2n − 1) = n2

Solution

Mathematical induction consists of two distinct parts. First, you must show that the  
formula is true when n = 1.

1. When n = 1, the formula is valid because S1 = 1 = 12.

The second part of mathematical induction has two steps. The first step is to  
assume that the formula is valid for some integer k (the induction hypothesis).  
The second step is to use this assumption to prove that the formula is valid for the 
next integer, k + 1.

2. Assuming that the formula

Sk = 1 + 3 + 5 + 7 + .  .  . + (2k − 1) = k2

is true, you must show that the formula Sk+1 = (k + 1)2 is true.

 Sk+1 = 1 + 3 + 5 + 7 + .  .  . + (2k − 1) + [2(k + 1) − 1]
 = [1 + 3 + 5 + 7 + .  .  . + (2k − 1)] + (2k + 2 − 1)
 = Sk + (2k + 1) Group terms to form Sk.

Substitute k2 for Sk. = k2 + 2k + 1

 = (k + 1)2

Combining the results of parts (1) and (2), you can conclude by mathematical induction 
that the formula is valid for all positive integers n. 

A well-known illustration used to explain why the Principle of Mathematical 
Induction works is the unending line of dominoes shown in Figure A.1. If the line 
contains infinitely many dominoes, then it is clear that you could not knock down the 
entire line by knocking down only one domino at a time. However, if it were true that 
each domino would knock down the next one as it fell, then you could knock them all 
down simply by pushing the first one and starting a chain reaction.

Mathematical induction works in the same way. If the truth of Pk implies the truth 
of Pk+1 and if P1 is true, then the chain reaction proceeds as shown below:

P1 implies P2

P2 implies P3

P3 implies P4, and so on.

In the next example, you will see the proof of a formula that is often used in  
calculus.

Figure a.1

the Principle of Mathematical induction

Let Pn be a statement involving the positive integer n. If

1. P1 is true, and
2. for every positive integer k, the truth of Pk implies the truth of Pk+1

then the statement Pn must be true for all positive integers n.
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 Appendix Mathematical Induction and Other Forms of Proofs A3

  
using Mathematical induction

Use mathematical induction to prove the formula for the sum of the first n squares.

Sn = 12 + 22 + 32 + 42 + .  .  . + n2 =
n(n + 1)(2n + 1)

6

Solution

1. When n = 1, the formula is valid, because

S1 = 12 =
1(1 + 1)[2(1) + 1]

6
=

1(2)(3)
6

= 1.

2. Assuming the formula is true for k,

Sk = 12 + 22 + 32 + 42 + .  .  . + k2 =
k(k + 1)(2k + 1)

6

you must show that it is true for k + 1,

Sk+1 =
(k + 1)[(k + 1) + 1][2(k + 1) + 1]

6
=

(k + 1)(k + 2)(2k + 3)
6

.

To do this, write Sk+1 as the sum of Sk and the (k + 1)st term, (k + 1)2.

 Sk+1 = (12 + 22 + 32 + 42 + .  .  . + k2) + (k + 1)2

 =
k(k + 1)(2k + 1)

6
+ (k + 1)2  Induction hypothesis

 =
(k + 1)(2k2 + 7k + 6)

6
 

Combine fractions  
and simplify.

 =
(k + 1)(k + 2)(2k + 3)

6
 Sk implies Sk+1.

Combining the results of parts (1) and (2), you can conclude by mathematical induction 
that the formula is valid for all positive integers n. 

Many of the proofs in linear algebra use mathematical induction. Here is an  
example from Chapter 2.

  using Mathematical induction 
in linear algebra

If A1, A2 ,  .  .  . , An are invertible matrices, then prove the generalization of Theorem 2.9.

(A1A2A3 .  .  . An)−1 = An
−1 .  .  . A3

−1A2
−1A1

−1

Solution

1. The formula is valid trivially when n = 1 because A1
−1 = A1

−1.

2.  Assuming the formula is valid for k, (A1A2A3 .  .  . Ak )−1 = Ak
−1.  .  . A3

−1A2
−1A1

−1, 
you must show that it is valid for k + 1. To do this, use Theorem 2.9, which states 
that the inverse of a product of two invertible matrices is the product of their 
inverses in reverse order.

 (A1A2A3 .  .  . Ak Ak+1)−1 = [(A1A2A3 .  .  . Ak)Ak+ 1]−1

 = Ak+1
−1 (A1A2A3 .  .  . Ak )−1  Theorem 2.9

 = Ak+1
−1 (Ak

−1 .  .  . A3
−1A2

−1A1
−1) Induction hypothesis

 = Ak+1
−1 Ak

−1 .  .  . A3
−1A2

−1A1
−1  Sk implies Sk+1.

Combining the results of parts (1) and (2), you can conclude by mathematical induction 
that the formula is valid for all positive integers n. 
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A4 Appendix Mathematical Induction and Other Forms of Proofs

ProoF by contradiction

Another basic strategy for writing a proof is proof by contradiction. In mathematical 
logic, you describe proof by contradiction by the equivalence below.

p implies q  if and only if  not q implies not p.

One way to prove that q is a true statement is to assume that q is not true. If this leads 
you to a statement that you know is false, then you have proved that q must be true.

Example 5 shows how to use proof by contradiction to prove that √2 is irrational.

  using Proof by contradiction

Prove that √2 is an irrational number.

Solution

Begin by assuming that √2 is not an irrational number. Then √2 is rational and can 
be written as the quotient of two integers a and b (b ≠ 0) that have no common factors.

 √2 =
a
b

 Assume that √2 is a rational number.

 2b2 = a2 Square each side and multiply by b2.

This implies that 2 is a factor of a2. So, 2 is also a factor of a. Let a = 2c.

 2b2 = (2c)2 Substitute 2c for a.

 b2 = 2c2  Simplify and divide each side by 2.

This implies that 2 is a factor of b2, and it is also a factor of b. So, 2 is a factor of  
both a and b. But this is impossible because a and b have no common factors. It  
must be impossible that √2 is a rational number. You can conclude that √2 is an  
irrational number. 

  using Proof by contradiction

An integer greater than 1 is prime when its only positive factors are 1 and itself and 
composite when it has at least one other factor that is prime. Prove that there are  
infinitely many prime numbers.

Solution

Assume there are only finitely many prime numbers, p1, p2, .  .  . , pn. Consider the  
number N = p1p2 

.  .  . pn + 1. This number is either prime or composite. N is not prime 
because N ≠ pi. But, N is not composite because none of the primes ( p1, p2, .  .  . , pn) 
divide evenly into N. This is a contradiction, so the assumption is false.

It follows that there are infinitely many prime numbers. 

You can use proof by contradiction to prove many theorems in linear algebra. 

  using Proof by contradiction in linear algebra

Let A and B be n × n matrices such that AB is singular. Prove that either A or B is  
singular.

Solution

Assume that neither A nor B is singular. You know that a matrix is singular if and only 
if its determinant is zero, so det(A) and det(B) are both nonzero real numbers. By 
Theorem 3.5, det(AB) = det(A) det(B). So, det(AB) is not zero because it is a product 
of two nonzero real numbers. But this contradicts that AB is a singular matrix. So, you 
can conclude that the assumption was wrong and that either A or B is singular. 
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 Appendix Mathematical Induction and Other Forms of Proofs A5

uSing counterexaMPleS

Often you can disprove a statement using a counterexample. For instance, when 
Euler disproved Fermat’s conjecture about prime numbers of the form Fn = 22n + 1, 
n = 0, 1, 2, .  .  . , he used the counterexample F5 = 4,294,967,297, which is  
not prime.

  using a counterexample

Use a counterexample to show that the statement is false.

Every odd number is prime.

Solution

Certainly, you can list many odd numbers that are prime (3, 5, 7, 11), but the statement 
above is not true, because 9 is odd but it is not a prime number. The number 9 is a 
counterexample. 

Counterexamples can be used to disprove statements in linear algebra, as shown 
in the next two examples.

  using a counterexample in linear algebra

Use a counterexample to show that the statement is false.

If A and B are square singular matrices of order n, then A + B is a singular 
matrix of order n.

Solution

Let A = [1
0

0
0] and B = [0

0
0
1]. Both A and B are singular of order 2, but

A + B = [1
0

0
1]

is the identity matrix of order 2, which is not singular. 

  using a counterexample in linear algebra

Use a counterexample to show that the statement is false.

The set of all 2 × 2 matrices of the form

[1
c

b
d]

with the standard operations is a vector space.

Solution

To show that this set of matrices is not a vector space, let

A = [1
3

2
4] and B = [1

6
5
7].

Both A and B are of the stated form, but the sum of these matrices,

A + B = [2
9

7
11]

is not. This means that the set does not have closure under addition, so it does not  
satisfy the first axiom in the definition. 

reMarK
Recall that in order for a set  
to be a vector space, it must 
satisfy each of the ten axioms 
in the definition of a vector 
space. (See Section 4.2.)
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A6 Appendix Mathematical Induction and Other Forms of Proofs

Exercises

using Mathematical induction In Exercises 1–4, use 
mathematical induction to prove the formula for every 
positive integer n.

 1. 1 + 2 + 3 + .  .  . + n =
n(n + 1)

2

 2. 13 + 23 + 33 + .  .  . + n3 =
n2(n + 1)2

4

 3. 3 + 7 + 11 + .  .  . + (4n − 1) = n(2n + 1)

 4. (1 +
1
1)(1 +

1
2)(1 +

1
3) .  .  . (1 +

1
n) = n + 1

Proposing a Formula and using Mathematical 
induction In Exercises 5 and 6, propose a formula for 
the sum of the first n terms of the sequence. Then use 
mathematical induction to prove the formula.

 5. 21, 22, 23, .  .  .  6. 
1

1 ∙ 2
, 

1
2 ∙ 3

, 
1

3 ∙ 4
, .  .  .

using Mathematical induction In Exercises 7–14, use 
mathematical induction to prove the statement.

 7. n! > 2n, n ≥ 4

 8. 
1

√1
+

1

√2
+

1

√3
+ .  .  . +

1

√n
> √n, n ≥ 2

 9. For all integers n > 0,

a0 + a1 + a2 + .  .  . + an =
1 − an+1

1 − a
, a ≠ 1.

10.  If x1 ≠ 0, x2 ≠ 0, .  .  . , xn ≠ 0, then 
(x1 x2 x3 .  .  . xn)−1 = x1

−1x2
−1x3

−1 .  .  . xn
−1.

11.  (From Chapter 2) If A is an invertible matrix and k is a 
positive integer, then

(Ak)−1 = A−1A−1 .  .  . A−1 = (A−1)k

 
 k factors

12.  (From Chapter 2) (A1A2A3 .  .  . An)T = An
T .  .  . A3

TA2
TA1

T, 
assuming that A1, A2, A3, .  .  . , An are matrices with 
sizes such that the multiplications are defined.

13. (From Chapter 3)

∣A1A2A3 .  .  . An∣ = ∣A1∣∣A2∣∣A3∣.  .  .∣An∣
  where A1, A2, A3, .  .  . , An are square matrices of the 

same order.

14.  (From Chapter 6) If the standard matrices of the  
linear transformations T1, T2, T3, .  .  . , Tn are A1, A2, 
A3, .  .  . , An respectively, then the standard matrix for 
the composition

T(v) = Tn(Tn−1 .  .  . (T3(T2(T1(v)))) .  .  .)

 is A = AnAn−1 .  .  . A3A2A1.

using Proof by contradiction In Exercises 15–26, use 
proof by contradiction to prove the statement.

15.  If p is an integer and p2 is odd, then p is odd. (Hint: 
An odd number can be written as 2n + 1, where n is 
an integer.)

16.  If p is a positive integer and p2 is divisible by 2, then p 
is divisible by 2.

17.  If a and b are real numbers and a ≤ b, then 
a + c ≤ b + c.

18.  If a, b, and c are real numbers such that ac ≥ bc and 
c > 0, then a ≥ b.

19.  If a and b are real numbers and 1 < a < b, then 
a−1 > b−1.

20.  If a and b are real numbers and (a + b)2 = a2 + b2, 
then a = 0 or b = 0 or a = b = 0.

21. If a is a real number and 0 < a < 1, then a2 < a.

22.  The sum of a rational number and an irrational number 
is irrational.

23.  (From Chapter 3) If A and B are square matrices of 
order n such that det(AB) = 1, then both A and B are 
nonsingular.

24.  (From Chapter 4) In a vector space, the zero vector is 
unique.

25.  (From Chapter 4) Let S = {u, v} be a linearly  
independent set. Prove that the set {u − v, u + v} is 
linearly independent.

26.  (From Chapter 5) Let S = {x1, x2, .  .  . , xn} be a linearly  
independent set. Prove that if a vector y is not in  
span(S), then the set S1 = {x1, x2, .  .  . , xn, y} is linearly  
independent.

using a counterexample In Exercises 27–33, use a 
counterexample to show that the statement is false.

27. If a and b are real numbers and a < b, then a2 < b2.

28. The product of two irrational numbers is irrational.

29. If f  is a polynomial function and f(a) = f(b), then a = b.

30.  If f  and g are differentiable functions and y = f(x)g(x), 
then y′ = f′(x)g′(x).

31. The set of all 2 × 2 matrices of the form

[0
b

a
2]

 with the standard operations is a vector space.

32.  T: R2 → R2, T(x1, x2) = (x1 + 4, x2) is a linear  
transformation.

33.  (From Chapter 2) If A, B, and C are matrices and 
AC = BC, then A = B.
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 Answers to Odd-Numbered Exercises and Tests A7

Answers to Odd-Numbered Exercises and Tests

Chapter 1
Section 1.1 (page 10)
 1. Linear    3. Not linear    5. Not linear
 7. x = 2t    9. x = 1 − s − t
 y = t y = s
   z = t

11. 

x
1
2
3

3

4

−2
−2

−4

−4 4

x − y = 2

2x + y = 4

y  13. 

x

3x −  3y = 4

−x + y = 1
y

−3 2 3 4−1

−3
−4

1
2
3
4

 x = 2  No solution
 y = 0

15. 

−2 2 4 6 8 10
x

2

4

6

3x − 5y = 7

2x + y = 9
8

10

y  17. 

x

y

−2−4−6 4 6

2x −  y = 5
5x − y = 11−4

−12

 x = 4  x = 2
 y = 1  y = −1

19. 

1 2 3 6 7−1
−4
−6
−8

−10
−12

4
6 x + 3

4
y − 1

3
= 1+

2x − y = 12

x

y  21. 

1 2 4 5 6 7 8

−8

−2

−6

2
4
6
8

0.05x − 0.03y = 0.07

0.07x + 0.02y = 0.16

x

y

 x = 5  x = 2
 y = −2  y = 1

23. 

1 3 4−2

2

4

6

8

x − y = 3

x
4

  = 1  +
y
6

x

y  x = 18
5

   
y = 3

5

25. x1 = 5 27. x = 3
2 29. x1 = −t

 x2 = 3  y = 3
2  x2 = 2t

   z = 0  x3 = t

31. (a) 

−4

−3

4

3
−3x − y = 3

6 + 2 = 1x y

  (b) Inconsistent

33. (a) 

−4

−3

4

3
2x − 8y = 3

 1
2x + y = 0

  (b) Consistent
     (c) x = 1

2

        y = −1
4

     (d) x = 1
2

        y = −1
4

     (e)  The solutions are  
the same.

35. (a) 

−4

−3

4

3
4x − 8y = 9

0.8x − 1.6y = 1.8

  (b) Consistent
     (c)  There are infinitely 

many solutions.
     (d) x = 9

4 + 2t
        y = t
     (e)  The solutions are 

consistent.

37. x1 = −1 39. u = 60 41. x = −1
3

 x2 = −1  v = 60  y = −2
3

43. x = 14 45. x1 = 8 47. x = 3
 y = −2  x2 = 7  y = 2
     z = 1
49. No solution 51. x1 = 5

2 − 1
2t 53. No solution

   x2 = 4t − 1
   x3 = t
55. x = 1 57. x = −1.2 59. x1 = −15
 y = 0  y = −0.6  x2 = 40
 z = 3  z = 2.4  x3 = 45
 w = 2    x4 = −75
61. x1 = 1

5

 x2 = −4
5

 x3 = 1
2

63.  This system must have at least one solution because 
x = y = z = 0 is an obvious solution.

 Solution: x = 0
  y = 0
  z = 0
 This system has exactly one solution.
65.  This system must have at least one solution because 

x = y = z = 0 is an obvious solution.
 Solution: x = −3

5t
  y = 4

5t
  z = t
 This system has an infinite number of solutions.
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A8 Answers to Odd-Numbered Exercises and Tests

67. Apple juice: 103 mg
 Orange juice: 124 mg
69. (a)  True. You can describe the entire solution set using 

parametric representation.
  ax + by = c
   Choosing y = t as the free variable, the solution is

  x =
c
a

−
b
a

t, y = t, where t is any real number.

 (b) False. For example, consider the system
  x1 + x2 + x3 = 1
  x1 + x2 + x3 = 2
  which is an inconsistent system.
 (c)  False. A consistent system may have only one solution.
71.  3x1 − x2 =  4
  −3x1 + x2 =  −4
 (The answer is not unique.)

73. x
y

=
=

3
−4

    
75. x =

2
5 − t

   y =
1

4t − 1

   z =
1
t
, where t ≠ 5, 

1
4

, 0

77. x = cos θ    79. k = ±1
 y = sin θ
81. All k ≠ 0    83. k = −2    85. k = 1,−2
87. (a) Three lines intersecting at one point
 (b) Three coincident lines
 (c) Three lines having no common point
89.  Answers will vary. (Hint: Choose three different values of 

x and solve the resulting system of linear equations in the 
variables a, b, and c.)

91.  x − 4y =  −3  x −  4y =  −3
  5x − 6y =  13   14y =  28
 

x

x − 4y = −3

5x − 6y = 13

5−2−4 3 4

2

−4
−5

3
4
5

y   

x

x − 4y = −3
5−2−4 43

−4
−3
−2

−5

3
4
5

14y = 28

y

 x −  4y =  −3  x = 5
  y =  2  y = 2
 

x

x − 4y = −3
5−2−4 43

−4
−3
−2

−5

3
4
5

y = 2

y   

x
−2−4 321

−4
−3
−2

−5

3

1

4
5

y = 2

x = 5
y

4

 The intersection points are all the same.
93. x = 39,600
 y = 398
  The graphs are misleading because, while they appear parallel, when 

the equations are solved for y, they have slightly different slopes.

Section 1.2 (page 22)
 1. 3 × 3    3. 2 × 4    5. 4 × 5
 7. Add 5 times the second row to the first row.
 9.  Interchange the first and second rows, add 3 times the new first 

row to the third row.
11. x1 = 0    13.  x1 =  2
 x2 = 2  x2 =  −1
    x3 =  −1
15. x1 = 1    17.  x1 =  −26
 x2 = 1  x2 =  13
 x3 = 0  x3 =  −7
    x4 =  4
19. Reduced row-echelon form
21. Not in row-echelon form
23. Not in row-echelon form
25. x = 2    27. No solution
 y = 3
29. x =  4    31.  x1 =  4
 y =  −2  x2 =  −3
    x3 =  2
33. No solution    35. x = 100 + 96t − 3s
   y = s
   z = 54 + 52t
   w = t
37. x = 0 39. x1 = 23.5361 + 0.5278t
 y = 2 − 4t x2 = 18.5444 + 4.1111t
 z = t x3 = 7.4306 + 2.1389t
   x4 = t
41. x1 =  2    43. x1 = 0
 x2 =  −2 x2 = −t
 x3 =  3 x3 = t
 x4 =  −5
 x5 =  1
45. x1 =  −t    47. $100,000 at 3%
 x2 = s $250,000 at 4%
 x3 = 0 $150,000 at 5%
 x4 = t
49. Augmented
 (a) Two equations in two variables
 (b) All real k ≠ −4

3

 Coefficient
 (a) Two equations in three variables
 (b) All real k
51. (a) a + b + c = 0
 (b) a + b + c ≠ 0
 (c) Not possible

53. (a) x = 8
3 − 5

6t (b) x = 18
7 − 11

14t
  y = −8

3 + 5
6t  y = −20

7 + 13
14t

  z = t  z = t
 (c) x = 3 − t (d)  Each system has an
  y = −3 + t  infinite number of
  z = t  solutions.

55. [1
0

0
1]

57. [1
0

0
1], [1

0
k
0], [0

0
1
0], [0

0
0
0]
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 Answers to Odd-Numbered Exercises and Tests A9

59. (a)  True. In the notation m × n, m is the number of rows of the 
matrix. So, a 6 × 3 matrix has six rows.

 (b)  True. On page 16, the sentence reads, “Every matrix is 
row-equivalent to a matrix in row-echelon form.”

 (c)  False. Consider the row-echelon form

  [
1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

0
1
2
3
]

   which gives the solution x1 = 0, x2 = 1, x3 = 2, and 
x4 = 3.

 (d)  True. Theorem 1.1 states that if a homogeneous system 
has fewer equations than variables, then it must have an 
infinite number of solutions.

61. Yes, it is possible:
 x1 + x2 + x3 = 0
 x1 + x2 + x3 = 1
63. ad − bc ≠ 0    65. λ = 1, 3
67. Sample answer:  x + 3z =  −2
    y + 4z =  1
    2y + 8z =  2
69.  The rows have been interchanged. The first elementary row 

operation is redundant, so you can just use the second and third 
elementary row operations.

Section 1.3 (page 32)
 1. (a) p(x) = 29 − 18x + 3x2

 (b) 

x

1

1

2

2

3

3

4

4

5

5

6

6

(2, 5) (4, 5)

(3, 2)

y

 3. (a) p(x) = 2x
 (b) 

x

2

1 2 3 4 5

4

6

8

10

(2, 4)
(3, 6)

(5, 10)

y

 5. (a) p(x) = −3
2x + 2x2 + 1

2x3

 (b) 

x

(4, 58)

(1, 1)

(0, 0)

30

40

50

60

y

1 2 3 4

(−1, 3)

 7. (a) p(x) = −6 − 3x + x2 − x3 + x4

 (b) 

x

y

−1−2−3 1 3

10

20

30

(2, 0)

(−2, 28)

(−1, 0)

(0, −6) (1, −8)

 9. (a) Let z = x − 2014.
  p(z) = 7 + 7

2z + 3
2z2

  p(x) = 7 + 7
2(x − 2014) + 3

2(x − 2014)2

 (b) 

z

3

9

12

−1 1
(2013) (2015)(2014)

(−1, 5)

(0, 7)

(1, 12)

y

11. (a) p(x) = 0.254 − 1.579x + 12.022x2

 (b) 

x

y

−0.1−0.2 0.1 0.2

0.1

0.2

(0.072, 0.203)

(0.120, 0.238)

(0.148, 0.284)

13. p(x) = −
4
π2 x2 +

4
π x

 sin 
π
3

≈
8
9

≈ 0.889

 (Actual value is √3�2 ≈ 0.866.)
15. (x − 5) + (y − 10)2 = 65
17.  p(x) = 282 + 3(x − 2000) − 0.03(x − 2000)2  

2020: 330 million; 2030: 345 million
19. (a) Using z = x − 2000

  

a0

a0

a0

a0

+
+
+
+

7a1

8a1

9a1

10a1

+
+
+
+

49a2

64a2

81a2

100a2

+
+
+
+

343a3

512a3

729a3

1000a3

=
=
=
=

14,065
17,681
14,569
18,760

 (b) p(x) =  −1,378,235 + 500,729.5(x − 2000) 
 − 59,488(x − 2000)2 + 2338.5(x − 2000)3

   No. Answers will vary. Sample answer: The model does 
not produce reasonable outcomes after 2010.

21. (a) x1 = 700 − s − t (b) x1 =  600 (c) x1 =  500
  x2 = 300 − s − t  x2 =  200  x2 =  100
  x3 = s  x3 =  0  x3 =  100
  x4 = 100 − t  x4 =  0  x4 =  0
  x5 = t  x5 =  100  x5 =  100
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23. (a) x1 = 100 + t (b) x1 =  100   (c) x1 =  200
  x2 = −100 + t x2 =  −100 x2 =  0
  x3 = 200 + t x3 =  200 x3 =  300
  x4 = t x4 =  0 x4 =  100
 (d) x1 = 400
  x2 = 200
  x3 = 500
  x4 = 300
25. I1 = 0
 I2 = 1
 I3 = 1
27. (a) I1 = 1   (b) I1 = 0
  I2 = 2 I2 = 1
  I3 = 1 I3 = 1
29. T1 = 37.5°, T2 = 45°, T3 = 25°, T4 = 32.5°
31. A = 1, B = 3, C = −2
33. A = 1, B = 2, C = 1
35. x = 2
 y = 2
 λ = −4
37. p(x) = 1 − 2x + 2x2

 

x

1 1
2 2(       ),

(0, 1)

1

1

y

1
2

1
2

39. Solve the system:

 
p(−1)

p(0)
p(1)

=
=
=

a0

a0

a0

−

+

a1

a1

+

+

a2

a2

=
=
=

0
0
0

 a0 = a1 = a2 = 0

41. (a) p(x) = 1 − 7
15x + 1

15x2

 (b) p(x) = 1 = x
  

−1 2 4

3

3

4

5

x
(0, 1)

2, 4,
1 1
3 5

y = − + 1 x2 7x
15 15

) )) )

y

1

y = 1
1 + x

Review Exercises (page 35)
 1. Not linear    3. Linear    5. Not linear
 7. x = −1

3 + 4
3s − 2

3t
 y = s
 z = t
 9. x = 1

2    11. x =  −12    13. x = 0

 y = 3
2 y =  −8 y = 0

15. No solution
17. x = 0 19. x1 =  −

1
2 21. 2 × 3

 y = 0  x2 =  45
23. x1 = 5 25. x1 = −2t
 x2 = −5  x2 = t
   x3 = 0
27. Reduced row-echelon form
29. Not in row-echelon form
31. x =  2 33. x =  12 35. x = 4 + 3t

 y =  −3  y =  −1
3  y = 5 + 2t

 z =  3  z =  1  z = t
37. No solution 39. x1 =  1 41. x1 =  21.6
   x2 =  4  x2 =  −6.1
   x3 =  −3  x3 =  −0.1
   x4 =  −2
43. x = 0 45. No solution 47. x1 =  2t
 y = 2 − 4t    x2 =  −3t
 z = t    x3 =  t
49. x1 = 0    51. k = ±1
 x2 = 0
 x3 = 0
53. (a) b = 2a and a ≠ −3
 (b) b ≠ 2a
 (c) a = −3 and b = −6
55.  Use an elimination method to get both matrices in reduced 

row-echelon form. The two matrices are row-equivalent 
because each is row-equivalent to

 [
1
0
0

0
1
0

0
0
1].

57. [
1
0
0

⋮
0

0
1
0

⋮
0

−1
2
0

⋮
0

−2
3
0

⋮
0

     

.  .  .

.  .  .

.  .  .

.  .  .

2 − n
n − 1
        0
        ⋮
        0

]
59. (a) False. See page 3, following Example 2.
 (b) True. See page 5, Example 4(b).
61. 6 touchdowns, 6 extra-point kicks, 1 field goal
63. A = 2, B = 6, C = 4
65. (a) p(x) = 90 − 135

2 x + 25
2 x2

 (b) 

1 2 3 4 5

5

10

15

20

25

x

(2, 5)
(3, 0)

(4, 20)

y

67. p(x) = 50 + 15
2 x + 5

2x2

 (First year is represented by x = 0.)
 Fourth-year sales: p(3) = 95

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 Answers to Odd-Numbered Exercises and Tests A11

69. (a) a0

a0

a0

+
+

4a1

80a1

+
+

16a2

6400a2

=
=
=

80
68
30

 (b) and (c) a0 =  80

   a1 =  −
25
8

   a2 =  132

   So, y = 1
32x2 − 25

8 x + 80.

 (d) The results of parts (b) and (c) are the same.
 (e)  There is precisely one polynomial function of degree 

n − 1 (or less) that fits n distinct points.
71. (a) x1 = 100 − r + t (b) x1 =  50
  x2 = 300 − r + s  x2 =  250
  x3 = r  x3 =  100
  x4 = −s + t  x4 =  0
  x5 = s  x5 =  50
  x6 = t  x6 =  50

Chapter 2
Section 2.1 (page 48)
 1. x = −4, y = 22
 3. x = 2, y = 3

 5. (a) [−2
6

0
3]   (b) [ 4

−2
4

−1]   (c) [2
4

4
2]

 (d) [5
0

6
0]   (e) [−

5
2

5

−1
5
2
]

 7. (a) [ 4
−4

−2
0

5
2]   (b) [0

2
4

−2
−3

6]
 (c) [ 4

−2
2

−2
2
8]   (d) [2

1
5

−3
−2
10]

 (e) [ 3

−7
2

−5
2
1
2

9
2

0]
 9. (a), (b), (d), and (e) Not possible

 (c) [ 12
−2

0
−8

6
0]

11. (a) c21 = −6   (b) c13 = 29
13. x = 3, y = 2, z = 1

15. (a) [0
6

15
12]   (b) [−2

31
2

14]

17. (a) [
−8

4
−20

−2
8
1

−5
17
4]   (b) [

9
3

−17

5
11

−1

4
−5

−16]
19. (a) Not possible   (b) [

3
10
26

−4
16
46]

21. (a) [12]   (b) [
6
9
0

4
6
0

2
3
0]

23. (a) [
−1

4
0

19
−27

14]   (b) Not possible

25. (a) [
3

10
26]   (b) Not possible

27. (a) [
60

−20
10
60

72
−24

12
72

]   (b) Not possible

29. 3 × 4    31. 4 × 2    33. 3 × 2
35. Not possible, sizes do not match.

37. x1 = t, x2 = 5
4t, x3 = 3

4t

39. [−1
−2

1
1] [x1

x2
] = [4

0] 41. [−2
6

−3
1] [x1

x2
] = [ −4

−36]
 [x1

x2
] = [4

8] [x1

x2
] = [−7

6]

43. [
1

−1
2

−2
3

−5

3
−1

5] [
x1

x2

x3
] = [

9
−6
17]

 [
x1

x2

x3
] = [

1
−1

2]
45. [

1
−3

0

−5
1

−2

2
−1

5] [
x1

x2

x3
] = [

−20
8

−16]
 [

x1

x2

x3
] = [

−1
3

−2]
47. [

2
0
1
1

−1
3
0
1

0
−1

1
2

1
−1
−3

0
] [

x1

x2

x3

x4

] = [
3

−3
−4

0
]

 [
x1

x2

x3

x4

] = [
1
2

−1
2

0
3
2

]
49. b = 3[1

3] + 0[−1
−3] − 2[2

1] = [−1
7]

 (The answer is not unique.)

51. b = 1[
1
1
2] + 2[

1
0

−1] + 0[
−5
−1
−1] = [

3
1
0]

53. [−5
3

2
−1]    55. a = 7, b = −4, c = −1

2, d = 7
2

57. [
1
0
0

0
4
0

0
0
9]

59. AB = [−10
0

0
−12]

 BA = [−10
0

0
−12]

61. Proof    63. 2    65. 4
67. Proof    69. w = z, x = −y
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71. Let A = [a11

a21

a12

a22
].

 Then the given matrix equation expands to

 [a11 + a21

a11 + a21

a12 + a22

a12 + a22
] = [1

0
0
1].

  Because a11 + a21 = 1 and a11 + a21 = 0 cannot both be 
true, you can conclude that there is no solution.

73. (a) A2 = [i2

0
0
i2] = [−1

0
0

−1]
  A3 = [i3

0
0
i3] = [−i

0
0

−i]
  A4 = [i4

0
0
i4] = [1

0
0
1]

 (b) B2 = [−i2

0
0

−i2] = [1
0

0
1] = A4

75. Proof    77. Proof
79. [$1037.50 $1400.00 $1012.50]
 Each entry represents the total profit at each outlet.

81. [
0.40
0.28
0.32

0.15
0.53
0.32

0.15
0.17
0.68]

  P2 gives the proportions of the voting population that changed 
parties or remained loyal to their parties from the first election 
to the third.

83. [
−1
−1

0

4
1
0

0
0
5]

85. (a)  True. On page 43, “. . . for the product of two matrices to 
be defined, the number of columns of the first matrix must 
equal the number of rows of the second matrix.”

 (b)  True. On page 46, “. . . the system Ax = b is consistent if 
and only if b can be expressed as . . . a linear combination, 
where the coefficients of the linear combination are a 
solution of the system.”

87. (a) AT = [−1
1

−4
2

−2
3]

  AAT = [−1
−1

−2
−4

−3
−2]

  Triangle associated with T Triangle associated with AT
  

−1−2−3 1 2 3 4

−2
−3
−4

1
2
3
4

y

x

(2, 4)

(1, 1)

(3, 2)

 

−1−2 1 2 3 4

−2
−3
−4

2
3
4

y

x

(−1, 1)

(−2, 3)

(−4, 2)

  Triangle associated with AAT
  

−2 1 2 3 4

−3
−4

2
1

3
4

y

x
(−1, −1)

(−2, −4)

(−3, −2)

   The transformation matrix A rotates the triangle 90° 
counterclockwise about the origin.

 (b)  Given the triangle associated with AAT, the transformation 
that would produce the triangle associated with AT would 
be a 90° clockwise rotation about the origin. Another such 
rotation would produce the triangle associated with T.

Section 2.2 (page 59)

 1. [−8
15

−7
−1]    3. [−24

−12
−4
32

12
12]    5. [ 10

−59
8
9]

 7. [ 3
13

2
4]    9. [ 0

12
−12
−24]    11. [ 7

28
7

14]

13. (a) [
3

−4
3

10
3

2
3

11
3

0
]   (b) [

−13
3

4

−26
3

−10
3

−5

−16
3

]
 (c) [

−14
7

−17

−4
−17
−2]   (d) [

−13
6

−1
3

0

1

−17
6
10
3

]
15. [−2

2
−10

0
0

10]    17. [−3
−2

−5
−5

−10
−5]

19. [ 1
−2

6
−2

−1
−8]    21. [12

8
−4

4]
23. (a) [12

24
7

15]   (b) [12
24

7
15]

25. AB = [−9
−3

2
6], BA = [−8

2
4
5]

27. AC = BC = [2
2

3
3]    29. Proof

31. [1
0

2
−1]    33. [2

0
2
0]    35. [1

0
0
1]

37.  (A + B)(A − B) = A2 + BA − AB − B2, which is not 
necessarily equal to A2 − B2 because AB is not necessarily 
equal to BA.

39. [ 1
−2

−3
4

5
−1]    41. (AB)T = BTAT = [2

4
−5
−1]

43. (AB)T = BTAT = [
4

10
1

0
4

−1

−4
−2
−3]

45. (a) [
16
8
4

8
8
0

4
0
2]   (b) [21

3
3
5]
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47. (a) [
68
26

−10
6

26
41
3

−1

−10
3

43
5

6
−1

5
10

]   (b) [
29

−14
5

−5

−14
81

−3
2

5
−3
39

−13

−5
2

−13
13

]
49. [

1
0
0
0
0

0
1
0
0
0

0
0
1
0
0

0
0
0
1
0

0
0
0
0
1
]

51. [
1
0
0
0
0

0
−1

0
0
0

0
0
1
0
0

0
0
0

−1
0

0
0
0
0
1
]    53. [±3

0
0

±2]

55. (a) True. See Theorem 2.1, part 1.
 (b) False. See Theorem 2.6, part 4, or Example 9.
 (c) True. See Example 10.
57. (a) a = 3 and b = −1
 (b)  a +  b =  1
     b =  1
   a    = 1
  No solution
 (c)  a +  b +  c =  0
     b +  c =  0
   a    + c =  0
  a = −c → b = 0 → c = 0 → a = 0
 (d) a = −3t
  b = t
  c = t
  Let t = 1: a = −3, b = 1, c = 1

59. [−4
8

0
2]    61–69. Proofs

71. Skew-symmetric    73. Symmetric    75. Proof

77. (a) 1
2(A + AT)

  = 12([
a11

a21

⋮
an1

a12

a22

⋮
an2

.  .  .

.  .  .

.  .  .

a1n

a2n

⋮
ann

] + [
a11

a12

⋮
a1n

a21

a22

⋮
a2n

.  .  .

.  .  .

.  .  .

an1

an2

⋮
ann

])
  = 12[

2a11

a21 + a12

⋮
an1 + a1n

a12 + a21

2a22

⋮
an2 + a2n

.  .  .

.  .  .

.  .  .

a1n + an1

a2n + an2

⋮
2ann

]
 (b) 1

2(A − AT)

  = 12([
a11

a21

⋮
an1

a12

a22

⋮
an2

.  .  .

.  .  .

.  .  .

a1n

a2n

⋮
ann

] − [
a11

a12

⋮
a1n

a21

a22

⋮
a2n

.  .  .

.  .  .

.  .  .

an1

an2

⋮
ann

])
  = 12[

0
a21 − a12

⋮
an1 − a1n

a12 − a21

0

⋮
an2 − a2n

.  .  .

.  .  .

.  .  .

a1n − an1

a2n − an2

⋮
0
]

 (c) Proof
 (d)  A = 1

2(A − AT) + 1
2(A + AT)

   = [
0

−4
1
2

4

0
1
2

−1
2

−1
2

0
] + [

2

1
7
2

1

6
1
2

7
2
1
2

1
]

 Skew-symmetric Symmetric
79. Sample answers:
 (a) An example of a 2 × 2 matrix of the given form is

  A2 = [0
0

1
0].

  An example of a 4 × 4 matrix of the given form is

  A3 = [
0
0
0

1
0
0

2
3
0].

 (b) A2
2 = [0

0
0
0]

  A2
3 = [

0
0
0

0
0
0

3
0
0] and A3

3 = [
0
0
0

0
0
0

0
0
0]

 (c)  The conjecture is that if A is a 4 × 4 matrix of the given 
form, then A4 is the 4 × 4 zero matrix. A graphing utility 
shows this to be true.

 (d)  If A is an n × n matrix of the given form, then An is the 
n × n zero matrix.

Section 2.3 (page 71)

 1. AB = [1
0

0
1] = BA    3. AB = [1

0
0
1] = BA

 5. AB = [
1
0
0

0
1
0

0
0
1] = BA    7. [

1
2

0

0
1
3
]

 9. [ 7
−3

−2
1]    11. [−19

−4
−33
−7]    13. [

1
−3

3

1
2

−3

−1
−1

2]
15. Singular    17. [

−3
2
9
2

−1

3
2

−7
2

1

1

−3

1
]    19. [

1
2

0

0

0
1
3

0

0

0
1
5

]
21. [

3.75
3.4583

4.16

0
−1

0

−1.25
−1.375

−2.5]    23. [
1

−3
4
7
20

0
1
4

−1
4

0

0
1
5

]
25. Singular    27. [

−24
−10
−29

12

7
3
7

−3

1
0
3

−1

−2
−1
−2

1
]    29. Singular

31. [
5
13
1
13

− 3
13
2
13
]    33. Does not exist    35. [

16
59

− 4
59

15
59
70
59
]
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37. [
11
4
3
4

3
2
1
2
]    39. [

1
4

0

0

0

1

0

0

0
1
9

]
41. (a) [35

4
17
10]   (b) [2

5
−7

6]   (c) [ 1

−7
2

5
2

3]
43. (a) 1

16[
138
37
24

56
26
34

−84
−71

3]   (b) 1
4[

4
−2

3

6
2

−8

1
4
2]

 (c) 1
8[

4
6
1

−2
2
4

3
−8

2]
45. (a) x = 1 (b) x = 2
  y = −1 y = 4
47. (a) x1 = 1 (b) x1 = 0
  x2 = 1 x2 = 1
  x3 = −1 x3 = −1
49. x1 = 0 51. x1 = 1
 x2 = 1 x2 = −2
 x3 = 2 x3 = 3
 x4 = −1 x4 = 0
 x5 = 0 x5 = 1
   x6 = −2
53. x = 4    55. x = 6

57. [−1
3
4

1
2

−1
4
]    59. Proof; A−1 = [ sin θ

cos θ
−cos θ

sin θ]

61. F−1 = [
188.24

−117.65
−11.76

−117.65
323.53

−117.65

−11.76
−117.65

188.24]; w = [
25
40
75]

63–69. Proofs
71. (a) True. See Theorem 2.10, part 1.
 (b) False. See Theorem 2.9.
 (c)  True. See “Finding the Inverse of a Matrix by Gauss-

Jordan Elimination,” part 2, page 64.
73.  The sum of two invertible matrices is not necessarily invertible. 

For example, let

 A = [1
0

0
1] and B = [−1

0
0

−1].

75. (a) [
−1

0

0

0
1
3

0

0

0
1
2

]   (b) [
2
0
0

0
3
0

0
0
4]

77. (a) Proof   (b) H = [
0

−1
0

−1
0
0

0
0
1]

79. A = PDP−1

 No, A is not necessarily equal to D.
81.  Answers will vary. Sample answer: For an n × n matrix A, 

set up the matrix [A I] and row reduce it until you have 
[I A−1]. If this is not possible or if A is not square, then A has 
no inverse. If it is possible, then the inverse is A−1.

83.  Answers will vary. Sample answer: For the system of 
equations

 a11x1 + a12x2 + a13x3 = b1

 a21x1 + a22x2 + a23x3 = b2

 a31x1 + a32x2 + a33x3 = b3

 write as the matrix equation
 Ax = b

 [
a11

a21

a31

a12

a22

a32

a13

a23

a33
] [

x1

x2

x3
] = [

b1

b2

b3
].

 If A is invertible, then the solution is x = A−1b.

Section 2.4 (page 82)
 1. Elementary, multiply Row 2 by 2.
 3. Elementary, add 2 times Row 1 to Row 2.
 5. Not elementary
 7. Elementary, add −5 times Row 2 to Row 3.

 9. [
0
0
1

0
1
0

1
0
0]    11. [

0
0
1

0
1
0

1
0
0]

13. Sample answer:

 [
1
5

0

0

1] [0
1

1
0] [0

5
1

10
7

−5] = [1
0

2
1

−1
7]

15. Sample answer:

 [
1

0

0

0

1

0

0

0
1
2

] [
1

0

0

0
1
4

0

0

0

1
] [

1
0
6

0
1
0

0
0
1]

 ∙ [
1
0

−6

−2
4

12

−1
8
8

0
−4

1] = [
1

0

0

−2

1

0

−1

2

1

0

−1
1
2

]
17. Sample answer:

 [
1

0

0

0

0

1

0

0

0

0

−1
5

0

0

0

0

1
] [

1
0
0
0

0
1
3
0

0
0
1
0

0
0
0
1
] [

1
0
0
1

0
1
0
0

0
0
1
0

0
0
0
1
]

 ∙ [
1
0
2
0

0
1
0
0

0
0
1
0

0
0
0
1
] [

1

0

0

0

0
1
2

0

0

0

0

1

0

0

0

0

1
] [

1
−3

0
0

0
1
0
0

0
0
1
0

0
0
0
1
]

 ∙ [
0
0
1
0

0
1
0
0

1
0
0
0

0
0
0
1
] [

−2
3
1

−1

1
−4
−2

2

0
0
2

−2
] = [

1
0
0
0

−2
1
0
0

2
−3

1
0
]

19. [0
1

1
0]    21. [

0
0
1

0
1
0

1
0
0]

23. [
1
k
0
0

0

1
0

0

0
1
], k ≠ 0
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25. [ 0

−1
2

1
3
2
]    27. [

1

0

0

0
1
6

0

1
4
1
24
1
4

]
29. [1

1
0
1] [1

0
−1

1] [1
0

0
−2]

 (The answer is not unique.)

31. [1
0

1
1] [1

3
0
1] [1

0
0

−1]
 (The answer is not unique.)

33. [
1

−1
0

0
1
0

0
0
1] [

1
0
0

−2
1
0

0
0
1]

 (The answer is not unique.)

35. [
1
0
0
0

0
−1

0
0

0
0
1
0

0
0
0
1
] [

1
0
0
0

0
1
0
0

0
0
2
0

0
0
0
1
]

 [
1
0
0
0

0
1
0
0

0
0
1
0

0
0
0

−1
] [

1
0
0
0

0
1
0
0

0
0
1

−1

0
0
0
1
]

 [
1
0
0
0

0
1
0
0

0
0
1
0

1
0
0
1
] [

1
0
0
0

0
1
0
0

0
−3

1
0

0
0
0
1
]

 (The answer is not unique.)

37. No. For example, [1
2

0
1] [1

0
1
1] = [1

2
1
3].

39. [
1
0

−
a
c

0
1

−
b
c

0
0
1
c
]

41. (a)  True. See “Remark” next to “Definition of an Elementary 
Matrix,” page 74.

 (b)  False. Multiplication of a matrix by a scalar is not a single 
elementary row operation, so it cannot be represented by a 
corresponding elementary matrix.

 (c) True. See Theorem 2.13.

43. [ 1
−2

0
1] [1

0
0
1]

 (The answer is not unique.)

45. [
1
2

−1

0
1
1

0
0
1] [

3
0
0

0
1
0

1
−1

2]
 (The answer is not unique.)

47. x = 1
3

 y = 1
3

 z = −5
3

49. Idempotent    51. Not idempotent
53. Case 1: b = 1, a = 0
 Case 2: b = 0, a = any real number

55–59. Proofs    61. Answers will vary.

Section 2.5 (page 91)
 1. Not stochastic    3. Stochastic    5. Stochastic
 7. Los Angeles: 25 planes, St. Louis: 13 planes, Dallas: 12 planes

 9. X1 = [
0.15
0.17
0.68], X2 = [

0.175
0.217
0.608], X3 = [

0.1875
0.2477
0.5648]

11. (a) 350   (b) 475
13. (a) 25   (b) 44   (c) 40
15. (a)  Nonsmokers: 5025; smokers of 1 pack/day or less: 2500; 

smokers of more than 1 pack/day: 2475
 (b)  Nonsmokers: 5047; smokers of 1 pack/day or less: about 

2499; smokers of 1 pack/day or more: about 2454
 (c)  Nonsmokers: about 5159; smokers of 1 pack/day or less: 

about 2478; smokers of 1 pack/day or more: about 2363

17. Regular; [
1
6
5
6
]    19. Not regular; [1

0]

21. Regular; [
2
5
3
5
]    23. Regular; [

43
101
16
101
42
101

]
25. Not regular; [

1 − t
t
0],  0 ≤ t ≤ 1

27. Regular; [
145
499
260
499
94
499

]    29. Regular; [
0.4
0.3
0.2
0.1

]
31. (a) [

0.2
0.3
0.5]   (b) [

1
7
2
7
4
7

]
33. [0.2

0.8]
  Eventually, 20% of the members of the community will make 

contributions and 80% will not.

35. [
4
17

11
17

2
17
]

  Eventually, 200 stockholders will be invested in Stock A,  
550 will be invested in Stock B, and 100 will be invested in 
Stock C.

37.  Absorbing; S3 is absorbing and it is possible to move from S1 
to S3 in two transitions and from S2 to S3 in one transition.

39.  Absorbing; S3 is absorbing and it is possible to move from S1 
or S2 to S3 in one transition and from S4 to S3 in two transitions.

41. [
0
1
0]    43. [

1
0
0
0
]    45. 16,875 people

47.  Sample answer: The entries corresponding to nonabsorbing 
states are 0.
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49. (a) X ≈ [
0

0.5536
0

0.4464
]   (b) X ≈ [

0
0.6554

0
0.3446

]
51. Yes; [

0

1 − 11
6 t
5
6t

t
],  0 ≤ t ≤ 6

11

53. Proof    55. Answers will vary.

Section 2.6 (page 102)
 1. Uncoded: [19 5 12], [12 0 3], [15 14 19],
 [15 12 9], [4 1 20], [5 4 0]
  Encoded:  −48, 5, 31, −6, −6, 9, −85, 23, 43, 

−27, 3, 15, −115, 36, 59, 9, −5, −4
 3. HAPPY_NEW_YEAR    5. ICEBERG_DEAD_AHEAD
 7. MEET_ME_TONIGHT_RON
 9.  _SEPTEMBER_THE_ELEVENTH_WE_WILL_ALWAYS_

REMEMBER

11.

   Coal Steel

 D = [0.1
0.8

0.2
0.1] 

Coal
Steel

 X = [20,000
40,000] 

Coal
Steel

13. X = [
8622.0
4685.0
3661.4] 

Farmer
Baker
Grocer

15. (a) 

−1 2

2

3

4

x

(−2, 0)
(0, 1)

(2, 3)

y

1

 17. (a) 

x

1

−1 2 3

2

3

4
(0, 4)

(1, 3)

(1, 1) (2, 0)

y

1

 (b) y = 4
3 + 3

4x  (b) y = 4 − 2x

 (c) 1
6  (c) 2

19. y = −1
3 + 2x    21. y = 1.3 + 0.6x

23. y = 0.412x + 3    25. y = −0.5x + 7.5
27. (a) y = −1.78x + 127.6
 (b) about 69
29. (a) y = −0.5x + 126
 (b) 

80
40

160

90

(100, 75)
(120, 68)

(140, 55)

 (c) Number 100 120 140

Actual 75 68 55

Estimated 76 66 56

  The estimated values are close to the actual values.
 (d) 41%   (e) 172
31. Answers will vary.

Review Exercises (page 104)

 1. [−13
0

−8
11

18
−19]    3. [

14
14
36

−2
−10
−12

8
40
48]

 5. [
4
0
0

6
6
0

3
−10

6]    7. [2
1

1
4] [x1

x2
] = [−8

−4], x = [−4
0]

 9. [
−3

2
1

−1
4

−2

1
−5

3] [
x1

x2

x3
] = [

0
−3

1], x = [
2
3

−17
3

−11
3

]
11. AT = [

1
2

−3

0
1
2], ATA = [

1
2

−3

2
5

−4

−3
−4
13],

 AAT = [ 14
−4

−4
5]

13. AT = [1 3 −1], ATA = [11]

 AAT = [
1
3

−1

3
9

−3

−1
−3

1]
15. [1

2
−1
−3]    17. [

3
20
3
10

−1
5

3
20

− 1
30

−1
5

1
10

− 2
15
1
5

]    19. [x1

x2
] = [ 10

−12]

21. [
x1

x2

x3
] = [

2
−3

3]    23. [ 1
−5]    25. [

0

−1
7
3
7

]
27. [

1
14

− 1
21

1
42
2
21
]    29. x ≠ −3    31. [

1
0
0

0
1
0

−4
0
1]

33. [1
0

3
1] [2

0
0
1]

 (The answer is not unique.)

35. [
1
0
0

0
1
0

0
0
4] [

1
0
0

0
1
0

0
−2

1] [
1
0
0

0
1
0

1
0
1]

 (The answer is not unique.)

37. [−1
0

0
−1] and [1

0
0
1]

 (The answer is not unique.)

39. [0
0

0
0], [1

0
0
1], and [1

0
0
0]

 (The answer is not unique.)
41. (a) a =  −1   (b) and (c) Proofs
  b =  −1
  c =  1

43. [1
3

0
1] [2

0
5

−1]
 (The answer is not unique.)

45. [
1
0

−4

0
1
5

0
0
1] [

4
0
0

1
3
0

0
−7
36]

 (The answer is not unique.)
47. x = 4, y = 1, z = −1
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49. (a) [418
90

454
100]   (b) [209

45
227
50]

51. (a) [
580b11

560b11

860b11

+
+
+

840b21

420b21

1020b21

+
+
+

320b31

160b31

540b31

          
          
          

128.20
77.60

178.60]
   The first column gives the total sales for gas on each day 

and the second column gives the total profit for each day.
 (b) $384.40

53. [0
0

0
0]    55. Stochastic    57. Not stochastic

59. X1 = [
5
12
7
12
], X2 = [

17
48
31
48
], X3 = [

65
192
127
192

]
61. X1 = [

0.375
0.475
0.150], X2 = [

0.3063
0.4488
0.2450], X3 ≈  [

0.2653
0.4274
0.3073]

63. (a) 120   (b) 144

65. Regular; [
5
7
2
7
]    67. Not regular; [

0
0
1]

69. [
3
7
4
7
]

  Eventually, 3
7 of the customers will turn in their tickets and 4

7 
will not.

71. Not absorbing; no state is absorbing.
73. (a) False. See Theorem 2.1, part 1, page 52.
 (b) True. See Theorem 2.6, part 2, page 57.
75. (a) False. The entries must be between 0 and 1 inclusive.
 (b) True. See page 90, Example 7(a).
77. Uncoded:  [15 14] [5 0] [9 6] [0 2] [25 0] 

[12 1] [14 4]
 Encoded: 103 44 25 10 57 24 4 2 125 50 62 25 78 32

79. A−1 = [3
4

2
3]; ALL_SYSTEMS_GO

81. _CAN_YOU_HEAR_ME_NOW

83. D = [0.20
0.30

0.50
0.10], X ≈ [133,333

133,333]
85. y = 20

3 − 3
2x    87. y = 2.5x

89. (a) y = 13.4x + 164
 (b) y = 13.4x + 164; They are the same.

 (c) Year 2008 2009 2010 2011 2012 2013

Actual 270 286 296 316 326 336

Estimated 271 285 298 311 325 338

  The estimated values are close to the actual values.

Chapter 3
Section 3.1 (page 116)
 1. 1  3. 5  5. 27  7. −24  9. 0
11. λ2 − 4λ − 5
13. (a) M11 = 4 (b) C11 =  4
  M12 = 3  C12 =  −3
  M21 = 2  C21 =  −2
  M22 = 1  C22 =  1

15. (a) M11 =  23 M12 =  −8 M13 =  −22
  M21 =  5 M22 =  −5 M23 =  5
  M31 =  7 M32 =  −22 M33 =  −23
 (b) C11 =  23 C12 =  8 C13 =  −22
  C21 =  −5 C22 =  −5 C23 =  −5
  C31 =  7 C32 =  22 C33 =  −23
17. (a) 4(−5) + 5(−5) + 6(−5) = −75
 (b) 2(8) + 5(−5) − 3(22) = −75
19. −58  21. −30  23. 0.002  25. 2x − 3y − 1
27. 0  29. 65,644w + 62,256x + 12,294y − 24,672z
31. −100  33. 29  35. 0.281  37. 19
39. −24  41. 0
43. (a)  False. See “Definition of the Determinant of a 2 × 2 

Matrix,” page 110.
 (b) True. See “Remark,” page 112.
 (c)  False. See “Minors and Cofactors of a Square Matrix,” 

page 111.
45. x = −1, −4  47. x = −1, 4  49. λ = −1 ± √3
51. λ = −2, 0, or 1  53. Proof  55. 18uv − 1
57. e5x  59. 1 − ln x  61. r
63. wz − xy  65. wz − xy
67. xy2 − xz2 + yz2 − x2y + x2z − y2z
69. (a) Proof

 (b) ∣ x
−1

0
0

0
x

−1
0

0
0
x

−1

d
c
b
a ∣

Section 3.2 (page 124)
 1.  The first row is 2 times the second row. If one row of a matrix 

is a multiple of another row, then the determinant of the matrix 
is zero.

 3.  The second row consists entirely of zeros. If one row of a 
matrix consists entirely of zeros, then the determinant of the 
matrix is zero.

 5.  The second and third columns are interchanged. If two 
columns of a matrix are interchanged, then the determinant of 
the matrix changes sign.

 7.  The first row of the matrix is multiplied by 5. If a row in a 
matrix is multiplied by a scalar, then the determinant of the 
matrix is multiplied by that scalar.

 9.  A 4 is factored out of the second column and a 3 is factored 
out of the third column. If a column of a matrix is multiplied 
by a scalar, then the determinant of the matrix is multiplied 
by that scalar.

11.  A 5 is factored out of each column. If a column matrix is 
multiplied by a scalar, then the determinant of the matrix is 
multiplied by that scalar.

13.  −4 times the first row is added to the second row. If a scalar 
multiple of one row of a matrix is added to another row, then 
the determinant of the matrix is unchanged.

15.  A multiple of the first row is added to the second row. If a 
scalar multiple of one row is added to another row, then the 
determinants are equal.

17.  The second row of the matrix is multiplied by −1. If a row 
of a matrix is multiplied by a scalar, then the determinant is 
multiplied by that scalar.
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19.  The fifth column is 2 times the first column. If one column of 
a matrix is a multiple of another column, then the determinant 
of the matrix is zero.

21. −1  23. 8  25. 28  27. 0  29. −59
31. −1344  33. 136  35. −1100
37. (a) True. See Theorem 3.3, part 1, page 119.
 (b) True. See Theorem 3.3, part 3, page 119.
 (c) True. See Theorem 3.4, part 2, page 121.
39. k  41. 1  43. Proof
45. (a) cos2 θ + sin2 θ = 1   (b) sin2 θ − 1 = −cos2 θ
47. Proof

Section 3.3 (page 131)
 1. (a) 0   (b) −1   (c) [−2

4
−3

6]   (d) 0

 3. (a) 2   (b) −6   (c) [
1

−1
0

4
0
2

3
3
0]   (d) −12

 5. (a) 3   (b) 6   (c) [
6
2
9
8

3
1
4
5

−2
0

−3
−4

2
−1

8
5
]   (d) 18

 7. −250  9. 54  11. 0  13. −3125

15. (a) −2   (b) −2   (c) [0
0

0
0]   (d) 0

17. (a) 1   (b) −1   (c) [
0

−1
1

1
2
2

3
3
1]   (d) −8

19. Singular  21. Nonsingular

23. Singular  25. 1
5  27. −1

3  29. 1
24

31.  The solution is unique because the determinant of the 
coefficient matrix is nonzero.

33.  The solution is not unique because the determinant of the 
coefficient matrix is zero.

35.  The solution is unique because the determinant of the 
coefficient matrix is nonzero.

37. k = −1, 4  39. k = 24  41. k = ±
√2
2

43. (a) 14   (b) 196   (c) 196   (d) 56   (e) 1
14

45. (a) −30   (b) 900   (c) 900   (d) −240   (e) − 1
30

47. (a) 29   (b) 841   (c) 841   (d) 232   (e) 1
29

49. (a) −30   (b) 900   (c) 900   (d) −480   (e) − 1
30

51. (a) 22   (b) 22   (c) 484   (d) 88   (e) 1
22

53. (a) −26   (b) −26   (c) 676   (d) −208   (e) − 1
26

55. (a) −115   (b) −115   (c) 13,225   (d) −1840   (e) − 1
115

57. (a) 25   (b) 9   (c) −125   (d) 81
59. Proof

61. [0
0

1
0] and [1

0
0
0]

 (The answer is not unique.)
63. 0  65. Proof

67. No; in general, P−1AP ≠ A. For example, let

 P = [1
3

2
5],  P−1 = [−5

3
2

−1],  and  A = [ 2
−1

1
0].

 Then you have

 P−1AP = [−27
16

−49
29] ≠ A.

 The equation ∣P−1AP∣ = ∣A∣ is true in general because

 ∣P−1AP∣ = ∣P−1∣∣A∣∣P∣ = ∣P−1∣∣P∣∣A∣ =
1

∣P∣∣P∣∣A∣ = ∣A∣.
69. Proof
71. (a) False. See Theorem 3.6, page 127.
 (b) True. See Theorem 3.8, page 128.
 (c)  True. See “Equivalent Conditions for a Nonsingular 

Matrix,” parts 1 and 2, page 129.
73. Orthogonal  75. Not orthogonal  77. Orthogonal
79. Proof  81. Orthogonal  83. Proof

Section 3.4 (page 142)

 1. adj(A) = [ 4
−3

−2
1],  A−1 = [−2

3
2

1

−1
2
]

 3. adj(A) = [
0
0
0

0
−12

4

0
−6

2],  A−1 does not exist.

 5. adj(A) = [
−7

2
2

−12
3
3

13
−5
−2],  A−1 = [

7
3

−2
3

−2
3

4

−1

−1

−13
3
5
3
2
3

]
 7. adj(A) = [

7
7

−4
2

1
1
2

−1

9
0

−9
9

−13
−4
10

−5
],

 A−1 = [
7
9
7
9

−4
9
2
9

1
9
1
9
2
9

−1
9

1

0

−1

1

−13
9

−4
9

10
9

−5
9

]
 9. x1 =  1  11. x =  2  13. x =  34
 x2 =  2      y =  −2      y =  −1

2

15.  Cramer’s Rule does not apply because the coefficient matrix 
has a determinant of zero.

17. x = 1  19. x = 1
 y = 1      y = 1

2

 z = 2        z = 3
2

21. x1 = −1, x2 = 3, x3 = 2  23. x1 = −12, x2 = 10
25. x1 = 5, x2 = −3, x3 = 2, x4 = −1

27. x =
4k − 3
2k − 1

, y =
4k − 1
2k − 1

 The system will be inconsistent if k = 1
2.

29. 3  31. 3  33. Collinear  35. Not collinear
37. 3y − 4x = 0  39. x = −2  41. 1

3  43. 2  45. 10
47. Not coplanar  49. Coplanar  51. Not coplanar
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53. 4x − 10y + 3z = 27  55. x + y + z = 0  57. z = −4
59.  Incorrect. The numerator and denominator should be 

interchanged.
61. (a)  a +  b +  c =  156.8
   4a +  2b +  c =  161.7
   9a +  3b +  c =  177.2
 (b) a = 5.3,  b = −11,  c = 162.5
 (c) 

0
150

190

5

 (d) The polynomial fits the data exactly.
63. Proof  65. Proof

67. Sample answer: ∣adj(A)∣ = ∣−2
−1

0
1∣ = −2,

  ∣A∣2−1 = ∣11 0
−2∣2−1

= −2

69. Proof

Review Exercises (page 144)
 1. 10  3. 0  5. 14  7. −6  9. 1620
11. 82  13. −64  15. −1  17. −1
19.  Because the second row is a multiple of the first row, the 

determinant is zero.
21.  A −4 has been factored out of the second column and a 3 has 

been factored out of the third column. If a column of a matrix 
is multiplied by a scalar, then the determinant of the matrix is 
also multiplied by that scalar.

23. (a) −1   (b) −5   (c) [1
2

−2
1]   (d) 5

25. (a) −35   (b) −42,875   (c) 1225   (d) −875
27. (a) −20   (b) − 1

20  29. −1
6  31. − 1

10

33. x1 =  0  35. x1 =  −3
 x2 =  −

1
2     x2 =  −1

 x3 =  12     x3 =  2
37. Unique solution  39. Unique solution
41. Not a unique solution
43. (a) 8   (b) 4   (c) 64   (d) 8   (e) 1

2

45. Proof  47. 0  49. −1
2  51. u  53. −uv

55.  Row reduction is generally preferred for matrices with few 
zeros. For a matrix with many zeros, it is often easier to 
expand along a row or column having many zeros.

57. x = π�4 + nπ�2, where n is an integer.  59. [1
2

−1
0]

61. Unique solution: x = 0.6
  y = 0.5
63. Unique solution: x1 =  12
  x2 =  −

1
3

  x3 =  1
65. x1 = 6, x2 = −2  67. 16  69. x − 2y = −4
71. 9x + 4y − 3z = 0

73. Incorrect. In the numerator, the column of constants,

 [
−1

6
1]

  should replace the third column of the coefficient matrix, not 
the first column.

75. (a)  False. See “Minors and Cofactors of a Square Matrix,” 
page 111.

 (b) False. See Theorem 3.3, part 1, page 119.
 (c) True. See Theorem 3.4, part 3, page 121.
 (d) False. See Theorem 3.9, page 130.
77. (a) False. See Theorem 3.11, page 137.
 (b)  False. See “Test for Collinear Points in the xy-Plane,” 

page 139.

Cumulative Test Chapters 1–3 (page 149)
 1. Not linear  2. Linear  3. x = 1, y = −2
 4. x1 = 2, x2 = −3, x3 = −2
 5. x = −10, y = 20, z = −40, w = 12
 6. x1 = s − 2t, x2 = 2 + t, x3 = t, x4 = s
 7. x1 = −2s, x2 = s, x3 = 2t, x4 = t
 8. k = 12  9. x = −3, y = 4

10. ATA = [
29
23
17

23
25
27

17
27
37]  11. [−

1
4
1
6

1
8
1
12
]

12. [−
2
7
1
7

1
7
2
21
]  13. [

−1

0

0

0

2

0

0

0
1
3

]  14. [
1

0
3
5

0

0
1
5

−1

1

−9
5

]
15. x = 4

3, y = −2
3  16. x = 4, y = 2

17. [0
1

1
0] [1

2
0
1] [1

0
0

−4]  18. −6

 (The answer is not unique.)

19. (a) 14   (b) −10   (c) [−2
−8

−14
14]   (d) −140

20. (a) 84   (b) 1
84

21. (a) 567   (b) 7   (c) 1
7   (d) 343

22. [
4
11

− 1
11

− 2
11

−10
11

− 3
11
5
11

7
11
1
11
2
11

]  23. a = 1, b = 0, c = 2

24. y = 7
6x2 + 1

6x + 1  25. 3x + 2y = 11  26. 35
27. I1 = 3, I2 = 4, I3 = 1
28. BA = [13,275.00 15,500.00]
  The entries represent the total values (in dollars) of the 

products sent to the two warehouses.
29. No; Sample answer:

 A = [2
1

3
4], B = [6

5
−1

0], C = [1
1

1
1]
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Chapter 4
Section 4.1 (page 159)
 1. v = (4, 5)
 3. 

−1 1 2 3 4 5−1

−2

−3

−4

−5

1

(2, −4)

x

y   5. 

−1−2−3−4−5 1

−2

−3

−4

−5

1

x

y

(−3, −4)

 7. u + v = (3, 1)  9. u + v = (−1, −4)
 

−1 1 2 3 4 5−1

1

2

3

4

5

(3, 1)

x

y   

−1−2−3−4−5 1

1

x

y

(−1, −4)

11. v = (−3, 92) 13. v = (−8, −1)
 

−4−5 −3 −2 −1

2

3

4

5

y

x

v =    u3
2

u

(−2, 3)

−3, 9
2 ((

  

−2

2

4

−2

−4

y

x

u

2w
v = u + 2w

(−8, −1)

(−6, −4)

(−2, 3)

15. v = (−9
2, 72)

 

−8

4

8

−4

y

x

3u

w
(−3, −2)

(−6, 9)

v =    (3u + w)1
2

9
2

7
2 ))− ,

17. (a) y

x

2v

v (2, 1)

(4, 2)

−1 1 2 3 4
−1

1

2

3

4

 (b) y

x

−3v

v

(−6, −3)

(2, 1)

−4 2

−2

−4

2

4

 (c) y

x

v
(2, 1)

1 2

1

2

v1
2 1, 1

2 ))

19. u − v = (−1, 0, 4)
 v − u = (1, 0, −4)
21. (6, 12, 6)  23. (−1

4, 32, 13
4 )

25. (a) 

x y

2

2
3 3 44

55

2

3
4
5

v 2v
(2, 4, 4)

(1, 2, 2)

z

 (b) 

x y
1

1

2

22

v

−v
(−1, −2, −2)

(1, 2, 2)

z

 (c) 

x y

11

1

2

22

v v
(1, 2, 2)1

2

( (

z

, 1, 11
2

27. (a) Scalar multiple   (b) Not a scalar multiple
29. (a) (4, −2, −8, 1)   (b) (8, 12, 24, 34)   (c) (−4, 4, 13, 3)
31. (a) (−9, 3, 2, −3, 6)   (b) (−2, −18, −12, 18, 36)
 (c) (11, −6, −4, 6, −3)
33. (a) (1, 6, −5, −3)   (b) (−1, −8, 10, 0)
 (c) (−3

2, 11, −13
2 , −21

2 )
35. (1

3, −5
3, −2, 1)  37. (4, 8, 18, −2)  39. (−1, 53, 6, 23)

41. v = u + w  43. v = 2u + w  45. v = −u
47. v = u1 + 2u2 − 3u3

49.  It is not possible to write v as a linear combination of u1, u2, 
and u3.
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51. [
3
9
6] = (−1)[

1
7
4] + 2[

2
8
5]

53. v = 2u1 + u2 − 2u3 + u4 − u5  55. No

57. (a)  True. Two vectors in Rn are equal if and only if their 
corresponding components are equal, that is, u = v if and 
only if u1 = v1, u2 = v2, .  .  . , un = vn.

 (b)  False. The vector −v is called the additive inverse of the 
vector v.

59.  If b = x1a1 + .  .  . + xnan is a linear combination of the 
columns of A, then a solution to Ax = b is

 x = [
x1

⋮
xn
].

  The system Ax = b is inconsistent if b is not a linear 
combination of the columns of A.

61. Answers will vary.  63. Proof
65. (a) Additive identity
 (b) Distributive property
 (c) Add −0v to both sides.
 (d) Additive inverse and associative property
 (e) Additive inverse
 (f) Additive identity
67. (a) Multiply both sides by c−1.
 (b) Associative property and Theorem 4.3, property 4
 (c) Multiplicative inverse
 (d) Multiplicative identity

Section 4.2 (page 166)
 1. (0, 0, 0, 0)

 3. [
0
0
0
0

0
0
0
0

0
0
0
0
]  5. 0 + 0x + 0x2 + 0x3

 7. −(v1, v2, v3) = (−v1, −v2, −v3)

 9. −[a11

a21

a12

a22

a13

a23
] = [−a11

−a21

−a12

−a22

−a13

−a23
]

11. −(a0 + a1x + a2x
2 + a3x

3 + a4x
4)

 = −a0 − a1x − a2x
2 − a3x

3 − a4x
4

13. Vector space
15. Not a vector space; Sample answer: Axiom 1 fails.
17. Not a vector space; Axiom 4 fails.
19. Vector space
21. Not a vector space; Sample answer: Axiom 6 fails.
23. Vector space  25. Vector space  27. Vector space
29. Not a vector space; Sample answer: Axiom 1 fails.
31. Not a vector space; Axiom 1 fails.
33. Vector space  35. Vector space
37. Proof  39. Proof
41. (a) The set is not a vector space. Axiom 8 fails because 
  (1 + 2)(1, 1) = 3(1, 1) = (3, 1)
  1(1, 1) + 2(1, 1) = (1, 1) + (2, 1) = (3, 2).

 (b) The set is not a vector space. Axiom 2 fails because
  (1, 2) + (2, 1) = (1, 0)
  (2, 1) + (1, 2) = (2, 0).
  (Axioms 4, 5, and 8 also fail.)
 (c)  The set is not a vector space. Axiom 6 fails because 

(−1)(1, 1) = (√−1, √−1 ), which is not in R2. (Axioms 
8 and 9 also fail.)

43. Proof  45. Answers will vary.
47. (a) Add −w to both sides.
 (b) Associative property
 (c) Additive inverse
 (d) Additive identity
49. (a) True. See page 161.
 (b) False. See example 6, page 165.
 (c)  False. With standard operations on R3, the additive inverse 

axiom is not satisfied.
51. Proof

Section 4.3 (page 173)
 1.  W is nonempty and W ⊂ R4, so you need only check that W is 

closed under addition and scalar multiplication. Given
 (x1, x2, x3, 0) ∈ W and (y1, y2, y3, 0) ∈ W
 it follows that
 (x1, x2, x3, 0) + (y1, y2, y3, 0)
 = (x1 + y1, x2 + y2, x3 + y3, 0) ∈ W.
  Also, for any real number c and (x1, x2, x3, 0) ∈ W, it follows 

that
 c(x1, x2, x3, 0) = (cx1, cx2, cx3, 0) ∈ W.
 3.  W is nonempty and W ⊂ M2,2, so you need only check that W 

is closed under addition and scalar multiplication. Given

 [ 0
b1

a1

0] ∈ W and [ 0
b2

a2

0] ∈ W

 it follows that

 [ 0
b1

a1

0] + [ 0
b2

a2

0] = [ 0
b1 + b2

a1 + a2

0] ∈ W.

 Also, for any real number c and

 [0
b

a
0] ∈ W, it follows that

  c[0
b

a
0] = [ 0

cb
ca
0] ∈ W.

 5.  Recall from calculus that continuity implies integrability; 
W ⊂ V. So, because W is nonempty, you need only check 
that W is closed under addition and scalar multiplication. 
Given continuous functions f, g ∈ W, it follows that f + g is 
continuous and f + g ∈ W. Also, for any real number c and 
for a continuous function f ∈ W, cf  is continuous. So, cf ∈ W.

 7. Not closed under addition:
 (0, 0, −1) + (0, 0, −1) = (0, 0, −2)
 9. Not closed under scalar multiplication:

 √2(1, 1) = (√2, √2 )
11. Not closed under scalar multiplication:
 (−1)ex = −ex

13. Not closed under scalar multiplication:
 (−2)(1, 1, 1) = (−2, −2, −2)
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15. Not closed under scalar multiplication:

 2[
1
0
0

0
1
0

0
0
0] = [

2
0
0

0
2
0

0
0
0]

17. Not closed under addition:

 [
1
0
0

0
1
0

0
0
1] + [

1
0
0

0
1
0

1
0
1] = [

2
0
0

0
2
0

1
0
2]

19. Not closed under addition:
 (2, 8) + (3, 27) = (5, 35)
21. Not a subspace; not closed under scalar multiplication
23.  Subspace; nonempty and closed under addition and scalar 

multiplication
25.  Subspace; nonempty and closed under addition and scalar 

multiplication
27.  Subspace; nonempty and closed under addition and scalar 

multiplication
29.  Subspace; nonempty and closed under addition and scalar 

multiplication
31. Not a subspace; not closed under scalar multiplication
33. Not a subspace; not closed under addition
35.  Subspace; nonempty and closed under addition and scalar 

multiplication
37.  Subspace; nonempty and closed under addition and scalar 

multiplication
39.  Subspace; nonempty and closed under addition and scalar 

multiplication
41. Not a subspace; not closed under addition
43. (a) True. See Theorem 4.5, part 2, page 168.
 (b) True. See Theorem 4.6, page 170.
 (c)  False. There may be elements of W that are not elements 

of U, or vice-versa.
45–59. Proofs

Section 4.4 (page 184)
 1. (a) z = 2(2, −1, 3) − (5, 0, 4)
 (b) v = 1

4(2, −1, 3) + 3
2(5, 0, 4)

 (c) w = 8(2, −1, 3) − 3(5, 0, 4)
 (d)  u cannot be written as a linear combination of the given 

vectors.
 3. (a) u = −7

4(2, 0, 7) + 5
4(2, 4, 5) + 0(2, −12, 13)

 (b)  v cannot be written as a linear combination of the given 
vectors.

 (c) w = −1
6(2, 0, 7) + 1

3(2, 4, 5) + 0(2, −12, 13)
 (d) z = −4(2, 0, 7) + 5(2, 4, 5) + 0(2, −12, 13)

 5. [ 6
10

−19
7] = 3A − 2B

 7. [−2
0

23
−9] = −A + 4B

 9. S spans R2.  11. S spans R2.
13. S does not span R2; line  15. S does not span R2; line
17. S does not span R2; line  19. S spans R3.
21. S does not span R3; plane  23. S does not span R3; plane
25. S does not span P2.  27. Linearly independent
29. Linearly dependent  31. Linearly independent

33. Linearly dependent  35. Linearly independent
37. Linearly dependent  39. Linearly independent
41. Linearly dependent  43. Linearly independent
45. Linearly dependent  47. Linearly independent
49. Linearly dependent  51. Linearly independent

53. (3, 4) − 4(−1, 1) − 7
2(2, 0) = (0, 0),

 (3, 4) = 4(−1, 1) + 7
2(2, 0)

 (The answer is not unique.)
55. (1, 1, 1) − (1, 1, 0) − (0, 0, 1) − 0(0, 1, 1) = (0, 0, 0)
 (1, 1, 1) = (1, 1, 0) + (0, 0, 1) − 0(0, 1, 1)
 (The answer is not unique.)
57. (a) All t ≠ 1, −2   (b) All t ≠ 1

2

59. Proof
61. Because the matrix

 [
1
0
2

2
1
5

−1
1

−1] row reduces to [
1
0
0

0
1
0

−3
1
0] and

 [−2
1

−6
1

0
−2] row reduces to [1

0
0
1

−3
1],

 S1 and S2 span the same subspace.

63. (a)  False. See “Definition of Linear Dependence and Linear 
Independence,” page 179.

 (b)  True. Any vector u = (u1, u2, u3, u4) in R4 can be written as
  u = u1(1, 0, 0, 0) − u2(0, −1, 0, 0) + u3(0, 0, 1, 0)
   + u4(0, 0, 0, 1).
65–77. Proofs

Section 4.5 (page 193)
 1. { (1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0), 

(0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 1)}

 3. {[1
0
0

0
0
0

0
0
0], [

0
0
0

1
0
0

0
0
0], [

0
0
0

0
0
0

1
0
0],

 [
0
1
0

0
0
0

0
0
0], [

0
0
0

0
1
0

0
0
0], [

0
0
0

0
0
0

0
1
0],

 [
0
0
1

0
0
0

0
0
0], [

0
0
0

0
0
1

0
0
0], [

0
0
0

0
0
0

0
0
1]}

 5. {1, x, x2, x3, x4}
 7. S is linearly dependent and does not span R2.
 9. S does not span R2.
11. S is linearly dependent.
13. S is linearly dependent and does not span R2.
15. S is linearly dependent and does not span R3.
17. S does not span R3.
19. S is linearly dependent and does not span R3.
21. S is linearly dependent.
23. S is linearly dependent.
25. S does not span P2.
27. S does not span P2.
29. S is linearly dependent and does not span P2.
31. S does not span M2,2.
33. S is linearly dependent and does not span M2,2.
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35. Basis  37. Not a basis  39. Basis
41. Basis  43. Not a basis  45. Basis
47. Basis  49. Not a basis  51. Basis
53. Basis; (8, 3, 8) = 2(4, 3, 2) − (0, 3, 2) + 3(0, 0, 2)
55. Not a basis  57. 6  59. 8
61. 6  63. 3m

65. [
1
0
0

0
0
0

0
0
0], [

0
0
0

0
1
0

0
0
0], [

0
0
0

0
0
0

0
0
1]; 3

67. {(1, 0), (0, 1)}, {(1, 0), (1, 1)}, {(0, 1), (1, 1)}
69. {(2, 2,), (1, 0)}
71. (a) Line   (b) {(2, 1)}   (c) 1
73. (a) Line   (b) {(2, 1, −1)}   (c) 1
75. (a) {(2, 1, 0, 1), (−1, 0, 1, 0)}   (b) 2
77. (a) {(0, 6, 1, −1)}   (b) 1
79.  (a)  False. If the dimension of V is n, then every spanning set 

of V must have at least n vectors.
 (b)  True. Find a set of n basis vectors in V that will span V and 

add any other vector.
81–85. Proofs

Section 4.6 (page 205)

 1. (a) (0, −2), (1, −3)   (b) [0
1], [−2

−3]
 3. (a) (4, 3, 1), (1, −4, 0)   (b) [4

1], [ 3
−4], [1

0]
 5. (a) {(1, 0), (0, 1)}   (b) 2

 7. (a) {(1, 0, 12), (0, 1, −1
2)}   (b) 2

 9. (a) {(1, 0, 0), (0, 1, 0), (0, 0, 1)}   (b) 3
11. (a) {(1, 2, −2, 0), (0, 0, 0, 1)}   (b) 2
13. {(1, 0, 0), (0, 1, 0), (0, 0, 1)}  15. {(1, 1, 0), (0, 0, 1)}
17. {(1, 0, −1, 0), (0, 1, 0, 0), (0, 0, 0, 1)}
19. {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}

21. (a) {[1
0], [0

1]}   (b) 2  23. (a) {[1
0], [0

1]}   (b) 2

25. (a) {[1

0
5
9
2
9

], [
0

1

−4
9
2
9

]}   (b) 2  27. {t[1
2]}

29. {t[
−2

1
0] + s[

−3
0
1]}  31. {t[

−3
0
1]}

33. {t[
−1

2
1]}  35. {[0

0]}

37. {t[
2

−2
0
1
] + s[

−1
1
1
0
]}  39. {[

0
0
0
0
]}

41. (a) rank(A) = 3
  nullity(A) = 2

 (b) {[
−3

1
1
0
0
], [

4
−2

0
2
1
]}

 (c) {(1, 0, 3, 0, −4), (0, 1, −1, 0, 2), (0, 0, 0, 1, −2)}

 (d) {[
1
2
3
4
], [

2
5
7
9
], [

0
1
2

−1
]}

 (e) Linearly dependent   (f) (i) Yes (ii) No (iii) Yes
43. (a) {(−1, −3, 2)}   (b) 1

45. (a) {(−4, −1, 1, 0), (−3, −2
3, 0, 1)}   (b) 2

47. (a) {(8, −9, −6, 6)}   (b) 1

49. Consistent; [17
0] + t[4

1]

51. Consistent; [
3
5
0] + t[

2
−4

1]  53. Inconsistent

55. Consistent; [
1
0
2

−3
0
] + t[

5
0

−6
−4

1
] + s[

−2
1
0
0
0
]

57. [−1
4] + 2[2

0] = [3
4]

59. Not in the column space

61. 3[
−1

0
−2] + 3[

1
1
1] = [

0
3

−3]  63. Proof

65. (a) [1
0

0
1], [0

1
1
0]   (b) [1

0
0
0], [0

0
1
0]

 (c) [1
0

0
0], [0

0
0
1]

67. (a) m   (b) r   (c) r   (d) Rn   (e) Rm

69. Answers will vary.
71. (a) Proof   (b) Proof   (c) Proof
73. (a)  True. The nullspace of A is the solution space of the 

homogeneous system Ax = 0.
 (b) True. See Theorem 4.16, page 200.
75. (a) False. See “Remark,” page 196.
 (b) False. See Theorem 4.19, page 204.
 (c)  True. The columns of A become the rows of AT, so the 

columns of A span the same space as the rows of AT.
77. (a) 0, n   (b) Proof
79. (a) Proof   (b) Proof
81.  The rank of the matrix is at most 3, so the four row vectors 

form a linearly dependent set.
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Section 4.7 (page 216)

 1. [ 5
−2]  3. [

7
−4
−1

2
]  5. [ 8

−3]  7. [
5
4
3]  9. [

−1
2
0
1
]

11. [3
2]  13. [

1
−1

2]  15. [
0

−1
2]  17. [

3
2

−2

−1
2

1]

19. [2
4

−1
3]  21. [

1
5

0

−1
5

1
20
1
4

− 1
20

−1
2

0

0
]  23. [

3
4
0

−2
−1

1

1
0

−3]
25. [

9
5
8
5

4
5
3
5
]  27. [− 2

41

−19
41

11
82
43
82
]  29. [

1
−3

3

1
2

−3

−1
−1

2]
31. [

−7
5

11

3
−1
−3

10
−6

−10]  33. [
−24
−10
−29

12

7
3
7

−3

1
0
3

−1

−2
−1
−2

1
]

35. [
1

0

−5
4

−3
4

0

− 3
11

− 2
11
9
22
1
2

− 1
11

5
11
3
22

−19
44

−1
4

− 2
11

0

0

−1
4
1
4

0

− 7
11

− 1
11
21
22
1
2
5
11

]
37. (a) [−1

3
3
4

1
3

−1
2
]   (b) [6

9
4
4]   (c) Verify.   (d) [6

3]

39. (a) [
4

−7
−2

5
−10
−2

1
−1

0]   (b) [
1
2

−1
2
3
2

1
2

−1
2
1
2

−5
4
3
4
5
4

]
 (c) Verify.   (d) [

11
4

−9
4
5
4

]
41. (a) [

−48
5

4

−6
5

−24

10

−5

4
5
1
2

−2
5

]   (b) [
3
32

− 1
16
1
2

17
20

− 3
10
6
5

5
4

−1
2

0
]

 (c) Verify.   (d) [
279
160

−61
80

− 7
10

]
43. (a) [

19
39

− 3
13

−23
39

− 9
13

− 6
13
2
13

44
39

− 9
13

− 4
39

]   (b) [
−2

7

−5
7
4
7

− 4
21

−8
7

−13
21

−13
7

−1
7
5
7

]
 (c) Verify.   (d) [

22
7
6
7

19
7

]

45. [
1
5

−2
1
]  47. [

13
114

3
0
]  49. [

0
3
2]  51. [

1
2

−1]
53. Yes; When B = B′,  P−1 = In.
55. (a) False. See Theorem 4.20, page 210.
 (b) True. See the discussion before Example 5, page 214.
 (c) True. See paragraph before Example 1, page 208.
57. QP

Section 4.8 (page 225)
 1. b, c, d  3. c  5. a, b, d  7. b  9. c
11. b, c  13. −x cos x + sin x  15. −2  17. −x
19. 0  21. 2e3x  23. 12  25. e−x(cos x − sin x)
27. W = (b − a)e(a+b)x ≠ 0  29. W = a ≠ 0
31. (a) Verify.   (b) Linearly independent
 (c) y = C1 sin 4x + C2 cos 4x
33. (a) Verify.   (b) Linearly dependent   (c) Not applicable
35. (a) Verify.   (b) Linearly independent
 (c) y = C1 + C2 sin 2x + C3 cos 2x
37. (a) Verify.   (b) Linearly dependent
 (c) Not applicable
39. (a) Verify.

 (b) θ(t) = C1 sin√g
L

t + C2 cos√g
L

t; proof

41. No. For instance, consider y″ = 1. Two solutions are

 y =
x2

2
 and y =

x2

2
+ 1. Their sum is not a solution.

43. Parabola 45. Ellipse
 

−2

−1

1

2

−4 −3 −2 −1
x

y   

−2−4 2 4

−3

−5

1

3

5

x

y

51

−4

4

47. Hyperbola 49. Parabola
 

−6

−4

4

6

−6 −4 4
x

y

2 6

  

−4 −3 −2 −1

−3

−2

−1

1

x

y

51. Point 53. Hyperbola
 

1 2

1

2

x

y

2, 1
2 ((

  

x

(−3, 5)

1−2−4−6

2

4

6

8

y
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55. Ellipse 57. Hyperbola
 

−5 −4 −3 −2 −1

−4

−2

x

y   

x

(−1, 5)

−2−4

2

8

10

4

y

2

59. c  60. b  61. a  62. d

63. 
(y′)2

2
−

(x′)2

2
= 1 65. 

(x′)2

3
+

(y′)2

5
= 1

 

−2 −1

−2

−1

1

1
x

x'y'

45°

y   

1

1 3

3

x

y

x'y'

45°

−3

−1−3

67. 
(x′)2

4
−

(y′)2

4
= 1 69. (x′ − 1)2 = 6(y′ + 1

6)
 

x

x ′

y ′ 2

4

−2−4

y   

x

x′
y′

y

−2

2 4

2

4

6

71. 
(x′)2

16
+

(y′)2

4
= 1 73. x′ = −(y′)2

 

x

y

−4 1 3 4 5−1

−3
−4
−5

3
4
5

x′

y′   

x

1

y

−1

−2

−2−3

−3

x'y'

60°

75. y′ = 0 77. x′ = ±
√2
2

 

−2 −1 2

−2

−1

1

1

2

x

x'y'

y

45°

  

−1−2−3 1 3

−2

−3

1

2

3

x

y

x'y'

45°

79. Proof  81. (a) Proof   (b) Proof
83. Answers will vary.

Review Exercises (page 227)
 1. (a) (4, −1, 3)   3. (a) (3, 1, 4, 4)
 (b) (6, 2, 0) (b) (0, 4, 4, 2)
 (c) (−2, −3, −3) (c) (3, −3, 0, 2)
 (d) (−3, −8, −9) (d) (9, −7, 2, 7)
 5. (1

2, −4, −4)  7. (5
2, −6, 0)

 9. v = 2u1 − u2 + 3u3  11. v = 9
8u1 + 1

8u2 + 0u3

13. O4,2 = [
0
0
0
0

0
0
0
0
], −A = [

−a11

−a21

−a31

−a41

−a12

−a22

−a32

−a42

]
15. 0 = (0, 0, 0, 0, 0)
 −v = (−v1, −v2, −v3, −v4, −v5)
17. Subspace  19. Not a subspace
21. Subspace  23. Not a subspace
25. (a) Subspace   (b) Not a subspace
27. (a) Yes   (b) Yes   (c) Yes
29. (a) No   (b) No   (c) No
31. (a) Yes   (b) No   (c) No
33. Basis  35. Not a basis

37. (a) {t[3
4]}   (b) 1   (c) 1

39. (a) {t[
3
0
1
0
] + s[

−1
−2

0
1
]}   (b) 2   (c) 2

41. (a) {t[
4

−2
1]}   (b) 1   (c) 2

43. (a) {(1, 0), (0, 1)}   (b) 2
45. (a) {(1, 0, 0), (0, 1, 0), (0, 0, 1)}   (b) 3

47. (a) {[
−3

0
4
1
], [

−2
1
0
0
]}   (b) 2

49. (a) {[
2
3
7
0
], [

−1
0
0
1
]}   (b) 2

51. [−2
8]  53. [

3
4
1
4
]  55. [

2
−1
−1]  57. [

2
5

−1
4
]

59. [
−1

4
3
2

]  61. [
3
1
0
1
]  63. [ 1

−1
3
1]

65. [
0
0
1

0
1
0

1
0
0]  67. [

10
11
12

23
26
27

21
24
24]

69. (a) [
3
2

−2

−1

1]   (b) [−2
−4

−2
−3]

 (c) Verify.   (d) [ 15
−18]
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 71. (a) [
0

−1
1

−1
0
1

0
0
1]   (b) [

0
−1

1

−1
0
1

0
0
1]

 (c) Verify.   (d) [
−2

1
−2]

 73. Basis for W: {x, x2, x3}
 Basis for U: {(x − 1), x(x − 1), x2(x − 1)}
 Basis for W ∩ U: {x(x − 1), x2(x − 1)}
 75. No. For example, the set
 {x2 + x, x2 − x, 1}
 is a basis for P2.
 77. Yes; proof  79. Proof  81. Answers will vary.
 83. (a)  True. See discussion above “Definitions of Vector 

Addition and Scalar Multiplication in Rn,” page 155.
 (b)  False. See Theorem 4.3, part 2, page 157.
 (c)  True. See “Definition of a Vector Space” and the 

discussion following, page 161.
 85. (a)  True. See discussion under “Vectors in Rn,” page 155.
 (b)  False. See “Definition of a Vector Space,” part 4, page 161.
 (c)  True. See discussion following “Summary of Important 

Vector Spaces,” page 163.
 87. a, d  89. a  91. ex  93. −8
 95. (a) Verify.   (b) Linearly independent
 (c) y(t) = C1e

−3x + C2xe−3x

 97. (a) Verify.   (b) Linearly dependent   (c) Not applicable

 99. Circle  101. Hyperbola
 

−4−6−8 −2 2 4

−4

8

6

4

2

x

y    

x
(−1, 0)

2−1−2−4

2

3

−2

−3

y

103. Parabola  105. Ellipse
 

−10

10

20

30

40

50

x

(5, −4)

y

1 2 3 4 6 7 8

  

x

(−4, −2)

−1−2−4−6

−2

1

−3

−4

−5

y

107. 
(x′)2

6
−

(y′)2

6
= 1  109. (x′)2 = 4(y′ − 1)

 

−6 63

−6

6y' x'

x
45°

y    

−2−4−6

−4

2
4
6
8

10
12

x

y

≈ −36.87°

x'

y'

θ

Chapter 5
Section 5.1 (page 241)

 1. 5  3. 5√2  5. (a) 
√17

4
   (b) 

5√41
8

   (c) 
√577

8
 7. (a) √19   (b) √2   (c) 5

 9. (a) (− 5
13, 12

13)   (b) ( 5
13, −12

13)
11. (a) ( 3

√38
, 

2

√38
, −

5

√38)   (b) (−
3

√38
, −

2

√38
, 

5

√38)
13. (2√2, 2√2)  15. ( 5

√6
, 

5√5

√6
, 0)

17. (a) (−1
2, 32, 0, 2)   (b) (2, −6, 0, −8)  19. 2√2

21. 3
23. (a) −6   (b) 13   (c) 25   (d) (−12, 18)   (e) −30
25. (a) 0   (b) 41   (c) 9   (d) 0   (e) 0  27. −7
29. (a) �u� ≈ 1.0843, �v� ≈ 0.3202   (b) (0, 0.7809, 0.6247)
 (c) (−0.9223, −0.1153, −0.3689)   (d) 0.1113
 (e) 1.1756   (f) 0.1025
31. (a) �u� ≈ 1.7321, �v� = 2   (b) (−0.5, 0.7071, −0.5)
 (c) (0, −0.5774, −0.8165)   (d) 0   (e) 3   (f) 4
33. (a) �u � ≈ 3.4641, �v� ≈ 3.3166
 (b) (−0.6030, 0.4264, −0.5222, −0.4264)
 (c) (−0.5774, −0.5, −0.4082, −0.5)
 (d) −6.4495   (e) 12   (f) 11
35.  ∣(6, 8) ∙ (3, −2)∣ ≤ �(6, 8)� �(3, −2)�
  2 ≤ 10√13
37.  ∣(1, 1, −2) ∙ (1, −3, −2)∣ ≤ �(1, 1, −2)� �(1, −3, −2)�
  2 ≤ 2√21

39. 1.713 rad (98.13°)  41. 
7π
12

  rad (105°)

43. 1.080 rad (61.87°)  45. 
π
4

 rad (45°)  47. Orthogonal

49. Parallel  51. Neither  53. Neither  55. v = (t, 0)
57. v = (t, s, −2t + s)
59.  �(5, 1)� ≤ �(4, 0)� + �(1, 1)�
  √26 ≤ 4 + √2
61.  �(1, 2, −1)� ≤ �(1, 1, 1)� + �(0, 1, −2)�
  √6 ≤ √3 + √5
63.  �(2, 0)�2 = �(1, −1)�2 + �(1, 1)�2

  4 = (√2)2 + (√2)2

65.  �(7, 1, −2)�2 = �(3, 4, −2)�2 + �(4, −3, 0)�2

  54 = (√29)2 + 52

67. (a) −6   (b) 13   (c) 25   (d) [−12
18]   (e) −30

69. (a) 0   (b) 14   (c) 6   (d) [
0
0
0]   (e) 0

71. Orthogonal; u ∙ v = 0
73. (a)  False. See “Definition of Length of a Vector in Rn,”  

page 232.
 (b)  False. See “Definition of Dot Product in Rn,” page 235.
75.  (a)  (u ∙ v) − v is meaningless because u ∙ v is a scalar and v 

is a vector.
 (b)  u + (u ∙ v) is meaningless because u is a vector and u ∙ v 

is a scalar.
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77. (− 5
13, 12

13), ( 5
13, −12

13)
79. $11,877.50
  This value gives the total revenue earned from selling the  

hamburgers and hot dogs.
81. 54.7°  83–87. Proofs
89.  Ax = 0 means that the dot product of each row of A with 

the column vector x is zero. So, x is orthogonal to the row  
vectors of A.

Section 5.2 (page 251)
 1–7. Proofs
 9. Axiom 4 fails. 〈(0, 1), (0, 1)〉 = 0, but (0, 1) ≠ 0.
11. Axiom 4 fails. 〈(1, 1), (1, 1)〉 = 0, but (1, 1) ≠ 0.
13.  Axiom 1 fails. If u = (1, 1, 1) and v = (1, 0, 0) 〈u, v〉 = 1 

and 〈v, u〉 = 0.
15.  Axiom 3 fails. If u = (1, 1, 1), v = (1, 0, 0), and c = 2, 

c〈u, v〉 = 2 and 〈cu, v〉 = 4.
17. (a) −33   (b) 5   (c) 13   (d) 2√65
19. (a) 15   (b) √57   (c) 5   (d) 2√13
21. (a) −25   (b) √53 (c) √94   (d) √197
23. (a) 0   (b) 8√3   (c) √411   (d) 3√67
25. (a) 4   (b) √6   (c) 3   (d) √7  27. Proof
29. (a) −15   (b) √35   (c) √10   (d) 5√3
31. (a) −5   (b) √39   (c) √5   (d) 3√6  33. Proof
35. (a) −4   (b) √11   (c) √2   (d) √21
37. (a) 0   (b) √2   (c) √2   (d) 2

39. (a) 
2
3

   (b) √2   (c) 
√46

√15
   (d) 

2√14

√15

41. (a) 
2
e

≈ 0.736   (b) 
√6
3

≈ 0.816

 (c) √e2

2
−

1
2e2 ≈ 1.904

 (d) √e2

2
+

2
3

−
1

2e2 −
4
e

≈ 1.680

43. 2.103 rad (120.5°)  45. 1.16 rad (66.59°)

47. 
π
2

 rad (90°)  49. 1.23 rad (70.53°)  51. 
π
2

 rad (90°)

53. (a)  ∣〈(5, 12), (3, 4)〉∣ ≤ �(5, 12)� �(3, 4)�
   63 ≤ (13)(5)
 (b)  �(5, 12) + (3, 4)� ≤ �(5, 12)� + �(3, 4)�
   8√5 ≤ 13 + 5

55. (a)  ∣(0, 1, 5) ∙ (−4, 3, 3)∣ ≤ �(0, 1, 5)� �(−4, 3, 3)�
   18 ≤ 2√221

 (b)  �(0, 1, 5) + (−4, 3, 3)� ≤ �(0, 1, 5)� + �(−4, 3, 3)�
   4√6 ≤ √26 + √34

57. (a)  ∣〈2x, 1 + 3x2〉∣ ≤ �2x� �1 + 3x2�
   0 ≤ (2)(√10)
 (b)  �2x + 1 + 3x2� ≤ �2x� + �1 + 3x2�
   √14 ≤ 2 + √10

59. (a)  ∣0(−3) + 3(1) + 2(4) + 1(3)∣ ≤ √14√35
   14 ≤ √14√35

 (b)  � [−3
6

4
4] � ≤ √14 + √35

   √77 ≤ √14 + √35

61. (a)  ∣〈sin x, cos x〉∣ ≤ �sin x� �cos x�

   
1
4

≤ (√π
8

−
1
4)(√π

8
+

1
4)

 (b)  �sin x + cos x� ≤ �sin x� + �cos x�

   √π
4

+
1
2

≤ √π
8

−
1
4

+√π
8

+
1
4

63. (a)  ∣〈x, ex〉∣ ≤ �x� �ex �

   1 ≤ √1
3 ∙ √1

2e2 − 1
2

 (b)  �x + ex� ≤ �x� + �ex�

   √11
6 + 1

2e2 ≤ √1
3 + √1

2e2 − 1
2

65. Because

  〈 f, g〉 = ∫π�2

−π�2
 cos x sin x dx

  =
1
2

 sin2 x ]
π�2

−π�2
= 0

 f  and g are orthogonal.

67.  The functions f (x) = x and g(x) = 1
2 (5x3 − 3x) are orthogonal 

because

  〈 f, g〉 = ∫1

−1
 x

1
2

(5x3 − 3x) dx

  =
1
2

 ∫1

−1
 (5x4 − 3x2) dx =

1
2

(x5 − x3) ]
1

−1
= 0.

69. (a) (8
5, 45)   (b) (4

5, 85)
 (c) 

1 2

1

2

x

u = (1, 2)

v = (2, 1)
projuv

projvu

y

71. (a) (1, 1)   (b) (−4
5, 12

5 )
 (c) 

x

(4, 4)

(−1, 3)
3

5

1−1 3 4

u v

projvuprojuv

y

2

73. (a) (4, −4, 0)   (b) (8
7, −24

35, 8
35)

75. (a) (1
2, −1

2, −1, −1)   (b) (0, − 5
46, −15

46, 15
23)

77. projg f = 0  79. projg f =
2ex

e2 − 1
81. projg f = 0  83. projg f = −sin 2x

85. (a)  False. See the introduction to this section, page 243.
 (b) False. �v� = 0 if and only if v = 0.
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87. (a)  〈u, v〉 = 4(2) + 2(2)(−2) = 0 ⇒ u and v are orthogonal.
 (b) 

1 2 3 4

−2

−1

1

2

x

u = (4, 2)

v = (2, −2)

y   Not orthogonal in the 
Euclidean sense

89–95. Proofs  97. c1 = 1
4,  c2 = 1

99. c1 = 1
4,  c2 = 1

16  101. Proof

Section 5.3 (page 263)
 1. (a) Yes (b) No (c) Yes
 3. (a) Yes (b) Yes (c) Yes
 5. (a) Yes (b) No (c) Yes
 7. (a) No (b) No (c) Yes
 9. (a) Yes (b) No (c) No
11. (a) Yes (b) Yes (c) No

13. (a) Proof  (b) (−
1

√10
, 

3

√10), ( 3

√10
, 

1

√10)
15. (a) Proof   (b) (√3

3
, 
√3
3

, 
√3
3 ), (−

√2
2

, 0, 
√2
2 )

17.  The set {1, x, x2, x3} is orthogonal because
 〈1, x〉 = 0, 〈1, x2〉 = 0, 〈1, x3〉 = 0, 〈x, x2〉 = 0,
 〈x, x3〉 = 0, 〈x2, x3〉 = 0.
 Furthermore, the set is orthonormal because
 �1� = 1, �x � = 1, �x2 � = 1, and �x3 � = 1.
 So, {1, x, x2, x3} is an orthonormal basis for P3.

19. [
4√13

13

7√13

13
]  21. [

√10

2

−2

−
√10

2

]  23. [
11
2

15]
25. {(3

5, 45), (4
5, −3

5)}  27. {(0, 1), (1, 0)}

29. {(2
3, 13, −2

3), (1
3, 23, 23), (2

3, −2
3, 13)}

31. {(4
5, −3

5, 0), (3
5, 45, 0), (0, 0, 1)}

33. {(0, 
√2
2

, 
√2
2 ), (√6

3
, 
√6
6

, −
√6
6 ), (√3

3
, −

√3
3

, 
√3
3 )}

35. {(−
4√2

7
, 

3√2
14

, 
5√2
14 )}

37. {(3
5, 45, 0), (4

5, −3
5, 0)}

39. {(√6
6

, 
√6
3

, −
√6
6

, 0), (√3
3

, 0, 
√3
3

, 
√3
3 ),

 (√3
3

, −
√3
3

, −
√3
3

, 0)}
41. {(2

3
, −

1
3), (√2

6
, 

2√2
3 )}

43. 〈x, 1〉 = ∫1

−1
 x dx =

x2

2
 ]

1

−1
= 0

45. 〈x2, 1〉 = ∫1

−1
 x2 dx =

x3

3
 ]

1

−1
=

2
3

47. 〈x, x〉 = ∫1

−1
 x2 dx =

x3

3
 ]

1

−1
=

2
3

49. {(2√5
5

, 
√5
5

, 0), (−
√30
30

, 
√30
15

, 
√30

6 )}
51. {(−

√2
2

, 0, 
√2
2

, 0), (−
√6
6

, 0, 
√6
6

, 
√6
3 )}

53. {(3√10
10

, 0, 
√10
10

, 0), (0, −
2√5

5
, 0, 

√5
5 )}

55. (a)  True. See “Definitions of Orthogonal and Orthonormal 
Sets,” page 254.

 (b) False. See “Remark,” page 260.
57. Orthonormal

59. {√2
2

(−1 + x2), −√6
6

(1 − 2x + x2)}
61. Orthonormal  63. Proof  65. Proof
67. N(A) basis:  {(3, −1, 2)}
 N(AT ) basis:  {(−1, −1, 1)}
 R(A) basis:  {(1, 0, 1), (1, 2, 3)}
 R(AT ) basis:  {(1, 1, −1), (0, 2, 1)}
69. Proof

71. {( 1

√2
, 0, 

1

√2
, 0), (0, −

1

√2
, 0, 

1

√2), ( 1

√2
, 0, −

1

√2
, 0),

 (0, 
1

√2
, 0, 

1

√2)}
Section 5.4 (page 275)
 1. y = 1 + 2x  3. Not collinear  5. Not orthogonal

 7. Orthogonal  9. (a) span {[ 1
0

−2]}   (b) R3

11. (a) span {[
1
0
0
0
], [

0
1
1
0
], [

0
1
0

−1
]}   (b) R4

13. (a) span {[0
1
0]}   (b) R3

15. span {[
0
1

−1
1
]}  17. [

0
2
3
2
3
2
3

]  19. [
5
3
8
3
13
3

]
21. N(A) basis:  {[−3

0
1]}

 N(AT ) = {[0
0]}

 R(A) basis:  {[1
0], [2

1]}
 R(AT ) basis:  {[1

2
3], [

0
1
0]}
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23. N(A) basis:  {[ 0
−1

1]}
 N(AT ) basis:  {[

−1
−1

1
0
], [

0
−1
−1

1
]}

 R(A) basis:  {[
1
0
1
1
], [

0
1
1
2
]}

 R(AT ) basis:  {[1
0
0], [

0
1
1]}

25. [ 1
−1]  27. [

2
−2

1]  29. [
1

−1
2]

31. 

−3 −2 −1 3

−3

−2

2

3

x

(−1, 1)
(1, 0)

(3, −3)

y = −x +
y1

3

2

 33. 

x

1

2

3

−1
−2 −1 2

(2, 1)

(1, 2)

(0, 1)(−2, 1)

(−1, 2)

y

1

y =   7
5

35. y = x2 − x  37. y = 3
7 x2 + 6

5 x + 26
35

39. y = 380.4 + 31.39t;  976,800
41. ln y = −0.14 ln x + 5.7 or y = 298.9x−0.14

43. (a)  False. The orthogonal complement of Rn is {0}.
 (b) True. See “Definition of Direct Sum,” page 267.
45. Proof  47. Proof

Section 5.5 (page 288)
 1. j × i = −k  3. j × k = i
 

x

y

z

−k

  

x

y

z

i

 5. i × k = −j  7. (a) −i − j + k
 

x

y

z

− j

  (b) i + j − k
    (c) 0

 9. (a) 5i − 3j − k 11. (a) (0, −2, −2)
 (b) −5i + 3j + k  (b) (0, 2, 2)
 (c) 0  (c) (0, 0, 0)
13. (a) (−14, 13, 17)
 (b) (14, −13, −17)
 (c) (0, 0, 0)
15. (−2, −2, −1)  17. (−8, −14, 54)  19. (−1, −1, −1)
21. −i + 12j − 2k  23. −2i + 3j − k
25. −8i − 2j + 7k  27. (5, −4, −3)
29. (2, −1, −1)  31. i − j − 3k  33. i − 5j − 3k

35. (2
3

, 
2
3

, −
1
3)  37. 

1

√19
i −

3

√19
j +

3

√19
k

39. −
71

√7602
i −

44

√7602
j +

25

√7602
k  41. 

1

√2
i +

1

√2
k

43. 1  45. 6√5  47. 2√83

49. 
5√174

2
  51. 1  53. −3  55–65. Proofs

67. (a) g(x) = −1
6 + x 69. (a) g(x) = 1

2(e2 − 7) + 6x
 (b)   (b)
 

0
0

1

1

g
f

  

0
0

1

8

g
f

71. (a) g(x) =
12
π3 (π − 2x)

 (b) 

0

−2

2

g
f

π

73. (a) g(x) = 0.05 − 0.6x + 1.5x2

 (b) 
f

g

0
0

1

1

75. (a) g(x) =
24
π3 x

 (b) 

f

g

−2

2

2
π

2
π−

77. g(x) = 2 sin x + sin 2x + 2
3 sin 3x

79. g(x) =
π2

3
+ 4 cos x + cos 2x +

4
9

 cos 3x
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81. g(x) =
1

2π (1 − e−2π)(1 + cos x + sin x)

83. g(x) =
1 − e−4π

20π (5 + 8 cos x + 4 sin x)

85. g(x) = (1 + π) − 2 sin x − sin 2x − 2
3 sin 3x

87. g(x) = sin 2x

89. g(x) = 2(sin x +
sin 2x

2
+

sin 3x
3

+ .  .  . +
sin nx

n )
91. 

1 − e−2π

2π +
1 − e−2π

π  ∑
n

j=1
( 1

j2 + 1
 cos jx +

j
j2 + 1

 sin jx)
93. Answers will vary.

Review Exercises (page 290)
 1. (a) √17   (b) √5   (c) 6   (d) √10
 3. (a) √6   (b) √14   (c) 7   (d) √6
 5. (a) √6   (b) √3   (c) −1   (d) √11
 7. (a) √7   (b) √7   (c) 6   (d) √2

 9. �v� = √38; u = ( 5

√38
, 

3

√38
, −

2

√38)
11. �v� = √6; u = (−

1

√6
, 

1

√6
, 

2

√6)
13. (a) (4, 4, 3)   (b) (−2, −2, −3

2)   (c) (−16, −16, −12)

15. 
π
2

 rad (90°)  17. 
π
12

 rad (15°)  19. π  rad (180°)

21. (s, 3t, 4t)  23. (1
2 r − 1

2 s − t, r, s, t)
25. (a) −10   (b) 

√259
2

27. Triangle Inequality:

  ∣∣(4, −3
2, −1) + (1

2, 3, 1)∣∣ ≤ ∣∣(4, −3
2, −1)∣∣ + ∣∣(1

2, 3, 1)∣∣
  

3√11
2

≤ √47

√2
+

√85
2

 Cauchy-Schwarz Inequality:

  ∣〈(4, −3
2, −1), (1

2, 3, 1)〉∣ ≤ ∣∣(4, −3
2, −1)∣∣ ∣∣(1

2, 3, 1)∣∣
  10 ≤ √47

√2
  
√85

2
≈ 22.347

29. (a) 0   (b) Orthogonal
 (c) Because 〈 f, g〉 = 0, it follows that ∣〈 f, g〉∣ ≤ � f � �g�.

31. (− 9
13, 45

13)  33. (0, 5)  35. (18
29, 12

29, 24
29)

37. {( 1

√2
, 

1

√2), (−
1

√2
, 

1

√2)}
39. {(0, 35, 45), (1, 0, 0), (0, 45, −3

5)}
41. (a) (−1, 4, −2) = 2(0, 2, −2) − (1, 0, −2)

 (b) {(0, 
1

√2
, −

1

√2), ( 1

√3
, −

1

√3
, −

1

√3)}
 (c)  (−1, 4, −2) = 3√2 (0, 

1

√2
, −

1

√2)
  −√3 ( 1

√3
, −

1

√3
, −

1

√3)
43.  〈 f, g〉 = ∫π

0
 sin x cos x dx

  =
1
2

 sin2 x ]
π

0
= 0

45. (a) 
1
5

   (b) 
1

√7
   (c) 

2√2

√105
   (d) {√3x, 

√7
2

(−3x + 5x3)}
47. {(−

1

√2
, 0, 

1

√2), (−
1

√6
, 

2

√6
, −

1

√6)}
 (The answer is not unique.)

49–57. Proofs  59. span {[ 2
−1

3]}
61. N(A) basis:  {[ 1

0
−1]}

 N(AT ) basis:  {[3
1
0]}

 R(A) basis:  {[0
0
1], [

1
−3

0]}
 R(AT ) basis:  {[0

1
0], [

1
0
1]}

63. y = −65.5 + 24.65t − 2.688t2 + 0.1184t3;  $197.8 billion
65. (0, 0, 3)    67. 13i + 6j − k    69. 1    71. 6    73. 7

75. (a) g(x) = 3
5 x

 (b) 

f
g

−2

−1

2

1

77. (a) g(x) =
2
π

 (b) 
f

g

0
0

1

2
π

79. (a) g(x) = 2
35 (3 + 24x − 10x2)

 (b) 

f

g

0
0 1

1

81. g(x) =
π2

3
− 4 cos x

83. (a) True. See Theorem 5.18, page 279.
 (b) False. See Theorem 5.17, page 278.
 (c) True. See discussion before Theorem 5.19, page 283
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Cumulative Test for Chapters 4  
and 5 (page 295)
 1. (a) (3, −7) (b) (3, −6)
  

−1 7 8
−2
−3
−4
−5
−6
−7
−8

1

 

v = (1, −2)

w = (2, −5)

v + w = (3, −7)

x

y  

−1 6 7

−2
−3
−4
−5
−6
−7

1

v = (1, −2)

3v = (3, −6)

x

y

 (c) (−6, 16)
  

−4−8

−8
−12
−16
−20

16
20

x

y

4w = (8, −20)

2v −  4w = (−6, 16)

2v = (2, −4)

 2. w = 3v1 + v2 + 2
3 v3

 3. [
−2
−2

1] = −2 [
1
4
7] + 3[

0
2
5]

 4. v = 5u1 − u2 + u3 + 2u4 − 5u5 + 3u6   5. Proof
 6. Yes  7. No  8. Yes
 9. (a)  A set of vectors {v1, .  .  . , vn} is linearly independent if 

the vector equation c1v1 + .  .  . + cnvn = 0 has only the 
trivial solution.

 (b) Linearly dependent
10. (a)  A set of vectors {v1, .  .  . , vn} in a vector space V is a basis 

for V if the set is linearly independent and spans V.
 (b) Yes   (c) Yes

11. {[
1

−1
0
0
], [

0
0
1

−1
]}  12. [

−4
6

−5]  13. [
0
2

−1

1
0

−1

−1
1
1]

14. (a) √5   (b) √29   (c) −5   (d) 2.21 rad (126.7°)

15. 
11
12

  16. {(1, 0, 0), (0, 
√2
2

, 
√2
2 ), (0, −

√2
2

, 
√2
2 )}

17. 1
13 (−3, 2)

 
v = (−3, 2) u = (1, 2)

projvu
=    (−3, 2)1

13

−3 −2 −1 1

−2

1

2

x

y

18. N(A) basis:  {[
0
1

−1
0
]}

 N(AT ) basis:  {[0
0
0]}

 R(A) = R3

 R(AT ) basis:  {[
0
1
1
0
], [

−1
0
0
1
], [

1
1
1
1
]}

19. span {[−1
−1

1]}  20. Proof

21. y = 36
13 − 20

13 x

 

(2, 0)

(5, −5)

y =      −     x

(1, 1)

x

y

1 3 4 5 6 7 8 9−1
−2
−3
−4
−5
−6
−7

1
2
3

36
13

20
13

22. (a) 3   (b) One basis consists of the first three rows of A.
 (c) One basis consists of columns 1, 3, and 4 of A.

 (d) {[
2
1
0
0
0
0
], [

−3
0
5

−1
1
0
], [

−2
0
3

−7
0
1
]}

 (e) No   (f) No   (g) Yes   (h) No
23. No. Two planes can intersect in a line, but not in a single point.
24. Proof

Chapter 6
Section 6.1 (page 306)
 1. (a) (−1, 7)   (b) (11, −8)
 3. (a) (−3, 22, −5)   (b) (1, 2, 2)
 5. (a) (−14, −7)   (b) (1, 1, t)
 7. (a) (0, 2, 1)   (b) (−6, 4)
 9. Not linear  11. Linear  13. Not linear
15. Not linear  17. Linear  19. Linear  21. Linear
23. T(1, 4) = (−3, 5)
 T(−2, 1) = (−3, −1)
25. (−1, −5, 5)
27. (0, −6, 8)  29. (10, 0, 2)  31. (2, 52, 2)
33. T: R2 → R2  35. T: R4 → R4  37. T: R4 → R3

39. (a) (−1, −1)   (b) (−1, −1)   (c) (0, 0)
41. (a) (2, −1, 2, 2)   (b) (−1, 1, −1, −1

2)
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43. (a) (−1, 9, 9)   (b) (−4t, −t, 0, t)
45. (a) (0, 4√2 )   (b) (2√3 − 2, 2√3 + 2)
 (c) (−

5
2

, 
5√3

2 )
47. A−1 = [ cos θ

−sin θ
sin θ
cos θ]; clockwise rotation through θ

49. Projection onto the xz-plane
51. Not a linear transformation
53. Linear transformation
55. x2 − 3x − 5
57.  True. Dx is a linear transformation and preserves addition and 

scalar multiplication.
59. False, because 3 cos 3x ≠ 3 cos x.
61. g(x) = 2x2 + 3x + C  63. g(x) = −cos x + C

65. (a) −1   (b) 1
12   (c) −4

67. (a) False, because cos(x1 + x2) ≠ cos x1 + cos x2.
 (b)  True. See discussion following Example 10, page 305.
69. (a) (x, 0)   (b) Projection onto the x-axis

71. (a) (1
2(x + y), 12(x + y))   (b) (5

2, 52)   (c) Proof

73. Au = [
1
2
1
2

1
2
1
2
] [x

y] = [
1
2x + 1

2 y
1
2x + 1

2 y] = T(u)

75. (a) Proof   (b) Proof   (c) (t, 0)   (d) (t, t)
77–83. Proofs

Section 6.2  (page 318)
 1. R3  3. {(0, 0, 0, 0)}
 5. {a0 − a2x + a2x

2 + a3x
3: a0, a2, a3 are real}

 7. {a0: a0 is real}  9. {(0, 0)}
11. (a) {(0, 0)}   (b) R2

13. (a) span{(−4, −2, 1)}   (b) R2

15. (a) {(0, 0)}   (b) span{(1, −1, 0), (0, 0, 1)}
17. (a) span{(−1, 1, 1, 0)}
 (b) span{(1, 0, −1, 0), (0, 1, −1, 0), (0, 0, 0, 1)}
19. (a) {(0, 0)}   (b) 0   (c) R2   (d) 2
21. (a) {(0, 0)}   (b) 0
 (c) {(4s, 4t, s − t): s and t are real}   (d) 2
23. (a) {(t, −3t): t is real}   (b) 1
 (c) {(3t, t): t is real}   (d) 1
25. (a) {(−t, 0, t): t is real}   (b) 1
 (c) {(s, t, s): s and t are real}   (d) 2
27. (a) {(s + t, s, −2t): s and t are real}  (b) 2
 (c) {(2t, −2t, t): t is real}   (d) 1
29. (a) {(−11t, 6t, 4t): t is real}   (b) 1   (c) R2   (d) 2
31. (a) {(2s − t, t, 4s, −5s, s): s and t are real}   (b) 2
 (c) {(7r, 7s, 7t, 8r + 20s + 2t): r, s, and t are real}   (d) 3
33. Nullity = 1
 Kernel: a line
 Range: a plane
35. Nullity = 3
 Kernel: R3

 Range: {(0, 0, 0)}
37. Nullity = 0
 Kernel: {(0, 0, 0)}
 Range: R3

39. Nullity = 2
 Kernel: {(x, y, z): x + 2y + 2z = 0} (plane)
 Range: {(t, 2t, 2t), t is real} (line)
41. 2  43. 3  45. 4
47.  Because ∣A∣ = −4 ≠ 0, the homogeneous equation Ax = 0 

has only the trivial solution. So, ker(T) = {(0, 0)} and T is  
one-to-one (by Theorem 6.6). Furthermore, because

 rank(T) = dim(R2) − nullity(T) = 2 − 0 = 2 = dim(R2),
 T is onto (by Theorem 6.7).
49.  Because ∣A∣ = −1 ≠ 0, the homogeneous equation Ax = 0 

has only the trivial solution. So, ker(T) = {(0, 0, 0)} and T is 
one-to-one (by Theorem 6.6). Furthermore, because 

 rank(T) = dim(R3) − nullity(T) = 3 − 0 = 3 = dim(R3),
 T is onto (by Theorem 6.7).
51. One-to-one and onto  53. One-to-one
 Zero Standard Basis
55. (a) (0, 0, 0, 0) {(1, 0, 0, 0), (0, 1, 0, 0),
   (0, 0, 1, 0), (0, 0, 0, 1)}

 (b) [
0
0
0
0
] {[

1
0
0
0
], [

0
1
0
0
], [

0
0
1
0
], [

0
0
0
1
]}

 (c) [0
0

0
0] {[1

0
0
0], [0

0
1
0], [0

1
0
0], [0

0
0
1]}

 (d) p(x) = 0 {1, x, x2, x3}
 (e) (0, 0, 0, 0, 0) {(1, 0, 0, 0, 0), (0, 1, 0, 0, 0),
   (0, 0, 1, 0, 0), (0, 0, 0, 1, 0)}
57. The set of constant functions: p(x) = a0

59. (a) Rank = 1, nullity = 2   (b) {(1, 0, −2), (1, 2, 0)}
61. (a) Rank = n   (b) Rank < n
63. T(A) = 0 ⇒ A − AT = 0 ⇒ A = AT

 So, ker(T) = {A: A = AT}.
65. (a)  False. See “Definition of Kernel of a Linear 

Transformation,” page 309.
 (b) False. See Theorem 6.4, page 312.
 (c)  True. See discussion before “Definition of Isomorphism,” 

page 317.
67. Proof  69. Proof

Section 6.3  (page 328)

 1. [1
1

2
−2]  3. [

1
1

−1

1
−1

0

0
0
1]  5. [3

0
0
2

−2
−1]

 7. (1, 4)  9. (−14, 0, 4)

11. (a) [−1
0

0
−1]   (b) (−3, −4)

 (c) 

−4 −2 4

−4

2

4

x

v

(3, 4)

(−3, −4)

y

2
T(v)
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13. (a) [−1
0

0
1]   (b) (−2, −3)

 (c) 

−1−2−3 1 2 3

−2

1

v T(v) 

x

y

(−2, −3) (2, −3)

15. (a) [
√2

2

√2

2

−
√2

2

√2

2
]   (b) (0, 2√2)

 (c) 

1 2 3

1

2

3

x

v

(2, 2)

(0, 2   2)

45°

y

T(v)

17. (a) [
1

2

−
√3

2

√3

2

1

2
]   (b) (1

2
+ √3, 1 −

√3
2 )

 (c) 

x

1

1 2

2
(1, 2)

(                        )
v

−60°

1 + 2 3 2 − 3
2 2,

y

T(v)

19. (a) [
1
0
0

0
1
0

0
0

−1]   (b) (3, 2, −2)

 (c) 

yx

v(3, 2, 2)

(3, 2, −2)

1 2

2

33 44

z

T(v)

21. (a) [
9
10
3
10

3
10
1
10
] (c) 

−1 1 2 3

1

2

3

4

x

(1, 4)

v

( (,21 7
10 10

y

T(v)

 (b) (21
10, 7

10)

23. (a) [
2
3
2

3
0

−1

−1
−2

1]   (b) [
9
5

−1]
25. (a) [

1
0
1
0

−1
0
2
0

0
1
0
0

0
0

−1
1
]   (b) [

1
1
2

−1
]

27. A = [2
0

3
0], A′ = [0

0
1
2]

29. A = [−4
−3

1
4], A′ = [

4
3

−3

4
−2
−2

3
1

−2]
31. T −1(x, y) = (−1

4 x, 14 y)  33. T is not invertible.

35. T −1(x1, x2, x3) = (x1, −x1 + x2, −x2 + x3)
37. (a) and (b) (9, 5, 4)  39. (a) and (b) (2, −4, −3, 3)
41. (a) and (b) (9, 16, −20)

43. [
0
1
0
0

0
0
1
0

0
0
0
1
]  45. [

0
0
0
0

1
0
0
0

0
0
1
0

0
0
1
1
]

47. 4 − 3ex − 3xex

49. (a) [
0

1

0

0

0

0

0
1
2

0

0

0

0

0
1
3

0

0

0

0

0
1
4

]   (b) 8x − 2x2 + 3
4 x4

51. (a) [
1
0
0
0
0
0

0
0
1
0
0
0

0
0
0
0
1
0

0
1
0
0
0
0

0
0
0
1
0
0

0
0
0
0
0
1
]   (b) Proof

 (c) [
1
0
0
0
0
0

0
0
0
1
0
0

0
1
0
0
0
0

0
0
0
0
1
0

0
0
1
0
0
0

0
0
0
0
0
1
]

53. (a) True. See Theorem 6.10 on page 320.
 (b)  False. See sentence after “Definition of Inverse Linear 

Transformation,” page 324.
55. Proof
57.  Sometimes it is preferable to use a nonstandard basis. For 

example, some linear transformations have diagonal matrix 
representations relative to a nonstandard basis.

Section 6.4  (page 334)

 1. A′ = [4
5
3

−3

−1]  3. A′ = [ −1
3

−13
3

4
3

16
3
]

 5. A′ = [−4
0

8
0]  7. A′ = [

1
0
0

0
1
0

0
0
1]
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 9. A′ = [
9

26

8

−5

−14

−4

15
2
39
2

5
] 11. A′ = [

7
3

−1
6
2
3

10
3
4
3

−4
3

−1
3
8
3

−2
3

]
13. (a) [6

9
4
4]   (b) [v]B = [ 2

−1], [T(v)]B = [ 4
−4]

 (c) A′ = [0

9

−4
3

7], P−1 = [−1
3
3
4

1
3

−1
2
]   (d) [−8

3

5]
15. (a) [5

9
2
2]   (b) [v]B = [ 3

−1], [T(v)]B = [5
1]

 (c) A′ = [−7
27

−2
8], P−1 = [−1

4
9
8

1
4

−5
8
]   (d) [−1

5]

17. (a) [
1
2
1
2

−1
2

1
2

−1
2
1
2

−1
2
1
2
1
2

]   (b) [v]B = [
1
0

−1], [T(v)]B = [
2

−1
−2]

 (c) A′ = [
1
0
0

0
2
0

0
0
3], P−1 = [

1
1
0

1
0
1

0
1
1]   (d) [

1
0

−3]
19. [1

4
−2

0] = [−2
1

−1
1] [ 12

−20
7

−11] [−1
1

−1
2]

21. [
5

10
0

8
4

12

0
0
6] = [

1
5

0

0

0
1
4

0

0

0
1
3

] [
5
8
0

10
4
9

0
0
6] [

5
0
0

0
4
0

0
0
3]

23. [
−2

0
0

0
1
0

0
0
1]

25. Proof  27. Proof  29. In  31–37. Proofs
39.  The matrix for I relative to B, or relative to B′, is the identity 

matrix. The matrix for I relative to B and B′ is the square 
matrix whose columns are the coordinates of v1, .  .  . , vn  
relative to the standard basis.

41. (a) True. See discussion before Example 1, page 330.
 (b)  False. See sentence following the proof of Theorem 6.13, 

page 332.

Section 6.5  (page 341)
 1. (a) (3, −5)   (b) (2, 1)   (c) (a, 0)
 (d) (0, −b)   (e) (−c, −d)   (f) ( f, g)
 3. (a) (1, 0)   (b) (3, −1)   (c) (0, a)
 (d) (b, 0)   (e) (d, −c)   (f) (−g, f )
 5. (a) (2x, y)   (b) Horizontal expansion
 7. (a) Vertical contraction  9. (a) Horizontal expansion
 (b) 

x

y

(x, y)

x, y
2( (

 (b) 

x

y
(x, y) (12x, y)

11. (a) Horizontal shear 13. (a) Vertical shear
 (b) 

x

y

(x, y) (x + 3y, y)

 (b) 

x

(x, y)

(x, 5x + y) 

y

15. {(0, t): t is real} 17. {(t, t): t is real}
19. {(t, 0): t is real} 21. {(t, 0): t is real}
23. 

1
x

y

−1
(0, −1) (1, −1)

 25. 

1

1

x

y

1
2 , 1( (

1
2 , 0( (

27. 

321

1

2

x

(1, 3)(0, 3)

(0, 0) (1, 0)

y  29. 

1

2

x

y

1 2 3

−1

(2, 1) (3, 1)

31. 

1

2

x

y

−1−2

(−1, 2)

(−1, 0)

 33. 

21

1

x

(0, 2)

(0, 0)

y

1
3 , 2( (

1
3 , 0( (

35. 

21

6

3

9

x

(0, 12) (1, 12)

(0, 0) (1, 0)

y  37. 

1

2

3

x

y

1 2 3

(2, 2) (3, 2)

39. (a)  (b)
 

x

y

−6

−8

−2
4 6 82

2

(5, −2)(1, −2)

(3, −6)

(6, 0)(0, 0)

  

x

y

−6

−8

−4

−2
42

2

(6, −6)(0, −6)

(6, 0)(0, 0)
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41. (a)  (b)
 

42

2

4

6

8

x

y

(9, 6)

(0, 0) (6, 0)

(7, 2)
(3, 2)

 

2 4 6 8 10 12

2
4
6
8

10
12

x

y

(0, 0)

(6, 0)

(12, 6)(6, 6)

43. (a)  (b)
 

2 4 6 8 10 12

1

2

3

4

5

(0, 0)

(2, 1)

(6, 3)

(10, 1)
(12, 0)

x

y   

2 4 6 8 10 12

1

2

3

4

5

(0, 0)

(0, 3) (12, 3)

(12, 0)
x

y

45. Horizontal expansion  47. Horizontal shear
49.  Reflection in the x-axis and a vertical expansion (in either 

order)
51. Vertical shear followed by a horizontal expansion
53. T(1, 0) = (2, 0), T(0, 1) = (0, 3), T(2, 2) = (4, 6)
 

−1 2 4

1

2

3

4

5

6

x

(2, 2)

(4, 6)

y

1 3 5

55. [
√3
2

    
1
2

    0

−
1
2

√3
2

    0

0

0

1
]  57. [

1

0

0

0

−
1
2

√3
2

0

−
√3
2

−
1
2
]

59. ((√3 − 1)�2, (√3 + 1)�2, 1)
61. (1, 

−1 − √3
2

, 
−1 + √3

2 )
63. 90° about the x-axis  65. 180° about the y-axis
67. 90° about the z-axis

69. [
0
0

−1

1
0
0

0
−1

0]; (1, −1, −1)

71. [
√2
2

−
1
2
1
2

−
√2
2

−
1
2
1
2

0

−
√2
2

−
√2
2
]; (0, 

−2 − √2
2

, 
2 − √2

2 )

Review Exercises   (page 343)
 1. (a) (2, −4)   (b) (4, 4)
 3. (a) (0, −1, 7)   (b) {(t − 3, 5 − t, t): t is real}
 5. (a) (−1, 5, −5)   (b) (−1, 2)
 7. Not linear

 9. Linear, A = [ 1
−1

2
−1]  11. Linear, A = [ 1

−1
−2

2]
13. Not linear
15. Not linear

17. Linear, A = [
0
0
1

0
1
0

1
0
0]

19. T(1, 1) = (3
2, 32), T(0, 1) = (1, 1)

21. T(−7, 2) = (−2, 2)
23. (a) T: R3 → R2   (b) (3, −12)
 (c) {(−5

2, 3 − 2t, t): t is real}
25. (a) T: R3 → R3   (b) (−2, −4, −5)   (c) (2, 2, 2)
27. (a) T: R2 → R3   (b) (8, 10, 4)   (c) (1, −1)
29. 

−6 −4 −2
−2

2

6

8

x

(−5, 3)

(−3, 5)
(0, 3)

(3, 0)

(5, 3)

(3, 5)

y

6

31. (a) span{(−2, 1, 0, 0), (2, 0, 1, −2)}
 (b) span{(5, 0, 4), (0, 5, 8)}
33. (a) {0}   (b) R3

35. (a) {(0, 0)}   (b) 0   (c) span{(1, 0, 12), (0, 1, −1
2)}   (d) 2

37. (a) {(−3t, 3t, t)}   (b) 1
 (c) span{(1, 0, −1), (0, 1, 2)}   (d) 2

39. 3  41. 2  43. A2 = I  45. A3 = [cos 3θ
sin 3θ

−sin 3θ
cos 3θ]

47. A′ = [
0
0
0

0
1
1

0
0
0], A = [0

1
0
1]

49. T is not invertible.  51. T −1(x, y) = (x, −y)
53. (a) One-to-one   (b) Onto   (c) Invertible
55. (a) Not one-to-one   (b) Onto   (c) Not invertible

57. (a) and (b) (0, 1, 1)  59. A′ = [3
1

−1
−1]

61. [ 1
−1

−9
3] = [

5
13

− 3
13

1
13
2
13
] [6

2
−3
−2] [2

3
−1

5]

63. (a) A = [
0

0

0

0
1
5
2
5

0
2
5
4
5

]   (b) Answers will vary.

 (c) Answers will vary.
65. Proof  67. Proof
69. (a) Proof   (b) Rank = 1, nullity = 3
 (c) {1 − x, 1 − x2, 1 − x3}
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71. Ker(T) = {v: 〈v, v0〉 = 0}
 Range = R
 Rank = 1
 Nullity = dim(V) − 1
73.  Although they are not the same, they have the same dimension 

(4) and are isomorphic.
75. (a) Vertical expansion 77. (a) Vertical shear
 (b)

x

(x, y)

(x, 2y)
y   (b)

x
(x, y)

(x, y + 3x)
y

79. (a) Horizontal shear
 (b) 

x

(x, y) (x + 5y, y) 

y

81. 

1

−1

x

(0, −1)

(1, 0)(0, 0)

y  83. 

2 3

−1

1

2

x

(0, 0)
(3, 1)

(1, 0)

y

85.  Reflection in the line y = x followed by a horizontal  
expansion

87. [
√2
2
√2
2

0

−
√2
2
√2
2

0

0

0

1
], (√2, 0, 1)

89. [
1

0

0

0
1
2

√3
2

0

−
√3
2
1
2
], (1, 

−1 − √3
2

, 
−√3 + 1

2 )

91. [
√3
2
1
2

0

−
1
4

√3
4
√3
2

√3
4

−
3
4
1
2

]  93. [
√6
4
√6
4

−
1
2

−
√2
2
√2
2

0

√2
4
√2
4
√3
2

]
95. (0, 0, 0), (√2

2
, 
√2
2

, 0), (0, √2, 0),

 (−
√2
2

, 
√2
2

, 0), (0, 0, 1), (√2
2

, 
√2
2

, 1),

 (0, √2, 1), (−
√2
2

, 
√2
2

, 1)

 97. (0, 0, 0), (1, 0, 0), (1, 
√3
2

, 
1
2), (0, 

√3
2

, 
1
2),

 (0, −
1
2

, 
√3
2 ), (1, −

1
2

, 
√3
2 ),

 (1, 
−1 + √3

2
, 

1 + √3
2 ), (0, 

−1 + √3
2

, 
1 + √3

2 )
 99. (a)  False. See “Elementary Matrices for Linear  

Transformations in R2,” page 336.
 (b)  True. See “Elementary Matrices for Linear Transformations 

in R2,” page 336.
101. (a) False. See “Remark,” page 300.
 (b) False. See Theorem 6.7, page 316.

Chapter 7
Section 7.1 (page 356)

  1. [2
0

0
−2][

1
0] = 2[1

0], [2
0

0
−2][

0
1] = −2[0

1]

  3. [
2
0
0

3
−1

0

1
2
3][

1
0
0] = 2[

1
0
0],

  [
2
0
0

3
−1

0

1
2
3][

1
−1

0] = −1[
1

−1
0],

  [
2
0
0

3
−1

0

1
2
3][

5
1
2] = 3[

5
1
2]

  5. [
0
0
1

1
0
0

0
1
0][

1
1
1] = 1[

1
1
1]

  7. (a) [2
0

0
−2][

c
0] = 2[c

0]
  (b) [2

0
0

−2][
0
c] = −2[0

c]
  9. (a) No   (b) Yes   (c) Yes   (d) No
 11. (a) Yes   (b) No   (c) Yes   (d) Yes
 13. λ = 1, (t, 0); λ = −1, (0, t)
 15. (a) λ(λ − 7) = 0   (b) λ = 0, (1, 2); λ = 7, (3, −1)
 17. (a) (λ + 1)(λ − 3) = 0
  (b) λ = −1, (−1, 1); λ = 3, (1, 1)
 19. (a) λ2 − 1

4 = 0   (b) λ = −1
2, (1, 1); λ = 1

2, (3, 1)
 21. (a) (λ − 2)(λ − 4)(λ − 1) = 0
  (b) λ = 4, (7, −4, 2); λ = 2, (1, 0, 0); λ = 1, (−1, 1, 1)
 23. (a) (λ + 3)(λ − 3)2 = 0
  (b) λ = −3, (1, 1, 3); λ = 3, (1, 0, −1), (1, 1, 0)
 25. (a) (λ − 4)(λ − 6)(λ + 2) = 0
  (b) λ = −2, (3, 2, 0); λ = 4, (5, −10, −2);
   λ = 6, (1, −2, 0)
 27. (a) (λ − 2)2(λ − 4)(λ + 1) = 0
  (b) λ = 2, (1, 0, 0, 0), (0, 1, 0, 0); λ = 4, (0, 0, 1, 1);
   λ = −1, (0, 0, 1, −4)
 29. λ = −2, 1  31. λ = −1

6, 13  33. λ = −1, 4, 4

 35. λ = 4, 
17 ± √385

12
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37. λ = 0, 0, 0, 21  39. λ = 0, 0, 3, 3  41. λ = 2, 3, 1

43. λ = −6, 5, −4, −4
45. (a) λ1 = 3, λ2 = 4
 (b) B1 = {(2, −1)}, B2 = {(1, −1)}

 (c) [3
0

0
4]

47. (a) λ1 = −1, λ2 = 1, λ3 = 2
 (b) B1 = {(1, 0, 1)}, B2 = {(2, 1, 0)}, B3 = {(1, 1, 0)}

 (c) [
−1

0
0

0
1
0

0
0
2]

49. λ2 − 8λ + 15  51. λ3 − 5λ2 + 15λ − 27

53.  (a) Trace (b) Determinant
 Exercise of A of A
  
  15 7 0
  17 2 −3
  19 0 −1

4

  21 7 8
  23 3 −27
  25 8 −48
  27 7 −16

55 – 63. Proofs  65. a = 0, d = 1 or a = 1, d = 0
67. (a) False. x must be nonzero.
 (b) True. See Theorem 7.2, page 351.
69. Dim = 3  71. Dim = 1

73. T(ex) =
d
dx

[ex] = ex = 1(ex)

75. λ = −2, 3 + 2x; λ = 4, −5 + 10x + 2x2; λ = 6, −1 + 2x

77. λ = 0, [1
1

0
0], [1

0
1

−1]; λ = 3, [ 1
−2

0
0]

79. λ = 0, 1  81. Proof

Section 7.2 (page 366)

 1. (a) P−1 = [ 1
−1

−4
3], P−1AP = [1

0
0

−2]
 (b) λ = 1, −2

 3. (a) P−1 = [−1
3
2
3

2
3

−1
3
], P−1AP = [−1

0
0
2]

 (b) λ = −1, 2

 5. (a) P−1 = [
2
3

0

−1
3

−2
3
1
4
1
12

1

0

0
], P−1AP = [

5
0
0

0
3
0

0
0

−1]
 (b) λ = 5, 3, −1

 7. P = [1
2

3
−1] (The answer is not unique.)

 9. P = [
7

−4
2

1
0
0

−1
1
1] (The answer is not unique.)

11. P = [
1
1
3

−1
0
1

1
1
0] (The answer is not unique.)

13. A is not diagonalizable.
15.  There is only one eigenvalue, λ = 0, and the dimension of its 

eigenspace is 1.
17.  There is only one eigenvalue, λ = 7, and the dimension of its 

eigenspace is 1.
19.  There are two eigenvalues, 1 and 2. The dimension of the 

eigenspace for the repeated eigenvalue 1 is 1.
21.  There are two repeated eigenvalues, 0 and 3. The eigenspace 

associated with 3 is of dimension 1.
23. λ = 0, 2; The matrix is diagonalizable.
25.  λ = 0, −2; Insufficient number of eigenvalues to guarantee 

diagonalization
27. {(1, −1), (1, 1)}  29. {(−1 + x), x}

31. Proof  33. [−188
126

−378
253]

35. [
2

−30
3

0
32
0

−2
−2
−3]

37. (a) True. See the proof of Theorem 7.4, page 360.
 (b) False. See Theorem 7.6, page 364.

39. Yes. P = [
0
0
1

0
1
0

1
0
0]

41. Yes, the order of elements on the main diagonal may change.
43– 47. Proofs
49.  λ = 4 is the only eigenvalue, and a basis for the eigenspace is 

{(1, 0)}, so the matrix does not have two linearly independent 
eigenvectors. By Theorem 7.5, the matrix is not diagonalizable. 

Section 7.3 (page 376)
 1. Not symmetric

 3. P = [
1
0

−1

1
0
1

0
1
0], P−1AP = [

−a
0
0

0
a
0

0
0
a]

 5. P = [
1
0

−1

0
1
0

1
0
1], P−1AP = [

0
0
0

0
a
0

0
0

2a
]

 7. λ = 1, dim = 1  9. λ = 2, dim = 2
 λ = 3, dim = 1  λ = 3, dim = 1
11. λ = −2, dim = 2 13. λ = −1, dim = 1
 λ = 4, dim = 1  λ = 1 + √2, dim = 1
    λ = 1 − √2, dim = 1
15. λ = −2, dim = 1 17. λ = 1, dim = 1
 λ = 3, dim = 2  λ = 2, dim = 3
 λ = 8, dim = 1  λ = 3, dim = 1
19. Orthogonal  21. Orthogonal  23. Not orthogonal
25. Orthogonal  27. Not orthogonal  29. Orthogonal
31. Not orthogonal  33–37. Proofs
39. Not orthogonally diagonalizable
41. Orthogonally diagonalizable

43. P = [ √2�2
−√2�2

√2�2
√2�2] 45. P = [ √3�3

−√6�3
√6�3
√3�3]

 (The answer is not unique.)  (The answer is not unique.)
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47. P = [
−2

3
1
3
2
3

−1
3
2
3

−2
3

2
3
2
3
1
3

] (The answer is not unique.)

49. [
−√3�3
−√3�3
√3�3

−√2�2
√2�2

0

√6�6
√6�6
√6�3]

 (The answer is not unique.)

51. P = [
√2�2

−√2�2
0
0

0
0

√2�2
−√2�2

√2�2
√2�2

0
0

0
0

√2�2
√2�2

]
 (The answer is not unique.)
53. (a) True. See Theorem 7.10, page 373.
 (b) True. See Theorem 7.9, page 372.
55–59. Proofs

Section 7.4 (page 391)

 1. x2 = [20
5], x3 = [10

10]; t[2
1]

 3. x2 = [
84
12
6], x3 = [

60
84
6]; t[

8
4
1]

 5. x2 = [
400
25

100
50

], x3 = [
250
100
25
50

]; t[
8
2
2
1
]

 7. x2 = [
1280
120
40], x3 = [

3120
960
30]

 9. x2 = [
900
60
50], x3 = [

2200
540
30]

11.
 

y1 = C1e
2t

y2 = C2e
t   

13. y1 = C1e
−4t

y2 = C2e
t�2   

15. y1 =
y2 =
y3 =

C1e
−t

C2e
6t

C3e
t

17. y1 = C1e
−0.3t 19. y1 = C1e

7t

 y2 = C2e
0.4t  y2 = C2e

9t

 y3 = C3e
−0.6t  y3 = C3e

−7t

    y4 = C4e
−9t

21. y1 = C1e
t − 4C2e

2t 23. y1 = C1e
−t + C2e

3t

 y2 = C2e
2t  y2 = −C1e

−t + C2e
3t

25. y1 = C1e
t − 2C2e

2t − 7C3e
3t

 y2 =  C2e
2t + 8C3e

3t

 y3 =  2C3e
3t

27.
 

y1 =
y2 =
y3 =

3C1e
2t −

2C1e
2t +

5C2e
−4t

10C2e
−4t

2C2e
−4t

−   C3e
−6t

+ 2C3e
−6t

29. y1′ = y1 + y2 31. y1′ = y2

 y2′ =  y2  y2′ = y3

    y3′ = −4y2

33. [1
0

0
1]  35. [9

5
5

−4]  37. [0
5

5
−10]

39. A = [ 2

−
3
2

−
3
2

−2], λ1 = −
5
2

, λ2 =
5
2

, P = [
1

√10
3

√10

−
3

√10
1

√10
]

41. A = [ 13
3√3

3√3
7], λ1 = 4, λ2 = 16, P = [

1
2

−
√3
2

√3
2

 

1
2

 ]
43. A = [ 16

−12
−12

9], λ1 = 0, λ2 = 25, P = [
3
5
4
5

−4
5
3
5
]

45. Ellipse, 5(x′)2 + 15(y′)2 − 45 = 0
47. Ellipse, (x′)2 + 6(y′)2 − 36 = 0
49. Parabola, 4(y′)2 + 4x′ + 8y′ + 4 = 0

51. Hyperbola, 12[−(x′)2 + (y′)2 − 3√2x′ − √2y′ + 6] = 0

53. A = [
3

−1
0

−1
3
0

0
0
8], 2(x′)2 + 4(y′)2 + 8(z′)2 − 16 = 0

55. A = [
1
0
0

0
2
1

0
1
2], (x′)2 + (y′)2 + 3(z′)2 − 1 = 0

57. Maximum: 3; [1
0] 59. Maximum: 48; [0

2]
 Minimum: 2; [0

1]  Minimum: 25; [5
0]

61. Maximum: 11; [
1

√2
1

√2
] 63. Maximum: 3; [

1

√2
1

√2
]

 Minimum: −1; [−
1

√2
1

√2
]  Minimum: −3; [−

1

√2
1

√2
]

65. Maximum: 4; [
1

√6
2

√6
1

√6

];  Minimum: 0; [−
1

√2
0

1

√2
]

67. Let P = [a
c

b
d] be a 2 × 2 orthogonal matrix such that

 ∣P∣ = 1. Define θ ∈ (0, 2π) as follows.
 (i) If a = 1, then c = 0, b = 0, and d = 1, so let θ = 0.
 (ii) If a = −1, then c = 0, b = 0 and d = −1, so let θ = π.
 (iii) If a ≥ 0 and c > 0, let θ = arccos(a), 0 < θ ≤ π�2.
 (iv) If a ≥ 0 and c < 0, let θ = 2π − arccos(a),
  3π�2 ≤ θ < 2π.
 (v) If a ≤ 0 and c > 0, let θ = arccos(a), π�2 ≤ θ < π.
 (vi) If a ≤ 0 and c < 0, let θ = 2π − arccos(a),
  π < θ ≤ 3π�2.
 In each of these cases, confirm that

 P = [a
c

b
d] = [cos θ

sin θ
−sin θ

cos θ].

69. Answers will vary.
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Review Exercises (page 393)
 1. (a) λ2 − 9 = 0   (b) λ = −3, λ = 3
 (c)  A basis for λ = −3 is {(1, −5)} and a basis for λ = 3 

is {(1, 1)}.
 3. (a) (λ − 4)(λ − 8)2 = 0   (b) λ = 4, λ = 8
 (c)  A basis for λ = 4 is {(1, −2, −1)} and a basis for λ = 8 

is {(4, −1, 0), (3, 0, 1)}.
 5. (a) (λ − 2)(λ − 3)(λ − 1) = 0
 (b) λ = 1, λ = 2, λ = 3
 (c)  A basis for λ = 1 is {(1, 2, −1)} a basis for λ = 2 is  

{(1, 0, 0)}, and a basis for λ = 3 is {(0, 1, 0)}.
 7. (a) (λ − 1)2(λ − 3)2 = 0   (b) λ = 1, λ = 3
 (c)  A basis for λ = 1 is {(1, −1, 0, 0), (0, 0, 1, −1)} and a 

basis for λ = 3 is {(1, 1, 0, 0), (0, 0, 1, 1)}.

 9. P = [4
1

−1
2] (The answer is not unique.)

11. Not diagonalizable

13. P = [
1
0
1

0
1
0

1
0

−1] (The answer is not unique.)

15. (a) a = −1
4   (b) a = 2   (c) a ≥ −1

4

17.  A has only one eigenvalue, λ = 0, and the dimension of its 
eigenspace is 1.

19.  A has only one eigenvalue, λ = 3, and the dimension of its 
eigenspace is 2.

21. P = [0
1

1
0]

23.  The eigenspace corresponding to λ = 1 of a matrix A has 
dimension 1, while that of matrix B has dimension 2, so the 
matrices are not similar.

25. Both symmetric and orthogonal
27. Both symmetric and orthogonal
29. Neither  31. Neither  33. Proof
35. Proof  37. Orthogonally diagonalizable
39. Not orthogonally diagonalizable

41. P = [
2

√5
    

1

√5
    

−
1

√5
2

√5
] (The answer is not unique.)

43. P = [
0

0

1

1

√2

−
1

√2
0

1

√2
1

√2
0
] (The answer is not unique.)

45. P = [
1

√2
0

−
1

√2

0

1

0

1

√2
0

1

√2
] (The answer is not unique.)

47. (3
5, 25)  49. (3

5, 25)  51. (1
4, 12, 14)  53. ( 4

16, 5
16, 7

16)

55. Proof  57. A = [0

0

1
9
4
], λ1 = 0, λ2 = 9

4

59. A2 = [56
20

−40
−4], A3 = [368   

152   
−304
−88], A4 = [2336    

1040    
−2080
−784]

61. (a) and (b) Proofs  63. Proof
65. A = O  67. λ = 0 or 1
69. (a)  True. See “Definitions of Eigenvalue and Eigenvector,” 

page 348.
 (b) False. See Theorem 7.4, page 360.
 (c)  True. See “Definition of a Diagonalizable Matrix,”  

page 359.

71. x2 = [100
25], x 3 = [25

25]; t[2
1]

73. x 2 = [
4500
300
50], x3 = [

1500
4500

50]; t[
24
12
1]

75. x 2 = [
1440
108
90], x3 = [

6588
1296

81]
77. y1 = 4C1e

3t 79. y1 = C1e
3t

 y2 = C1e
3t + C2e

−t  y2 = C2e
8t

    y3 = C3e
−8t

81. (a) A = [1

3
2

3
2

1] (d) 

−2

−2

2

x

x' y'

y

2
 (b) P = [

1

√2
   

1

√2
   

−
1

√2
1

√2
]

 (c) 5(x′)2 − (y′)2 = 6

83. (a) A = [0

1
2

1
2

0] (d) 

2

1

2

3

x

x' y'

y

3
 (b) P = [

1

√2
   

1

√2
   

−
1

√2
1

√2
]

 (c) (x′)2 − (y′)2 = 4

85. Maximum: 1; [1
0]

 Minimum: −1; [0
1]

87. Maximum: 17; [−
1

√2
1

√2
]

 Minimum: 13; [
1

√2
1

√2
]
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Cumulative Test for Chapters 6 and 7 
(page 397)
 1. Linear transformation  2. Not a linear transformation
 3. dim(Rn) = 4; dim(Rm) = 2
 4. (a) (−4, 2, 0)   (b) (3, t)
 5. {(s, s, −t, t): s, t are real}
 6. (a) span{(0, −1, 0, 1), (1, 0, −1, 0)}
 (b) span{(1, 0), (0, 1)}   (c) Rank = 2, nullity = 2

 7. [ 3
−1

2
2]  8. [

1
0
1

1
1
0

0
1

−1]
 9. [0

4
−2

0
3

11]  10. [
0
0
0

0
0
0

0
0
0]

11. [
1
2

−1
2

−1
2
1
2
], T(1, 1) = (0, 0), T(−2, 2) = (−2, 2)

12. (a) [
√3
2
1
2

−
1
2

√3
2

]   (b) [
√3
2

− 1

1
2

+ √3]
 (c) 

−1−2 1

1

3

x

v

(1, 2)

30°

y

T(v)

(       −  1,     +    3)3
2

1
2

13. T = [ 2
−1

−4
−5], T ′ = [0

7
2

−3]

14. T = [
−2
−1

4

2
3
0

1
2

−6], T ′ = [
2
1
1

1
−2

2

3
3

−5]
15. T −1(x, y) = (1

3x + 1
3y, −2

3 x + 1
3y)

16. T−1(x1, x2, x3) = (x1 − x2 + x3

2
, 
x1 + x2 − x3

2
, 
−x1 + x2 + x3

2 )

17. [
−1

0
2

−2
1
1], T(0, 1) = (1, 0, 1)

18. (a) A = [1
1

−2
4]   (b) P = [1

1
1
2]

 (c) A′ = [−7
6

−15
12]   (d) [ 9

−6]
 (e) [v]B = [ 1

−1], [T(v)]B = [ 3
−3]

19. λ = 5 (repeated), [ 1
−1]

20. λ = 5, [−1
4]; λ = −15, [1

0]

21. λ = 1, [
1
0
0]; λ = 0, [

−1
−1

3]; λ = 2, [
1
1

−1]
22. λ = 1 (three times), [

1
0
0]

23. P = [
1
0
0

1
−1

0

5
1
2]  24. P = [

3
2
0

−1
2
0

−5
10
2]

25. {(0, 1, 0), (1, 1, 1), (2, 2, 3)}

26. P = [
1

√2
   

−
1

√2
   

1

√2
1

√2
]  27. P = [

1

√3
1

√3
1

√3

1

√2

0

−
1

√2

1

√6

−
2

√6
1

√6
]

28. y1 = C1e
t

 y2 = C2e
9t

29. [ 3
−8

−8
3]  30. x 2 = [

1800
120
60], x 3 = [

6300
1440

48]
31. P is orthogonal when P−1 = PT.  32. Proof
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Index

A
Absorbing
 state, 89
 Markov chain, 89
Abstraction, 161
Addition
 of matrices, 41
  properties of, 52
 of vectors, 153, 155, 161
  properties of, 154, 156
Additive identity
 of a matrix, 53
 of a vector, 157, 161
  properties of, 154, 156, 157
Additive inverse
 of a matrix, 53
 of a vector, 157, 161
  properties of, 154, 156, 157
Adjoining two matrices, 64
Adjoint of a matrix, 134
 inverse given by, 135
Affine transformation, 180, 344
Age distribution vector, 378
Age transition matrix, 378
Algebra
 Fundamental Theorem of, 351
 of matrices, 52
Algebraic properties of the cross product, 

278
Alternative form of the Gram-Schmidt  

orthonormalization process, 262
Analysis
 of a network, 29–31
 regression, 304
  least squares, 99–101, 265, 271–274
Angle between two vectors, 235, 239, 246, 

279
Approximation
 Fourier, 285, 286
 least squares, 281–283
Area, 132, 279, 288
Associative property
 of matrix addition, 52
 of matrix multiplication, 54
 of scalar multiplication
  for matrices, 52
  for vectors, 154, 156, 161
 of vector addition, 154, 156, 161
Augmented matrix, 13
Axes, rotation of, for a conic, 222, 223
Axioms
 for an inner product, 243
 for a vector space, 161

B
Back-substitution, 6
 Gaussian elimination with, 16
Balancing a chemical equation, 4

Basis, 186
 change of, 210
 coordinate matrix relative to, 209
 coordinate representation relative to, 208
 number of vectors in, 190
 ordered, 208
 orthogonal, 254, 259
 orthonormal, 254, 258
 for the row space of a matrix, 196
 standard, 186, 188
 tests in an n-dimensional space, 192
Bessel’s Inequality, 291
Block multiplication of matrices, 51

C
Cancellation properties, 69
Canonical regression analysis, 304
Cauchy, Augustin-Louis (1789–1857), 119, 

236
Cauchy-Schwarz Inequality, 237, 248
Cayley, Arthur (1821–1895), 43
Cayley-Hamilton Theorem, 147, 357
Change of basis, 210
Characteristic
 equation of a matrix, 351
 polynomial of a matrix, 147, 351
Circle, standard form of the equation of, 221
Closed economic system, 97
Closure under
 vector addition, 154, 156, 161
 vector scalar multiplication, 154, 156, 161
Coded row matrices, 95
Codomain of a mapping function, 298
Coefficient(s), 2, 46
 Fourier, 258, 286
 leading, 2
 matrix, 13
Cofactor(s), 111
 expanding by, in the first row, 112
 expansion by, 113
 matrix of, 134
 sign pattern for, 111
Collinear points in the xy-plane, test for, 139
Column
 matrix, 40
  linear combination of, 46
 of a matrix, 13
 operations, elementary, 120
 rank of a matrix, 199
 space, 195, 312
 subscript, 13
 vector(s), 40, 195
  linear combination of, 46
Column and row spaces, 198
Column-equivalent matrices, 120
Commutative property
 of matrix addition, 52
 of vector addition, 154, 156, 161

Companion matrix, 394
Complement, orthogonal, 266
Components of a vector, 152
Composition of linear transformations, 322, 

323
Computational fluid dynamics, 79
Condition for diagonalization, 360, 364
Conditions that yield a zero determinant, 121
Cone, elliptic, 387
Conic(s) or conic section(s), 221
 rotation of axes, 223, 224
Consistent system of linear equations, 5
Constant term, 2
Constrained optimization, 389
Contraction in R2, 337
Contradiction, proof by, A4
Controllability matrix, 314
Controllable system, 314
Coordinate matrix, 208, 209
Coordinate representation, 208, 209
Coordinate vector, relative to a basis, 208
Coordinates, 208, 258
Coplanar points in space, test for, 140
Counterexample, A5
Cramer, Gabriel (1704–1752), 136
Cramer’s Rule, 130, 136, 137
Cross product of two vectors, 277
 area of a triangle using, 288
 properties of, 278, 279
Cryptogram, 94
Cryptography, 94–96 
Crystallography, 213
Curve fitting, polynomial, 25–28

D
Decoding a message, 94, 96
Degree of freedom, 164
Determinant(s), 66, 110, 112, 114
 area of a triangle using, 138
 elementary column operations and, 120
 elementary row operations and, 119 
 expansion by cofactors, 113
 of an inverse matrix, 128
 of an invertible matrix, 128
 Laplace’s Expansion of, 112, 113
 of a matrix product, 126
 number of operations to evaluate, 122
 properties of, 126
 of a scalar multiple of a matrix, 127
 of a transpose, 130
 of a triangular matrix, 115
 zero, conditions that yield, 121
Diagonal
 main, 13
 matrix, 49, 115
Diagonalizable matrix, 359, 373
Diagonalization
 condition for, 360, 364
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 and linear transformations, 365
 orthogonal, of a symmetric matrix, 374
 problem, 359
Diagonalizing a matrix, steps for, 362
Difference
 equation, 314
 of two matrices, 41
 of two vectors, 153, 155
Differential equation(s), 218, 219, 380
Differential operator, 305
Dimension(s)
 isomorphic spaces and, 317
 of row and column spaces, 198
 of the solution space, 202
 of a vector space, 191
Direct sum of two subspaces, 230, 267
Directed line segment, 152
Distance
 and orthogonal projection, 250, 269
 between two vectors, 234, 246
Distributive property
 for matrices, 52, 54
 for vectors, 154, 156, 161
Domain of a mapping function, 298
Dot product of two vectors, 235
 and matrix multiplication, 240
Dynamical systems, 396

E
Eigenspace, 350, 355
Eigenvalue(s), 147, 348, 351, 352, 355
 multiplicity of, 353
 problem, 348
 of similar matrices, 360
 of triangular matrices, 354
Eigenvector(s), 147, 348, 351, 352, 353
 of λ form a subspace, 350
Electric flux, 240
Electrical network, 30, 322
Elementary
 column operations, 120
 matrices, 74, 77
  for linear transformations in R2, 336
 row operations, 14
  and determinants, 119
  representing, 75
Elimination
 Gaussian, 7
  with back-substitution, 16
 Gauss-Jordan, 19
  finding the inverse of a matrix by, 64
Ellipse, standard form of the equation of, 221
Ellipsoid, 386
Elliptic
 cone, 387
 paraboloid, 387
Encoding a message, 94, 95
Encryption, 94
End-centered monoclinic unit cell, 213

Entry of a matrix, 13
Equal vectors, 152, 155
Equality of matrices, 40
Equation(s)
 characteristic, 351
 of conic section(s), 141, 221
 of the least squares problem, normal, 271
 of a plane, three-point form of, 140
Equation(s), linear
 in n variables, 2
 solution of, 3
 solution set of, 3
 system of, 4, 38
  consistent, 5
  equivalent, 6, 7
  homogeneous, 21
  inconsistent, 5, 8, 18
  row-echelon form of, 6
  solution(s) of, 4, 5, 56, 203, 204
  solving, 6, 45
 in three variables, 2
 in two variables, 2
 two-point form of, 139
Equivalent
 conditions, 78
  for a nonsingular matrix, 129
  for square matrices, summary of, 204
 systems of linear equations, 6, 7
Error, sum of squared, 99
Euclidean
 inner product, 243
 n-space, 235
Euler, Leonhard (1707–1783), A1
Existence of an inverse transformation, 325
Expanding by cofactors in the first row, 112
Expansion
 by cofactors, 113
 of a determinant, Laplace’s, 112, 113
 in R2, 337
External demand matrix, 98

F
Fermat, Pierre de (1601–1665), A1
Fibonacci, Leonard (1170–1250), 396
Fibonacci sequence, 396
Finding
 eigenvalues and eigenvectors, 352
 the inverse of a matrix by  

   Gauss-Jordan elimination, 64
 the steady state matrix of a Markov 

   chain, 88
Finite dimensional vector space, 186
First-order linear differential equations, 380
Fixed point of a linear transformation, 308, 

341
Flexibility matrix, 64, 72
Flux, electric and magnetic, 240
Force matrix, 64, 72
Forward substitution, 80

Fourier, Jean-Baptiste Joseph (1768–1830), 
256, 258, 285

Fourier
 approximation, 285, 286
 coefficients, 258, 286
 series, 256, 287
Free variable, 3
Frequency, natural, 164
Fundamental subspaces of a matrix, 264, 270
Fundamental Theorem
 of Algebra, 351
 of Symmetric Matrices, 373

G
Gauss, Carl Friedrich (1777–1855), 7, 19
Gaussian elimination, 7
 with back-substitution, 16
Gauss-Jordan elimination, 19
 finding the inverse of a matrix by, 64
General equation of a conic section, 141
General solution, 219
Genetics, 365
Geometric properties of the cross product, 

279
Geometry of linear transformations in R2, 

336–338
Global Positioning System, 16
Gram, Jorgen Pederson (1850–1916), 259
Gram-Schmidt orthonormalization process, 

254, 259
 alternative form, 262
Grayscale, 190

H
Hamilton, William Rowan (1805–1865), 156
Heart rate variability, 255
Hessian matrix, 375
Homogeneous 
 linear differential equation, 218, 219
 system of linear equations, 21, 200
Hooke’s Law, 64
Horizontal
 contractions and expansions in R2, 337
 shear in R2, 338
Householder matrix, 73
Hyperbola, standard form of the equation 

of, 221
Hyperbolic paraboloid, 387
Hyperboloid, 386
Hypothesis, induction, A2

I
i, j, k notation, 232
Idempotent matrix, 83, 99, 133, 335, 358, 

395
Identically equal to zero, 188, 219
Identity
 additive
  of a matrix, 53
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  of a vector, 157, 161
 Lagrange’s, 288
 matrix, 55
  properties of, 56
 property
  additive, for vectors, 154, 156
  multiplicative, for matrices, 52
  multiplicative, for vectors, 154, 156
 scalar, of a vector, 161
 transformation, 300
If and only if, 40
Image, 298
 morphing and warping, 180
Inconsistent system of linear equations, 5, 

8, 18
Induction
 hypothesis, A2
 mathematical, 115
  Principle of, A1, A2
  proof by, A2, A3
Inductive definition, 112
Inequality
 Bessel’s, 291
 Cauchy-Schwarz, 237, 248
 triangle, 239, 248
Infinite dimensional vector space, 186
Inheritance, 365
Initial point of a vector, 152
Inner product(s), 243
 properties of, 245
 weights of the terms of, 244
Inner product space, 243, 246, 248
 orthogonal projection in, 249
Input of an economic system, 97
Input-output matrix, 97
Intersection of two subspaces is a subspace, 

170
Inverse
 additive
  of a matrix, 53
  of a vector, 157, 161
 of a linear transformation, 324, 325
 of a matrix, 62, 66
  determinant of, 128
  finding by Gauss-Jordan elimination, 

    64
  given by its adjoint, 135
  properties of, 67
 multiplicative, of a real number, 62
 of a product of two matrices, 68
 property, additive, for vectors, 154, 156
 of a transition matrix, 210
Invertible, 62
Isomorphic spaces, 317
Isomorphism, 317

J
Jacobian, 145
Jordan, Wilhelm (1842–1899), 19

K
Kepler, Johannes (1571–1630), 28
Kepler’s First Law of Planetary Motion, 141
Kernel, 309, 311
Key, 94
Kirchhoff’s Laws, 30

L
Ladder network, 322
Lagrange multiplier, 34
Lagrange’s Identity, 288
Laplace, Pierre Simon de (1749–1827), 112
Laplace transform, 130
Laplace’s Expansion of a Determinant, 112, 

113
Lattice, 213
Leading
 coefficient, 2
 one, 15
 variable, 2
Least squares, 265
 approximation, 281–284
 method of, 99
 problem, 265, 271
 regression
  analysis, 99–101, 265, 271–274
  line, 100, 265
Left-handed system, 279
Legendre, Adrien-Marie (1752–1833), 261
Legendre polynomials, normalized, 261
Length, 232, 233, 246
Leontief, Wassily W. (1906–1999), 97
Leontief input-output model, 97, 98
Line
 least squares regression, 99, 265
 reflection in, 336, 346
Linear approximation, least squares, 282
Linear combination, 46
 of vectors, 158, 175
Linear dependence, 179, 185
 and bases, 189
 and scalar multiples, 183
 testing for, 180
Linear differential equation(s), 218
 solution(s) of, 218, 219
 system of first-order, 380
Linear equation(s)
 in n variables, 2
 solution of, 3
 solution set of, 3
 system of, 4, 38
  consistent, 5
  equivalent, 6
  homogeneous, 21
  inconsistent, 5, 8, 18
  row-echelon form of, 6
  solution(s) of, 4, 5, 56, 203, 204
  solving, 6, 45
 in three variables, 2

 in two variables, 2
 two-point form of, 139
Linear independence, 179, 257
 testing for, 180, 219
Linear operator, 299
Linear programming, 47
Linear system, nonhomogeneous, 203
Linear transformation(s), 299
 composition of, 323, 324
 contraction in R2, 337
 and diagonalization, 365
 differential operator, 305
 eigenvalue of, 355
 eigenvector of, 355
 expansion in R2, 337
 fixed point of, 308, 341
 given by a matrix, 302
 identity, 300
 inverse of, 324, 325
 isomorphism, 317
 kernel of, 309
 magnification in R2, 342
 nullity of, 313
 nullspace of, 311
 one-to-one, 315, 316
 onto, 316
 orthogonal projection onto a subspace, 308
 projection in R3, 304
 properties of, 300
 in R2, 336
 range of, 312
 rank of, 313
 reflection in R2, 336, 346
 rotation in R2, 303
 rotation in R3, 339, 340
 shear in R2, 337, 338
 standard matrix for, 320
 sum of, 344
 zero, 300
Lower triangular matrix, 79, 115
LU-factorization, 79

M
Mm,n, standard basis for, 188
Magnetic flux, 240
Magnification in R2, 342
Magnitude of a vector, 232
Main diagonal, 13
Map, 298
Markov, Andrey Andreyevich (1856–1922), 

85
Markov chain, 85
 absorbing, 89
 nth state matrix of a, 85
 regular, 87
 with reflecting boundaries, 93
Mathematical
 induction, 115, A1–A3
 modeling, 273
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Matrix (matrices), 13
 addition of, 41
  properties of, 52
 additive identity for, 53
 additive inverse of, 53
 adjoining, 64
 adjoint of, 134
 age transition, 378
 algebra of, 52
 augmented, 13
 characteristic equation of, 351
 characteristic polynomial of, 351
 coefficient, 13
 of cofactors, 134
 cofactors of, 111
 column, 40
  linear combination of, 46
 column of, 13
 column space of, 195, 312
 column-equivalent, 120
 companion, 394
 controllability, 314
 coordinate, 208, 209
 determinant of, 66, 110, 112, 114
 diagonal, 49, 115
 diagonalizable, 359, 373
 eigenvalue(s) of, 147, 348, 351
 eigenvector(s) of, 147, 348, 351
 elementary, 74, 77
  for linear transformations in R2, 336
 entry of, 13
 equality of, 40
 external demand, 98
 flexibility, 64, 72
 force, 64, 72
 form for linear regression, 101
 fundamental subspaces of, 264, 270
 Hessian, 369
 Householder, 73
 idempotent, 83, 105, 133, 335, 358, 395
 identity, 55, 56
 input-output, 97
 inverse of, 62, 66
  determinant of, 128
  finding by Gauss-Jordan elimination, 

    64
  given by its adjoint, 135
  a product of, 68
  properties of, 67
 for a linear transformation, standard, 320
 linear transformation given by, 302
 main diagonal of, 13
 minor of, 111
 multiplication of, 42, 51
  and dot product, 240
  identity for, 55
  properties of, 54
 nilpotent, 108, 358
 noninvertible, 62

 nonsingular, 62
  equivalent conditions for, 129
 nth root of, 60
 nullity of, 200
 nullspace of, 200
 operations with, 40, 41
 orthogonal, 133, 264, 294, 370
 orthogonally diagonalizable, 373
 output, 97
 partitioned, 40, 46
 product of, 42
  determinant of, 126
 of the quadratic form, 382
 rank of, 199
 real, 13, 40
 reduced row-echelon form of, 15
 row, 40, 94
 row of, 13
 row space of, 195
  basis for, 196
 row-echelon form of, 15
 row-equivalent, 14, 76
 scalar multiple of, 41
  determinant of, 127
 scalar multiplication of, 41
  properties of, 52
 similar, 332, 359
  have the same eigenvalues, 360
  properties of, 332
 singular, 62
 size of, 13
 skew-symmetric, 61, 133, 228
 square of order n, 13
  determinant of, 112
  steps for diagonalizing, 362
  summary of equivalent conditions, 204
 stable, 87
 standard, for a linear transformation, 320
 state, 85
 steady state, 86, 87
  finding, 88
 stiffness, 64, 72
 stochastic, 84
  regular, 87
 symmetric, 57, 169, 368
  Fundamental Theorem of, 373
  orthogonal diagonalization of, 374
  properties of, 368, 372
 of T relative to a basis, 326, 327, 330
 trace of, 50, 308, 357
 transformation, for nonstandard bases, 326
 transition, 210, 212, 330
 of transition probabilities, 84
 transpose of, 57
  determinant of, 130
  properties of, 57
 triangular, 79, 115
  determinant of, 115
  eigenvalues of, 354

 zero, 53
Method of least squares, 100
Minor, 111
Modeling, mathematical, 273
Morphing, 180
Multiple regression analysis, 304
Multiplication of matrices, 42, 51
 and dot product, 240
 identity for, 55
 properties of, 54
 scalar, 41
  properties of, 52
Multiplicative 
 identity property
  for matrices, 52
  for vectors, 154, 156
 inverse of a real number, 62
Multiplicity of an eigenvalue, 353
Mutually orthogonal, 254

N
Natural frequency, 164
Negative of a vector, 153, 155
Network
 analysis, 29–31 
 electrical, 30, 322
Nilpotent matrix, 108, 358
Noncommutativity of matrix  

multiplication, 55
Nonhomogeneous linear 
 differential equation, 218
 system, solutions of, 203
Noninvertible matrix, 62
Nonsingular matrix, 62
 equivalent conditions for, 129
Nonstandard basis, 209
Nontrivial
 solutions, 179
 subspaces, 169
Norm of a vector, 232, 246
Normal equations of the least squares  

problem, 271
Normalized Legendre polynomials, 261
Normalizing a vector, 233
n-space, 155
 Euclidean, 235
nth root of a matrix, 60
nth state matrix of a Markov chain, 85
nth-order Fourier approximation, 285
n-tuple, ordered, 155
Nullity, 200, 313
Nullspace, 200, 311
Number of
 operations to evaluate a determinant, 122
 solutions, 5, 21, 56
 vectors in a basis, 190

O
Obvious solution, 21
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One-to-one linear transformation, 315, 316
Onto linear transformation, 316
Open economic system, 98
Operation(s)
 elementary column, 120
 elementary row, 14
  and determinants, 119
  representing, 75
 with matrices, 40
 that produce equivalent systems, 7
 standard, in Rn, 155
 vector, 153
Operator
 differential, 305
 linear, 299
Opposite direction parallel vectors, 232
Order of a square matrix, 13
Ordered
 basis, 208
 n-tuple, 155
 pair, 152
Orthogonal
 basis, 254, 259
 complement, 266
 diagonalization of a symmetric matrix, 374
 matrix, 133, 264, 294, 370
 mutually, 254
 projection, 248, 249, 346
  and distance, 250, 269
  onto a subspace, 308
 set(s), 254, 257
 subspaces, 266, 268
 vectors, 238, 246
Orthogonally diagonalizable matrix, 373
Orthonormal, 254, 258
Output
 of an economic system, 97
 matrix, 98
Overdetermined system of linear equations, 

38

P
Pn, standard basis for, 188
Parabola, standard form of the equation of, 

221
Paraboloid, 387
Parallel vectors, 232
Parallelepiped, volume of, 289
Parallelogram, area of, 279
Parameter, 3
Parametric representation, 3
Parseval’s equality, 264
Particular solution, 203
Partitioned matrix, 40, 46
Peirce, Benjamin (1809–1890), 43
Peirce, Charles S. (1839–1914), 43
Perpendicular vectors, 238
Plane, three-point form of the equation of, 

140

Point(s)
 fixed, 308, 341
 initial, 152
 in Rn, 155
 terminal, 152
Polynomial(s), 261, 282
 characteristic, 147, 351
 curve fitting, 25–28 
Population
 genetics, 365
 growth, 378, 379
 states of, 84
Preimage of a mapped vector, 298
Preservation of operations, 299
Primary additive colors, 190
Prime number, A4
Principal Axes Theorem, 383
Principle of Mathematical Induction, A1, A2
Probability vector, steady state, 394
Product
 cross, 277
  area of a triangle using, 288
  properties of, 278, 279
 dot, 235
  and matrix multiplication, 240
 inner, 243
  properties of, 245
  space, 243
  weights of the terms of, 244
 triple scalar, 288
 of two matrices, 42
  determinant of, 126
  inverse of, 68
Projection
 orthogonal, 248, 249, 346
  and distance, 250, 269
 onto a subspace, 268, 308
 in R3, 304
Proof, A2–A4
Proper subspace, 169
Properties of
 additive identity and additive inverse, 157
 cancellation, 69
 the cross product, 278, 279
 determinants, 126
 the dot product, 235
 the identity matrix, 56
 inner products, 245
 inverse matrices, 67
 invertible matrices, 77
 linear transformations, 300
 linearly dependent sets, 182
 matrix addition and scalar multiplication, 

   52
 matrix multiplication, 54
 orthogonal matrices, 370
 orthogonal subspaces, 268
 scalar multiplication
  and matrix addition, 52

  and vector addition, 154, 156
  of vectors, 164
 similar matrices, 332
 symmetric matrices, 368, 372
 transposes, 57
 vector addition and scalar multiplication, 

   154, 156
 zero matrices, 53
Pythagorean Theorem, 239, 248

Q
QR-factorization, 259, 293
Quadratic
 approximation, least squares, 283
 form, 382
Quadric surface, 386, 387
 rotation of, 388
 trace of, 385–387

R
R2

 angle between two vectors in, 235
 contractions in, 337
 expansions in, 337
 length of a vector in, 232
 linear transformations in, geometry of, 336
 magnification in, 342
 norm of a vector in, 232
 reflections in, 336, 346
 rotation in, 303
 shears in, 338
 translation in, 308, 343
R3

 angle between two vectors in, 279
 projection in, 304
 rotation in, 339, 340
 standard basis for, 186, 254
Rn, 155
 angle between two vectors in, 237
 change of basis in, 210
 coordinate representation in, 208
 distance between two vectors in, 234
 dot product in, 235
 length of a vector in, 232
 norm of a vector in, 232
 standard
  basis for, 186
  operations in, 155
 subspaces of, 171
Range, 298, 312
Rank, 199, 313
Real
 matrix, 13, 40
 number, multiplicative inverse, 62
Real Spectral Theorem, 368
Recursive formula, 396
Reduced row-echelon form of a matrix, 15
Reflection in R2, 336, 346
Reflecting boundaries, Markov chain with, 93
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A46 Index

Regression
 analysis, 304
  least squares, 99–101, 265, 271–274
 line, least squares, 100, 265
 linear, matrix form for, 101
Regular
 Markov chain, 87
 Stochastic matrix, 87
Representation
 basis, uniqueness of, 188
 coordinate, 208, 215
 parametric, 3
Representing elementary row operations, 

75
Right-hand rule, 340
Right-handed system, 279
Rotation
 of axes, for a conic, 223, 224
 of a quadric surface, 388
 in R2, 303
 in R3, 339, 340
Row
 equivalence, 76
 matrix, 40, 94
 of a matrix, 13
 rank of a matrix, 199
 space, 195
  basis for, 196
  row-equivalent matrices have the  

    same, 196
 subscript, 13
 vector, 40, 195
Row and column spaces, 198
Row operations, elementary, 14
 and determinants, 119
 representing, 75
Row-echelon form, 6, 15
Row-equivalent matrices, 14, 76
 have the same row space, 196

S
Same direction parallel vectors, 232
Sampling, 172
Satellite dish, 223
Scalar, 41, 153, 161
Scalar multiple
 length of, 233
 of a matrix, 41
  determinant of, 127
 of a vector, 155
Scalar multiplication
 of matrices, 41
  properties of, 52
 in Rn, 155
 of vectors, 153, 155, 161
  properties of, 154, 156, 164
Schmidt, Erhardt (1876–1959), 259
Schwarz, Hermann (1843–1921), 236
Sequence, Fibonacci, 396
Series, Fourier, 256, 287

Set(s)
 linearly dependent, 179
 linearly independent, 179
 orthogonal, 254, 257
 orthonormal, 254
 solution, 3
 span of, 174, 178
 spanning, 177
Sex-linked inheritance, 365
Shear in R2, 338
Sign pattern for cofactors, 111
Similar matrices, 332, 359
 have the same eigenvalues, 360
 properties of, 332
Singular matrix, 62
Size of a matrix, 13
Skew-symmetric matrix, 61, 133, 228
Solution(s)
 of a homogeneous system, 21, 200
 of a linear differential equation, 218, 219
 of a linear equation, 3
 nontrivial, 179
 set, 3
 space, 200, 202
 of a system of linear equations, 4, 203, 

   204
  number of, 5, 56
 trivial, 179
Solving
 an equation, 3
 the least squares problem, 271
 a system of linear equations, 6, 45
Span, 174, 177, 179
Spanning set, 177
Span(S) is a subspace of V, 178
Spectrum of a symmetric matrix, 368
Square matrix of order n, 13
 determinant of, 112
 minors and cofactors of, 111
 steps for diagonalizing, 362
 summary of equivalent conditions for, 204
Stable matrix, 87
Standard
 forms of equations of conics, 221
 matrix for a linear transformation, 320
 operations in Rn, 155
 spanning set, 177
 unit vector, 232
Standard basis, 186, 187, 208, 209, 254
State(s)
 matrix, 85
 of a population, 84
Steady state, 87, 147, 394
Steady state matrix, 86, 87
 finding, 88
Steps for diagonalizing an n × n square 

matrix, 362
Stiffness matrix, 64, 72
Stochastic matrix, 84
 regular, 87

Subscript
 column, 13
 row, 13
Subspace(s), 168
 direct sum of, 230, 267
 eigenvectors of λ form a, 350
 fundamental, of a matrix, 264, 270
 intersection of, 170
 kernel is a, 311
 nontrivial, 169
 orthogonal, 266, 268
 projection onto, 268
 proper, 169
 of Rn, 171
 range is a, 312
 sum of, 230
 test for, 168
 trivial, 169
 zero, 169
Subtraction
 of matrices, 41
 of vectors, 153, 155
Sufficient condition for diagonalization, 364
Sum
 direct, 230, 267
 of rank and nullity, 313
 of squared error, 99
 of two linear transformations, 344
 of two matrices, 41
 of two subspaces, 230
 of two vectors, 153, 155
Summary
 of equivalent conditions for square  

   matrices, 204
 of important vector spaces, 163
Surface, quadric, 386, 387
 rotation of, 388
 trace of, 385
Symmetric matrices, 57, 169, 368
 Fundamental Theorem of, 373
 orthogonal diagonalization of, 374
 properties of, 368, 372
System of
 first-order linear differential equations, 

   380
 linear equations, 4, 38
  consistent, 5
  equivalent, 6, 7
  homogeneous, 21
  inconsistent, 5, 8, 18
  row-echelon form of, 6
  solution(s) of, 4, 5, 56, 203, 204
  solving, 6, 45
 m linear equations in n variables, 4

T
Taussky-Todd, Olga (1906–1995), 234
Taylor polynomial of degree 1, 282
Term, constant, 2
Terminal point of a vector, 152
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Test for
 a basis in an n-dimensional space, 192
 collinear points in the xy-plane, 139
 coplanar points in space, 140
 linear independence, 180, 219
 a subspace, 168
Tetrahedron, volume of, 140
Theorem
 Cayley-Hamilton, 147, 357
 Fundamental
  of Algebra, 351
  of Symmetric Matrices, 373
 Principal Axes, 383
 Pythagorean, 239, 248
 Real Spectral, 368
Three-by-three matrix, determinant of,  

alternative method, 114
Three-point form of the equation of a plane, 

141
Torque, 277
Trace
 of a matrix, 50, 308, 357
 of a surface, 385–387
Transformation(s)
 affine, 180, 344
 identity, 300
 linear, 299
  composition of, 322, 323
  contraction in R2, 337
  and diagonalization, 365
  differential operator, 305
  eigenvalue of, 355
  eigenvector of, 355
  expansion in R2, 337
  fixed point of, 308, 341
  given by a matrix, 302
  inverse of, 324, 325
  isomorphism, 317
  kernel of, 309
  magnification in R2, 342
  nullity of, 313
  nullspace of, 311
  one-to-one, 315, 316
  onto, 316
  orthogonal projection onto a subspace, 

    308
  projection in R3, 304
  properties of, 300
  in R2, 336
  range of, 312
  rank of, 313
  reflection in R2, 336, 346
  rotation in R2, 303
  rotation in R3, 339, 340
  shear in R2, 338
  standard matrix for, 320
  sum of, 344
 matrix for nonstandard bases, 326
 zero, 300
Transition matrix, 210, 212, 330

Transition probabilities, matrix of, 84
Translation in R2, 308, 343
Transpose of a matrix, 57
 determinant of, 130
Triangle
 area, 138, 288
 inequality, 239, 248
Triangular matrix, 79, 115
 determinant of, 115
 eigenvalues of, 354
Triple scalar product, 288
Trivial
 solution, 21, 160, 179
 subspaces, 169
Two-by-two matrix
 determinant of, 66, 110
 inverse of, 66
Two-point form of the equation of a line, 139

U
Uncoded row matrices, 94
Undamped system, 164
Underdetermined system of linear equations, 

38
Uniqueness
 of basis representation, 188
 of an inverse matrix, 62
Unit cell, end-centered monoclinic, 213
Unit vector, 232, 233, 246
Upper triangular matrix, 79, 115

V
Variable
 free, 3
 leading, 2
Vector(s), 146, 149, 161
 addition, 153, 155, 161
  properties of, 154, 156
 additive identity of, 157
 additive inverse of, 157
 age distribution, 378
 angle between two, 235, 237, 246, 279
 in a basis, number of, 190
 column, 40, 195
  linear combination of, 46
 components of, 152
 coordinates relative to a basis, 208
 cross product of two, 277
 distance between two, 234, 246
 dot product of two, 235
 equal, 152, 155
 initial point of, 152
 inner product of, 243
 length of, 232, 233, 246
 linear combination of, 158, 175
 magnitude of, 232
 negative of, 153, 155
 norm of, 232, 246
 normalizing, 233
 number in a basis, 190

 operations, 153, 155
 ordered pair representation, 152
 orthogonal, 238, 246
 parallel, 232
 perpendicular, 238
 in the plane, 152
 probability, steady state, 394
 projection onto a subspace, 268
 in Rn, 155
 row, 40, 195
 scalar multiplication of, 153, 155, 161
  properties of, 154, 156
 space(s), 161
  basis for, 186
  dimension of, 191
  finite dimensional, 186
  infinite dimensional, 186
  inner product for, 243
  isomorphisms of, 317
  spanning set of, 177
  subspace of, 168
  summary of important, 163
 steady state probability, 394
 terminal point of, 152
 unit, 232, 246
 zero, 153, 155
Vertical
 contractions and expansions in R2, 337
 shear in R2, 338
Volume, 140, 289

W
Warping, 180
Weights of the terms of an inner product, 244
Work, 248
Wronski, Josef Maria (1778–1853), 219
Wronskian, 219

X
x-axis
 reflection in, 336
 rotation about, 340
X-linked inheritance, 365

Y
y-axis
 reflection in, 336
 rotation about, 340

Z
z-axis, rotation about, 339, 340
Zero
 determinant, conditions that yield, 121
 identically equal to, 188, 219
 matrix, 53
 subspace, 169
 transformation, 300
 vector, 153, 155

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Properties of Matrix Addition and Scalar Multiplication

If A, B, and C are m × n matrices, and c and d are scalars, then the properties below are true.
1. A + B = B + A Commutative property of addition

2. A + (B + C) = (A + B) + C Associative property of addition

3. (cd)A = c(dA) Associative property of multiplication

4. 1A = A Multiplicative identity

5. c(A + B) = cA + cB Distributive property

6. (c + d)A = cA + dA Distributive property

Properties of Matrix Multiplication

If A, B, and C are matrices (with sizes such that the matrix products are defined), and c is 
a scalar, then the properties below are true.
1. A(BC) = (AB)C Associative property of multiplication

2. A(B + C) = AB + AC Distributive property

3. (A + B)C = AC + BC Distributive property

4. c(AB) = (cA)B = A(cB)

Properties of the Identity Matrix

If A is a matrix of size m × n, then the properties below are true.
1. AIn = A
2. Im A = A

Properties of Vector Addition and Scalar Multiplication in Rn

Let u, v, and w be vectors in Rn, and let c and d be scalars.
 1. u + v is a vector in Rn Closure under addition

 2. u + v = v + u Commutative property of addition

 3. (u + v) + w = u + (v + w) Associative property of addition

 4. u + 0 = u Additive identity property

 5. u + (−u) = 0 Additive inverse property

 6. cu is a vector in Rn. Closure under scalar multiplication

 7. c(u + v) = cu + cv Distributive property

 8. (c + d)u = cu + du Distributive property

 9. c(du) = (cd)u Associative property of multiplication

10. 1(u) = u Multiplicative identity property

Summary of Important Vector Spaces

 R = set of all real numbers
 R2 = set of all ordered pairs
 R3 = set of all ordered triples
 Rn = set of all n-tuples

 C(−∞, ∞) = set of all continuous functions defined on the real line
 C[a, b] = set of all continuous functions defined on a closed interval [a, b], where a ≠ b

 P = set of all polynomials
 Pn = set of all polynomials of degree ≤ n (together with the zero polynomial)

 Mm,n = set of all m × n matrices
 Mn,n = set of all n × n square matrices
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Summary of Equivalent Conditions for Square Matrices

If A is an n × n matrix, then the conditions below are equivalent.
1. A is invertible.
2. Ax = b has a unique solution for any n × 1 matrix b.
3. Ax = 0 has only the trivial solution.
4. A is row-equivalent to In.
5. ∣A∣ ≠ 0
6. Rank(A) = n
7. The n row vectors of A are linearly independent.
8. The n column vectors of A are linearly independent.

Properties of the Dot Product

If u, v, and w are vectors in Rn and c is a scalar, then the properties listed below are true.
1. u ∙ v = v ∙ u
2. u ∙ (v + w) = u ∙ v + u ∙ w
3. c(u ∙ v) = (cu) ∙ v = u ∙ (cv)
4. v ∙ v = �v�2

5. v ∙ v ≥ 0, and v ∙ v = 0 if and only if v = 0.

Properties of the Cross Product

If u, v, and w are vectors in R3 and c is a scalar, then the properties listed below are true.
1. u × v = −(v × u)
2. u × (v + w) = (u × v) + (u × w)
3. c(u × v) = cu × v = u × cv
4. u × 0 = 0 × u = 0
5. u × u = 0
6. u ∙ (v × w) = (u × v) ∙ w

Finding Eigenvalues and Eigenvectors*

Let A be an n × n matrix.
1.  Form the characteristic equation ∣λI − A∣ = 0. It will be a polynomial equation of 

degree n in the variable λ.
2. Find the real roots of the characteristic equation. These are the eigenvalues of A.
3.  For each eigenvalue λi, find the eigenvectors corresponding to λi by solving the  

homogeneous system (λi I − A)x = 0. This can require row-reducing an n × n matrix. 
The reduced row-echelon form must have at least one row of zeros.

*For complicated problems, this process can be facilitated with the use of technology.
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